Real-World Treatment Patterns and Timeliness of Clinical Care Pathway for Non-Small Cell Lung Cancer Patients in Austria: The PRATER Retrospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Objectives
2.3. Statistical Methods
3. Results
3.1. Primary Part: Individual Patient-Level Data for Patients Initially Diagnosed with Stage I–III NSCLC
3.1.1. Patient Disposition
3.1.2. Patient Characteristics
3.1.3. Initial Treatments
3.1.4. Patient Journey
3.2. Exploratory Part: Aggregate Data for Patients Initially Diagnosed with Stage I–IV NSCLC
3.3. Alignment between Primary and Exploratory Findings
4. Discussion
4.1. Primary Part
4.2. Exploratory Part
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- STATISTIC AUSTRIA. Die Informationsmanager, Krebserkrankungen. Krebsinzidenz und Krebsmortalität nach Ausgewählten Lokalisationen und Geschlecht 2022, Absolutzahlen (Tabelle). Available online: https://www.statistik.at/statistiken/bevoelkerung-und-soziales/gesundheit/krebserkrankungen (accessed on 29 February 2024).
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Statistics Center. Cancer Facts & Figures 2024. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2024-cancer-facts-figures.html (accessed on 5 July 2024).
- Snee, M.; Cheeseman, S.; Thompson, M.; Riaz, M.; Sopwith, W.; Lacoin, L.; Chaib, C.; Daumont, M.J.; Penrod, J.R.; Hall, G. Treatment patterns and survival outcomes for patients with non-small cell lung cancer in the UK in the preimmunology era: A REAL-Oncology database analysis from the I-O Optimise initiative. BMJ Open 2021, 11, e046396. [Google Scholar] [CrossRef] [PubMed]
- Ekman, S.; Horvat, P.; Rosenlund, M.; Kejs, A.M.; Patel, D.; Juarez-Garcia, A.; Lacoin, L.; Daumont, M.J.; Penrod, J.R.; Brustugun, O.T.; et al. Epidemiology and Survival Outcomes for Patients with NSCLC in Scandinavia in the Preimmunotherapy Era: A SCAN-LEAF Retrospective Analysis From the I-O Optimise Initiative. JTO Clin. Res. Rep. 2021, 2, 100165. [Google Scholar] [CrossRef] [PubMed]
- Ismail, R.K.; Schramel, F.; van Dartel, M.; Hilarius, D.L.; de Boer, A.; Wouters, M.; Smit, H.J.M. The Dutch Lung Cancer Audit: Nationwide quality of care evaluation of lung cancer patients. Lung Cancer 2020, 149, 68–77. [Google Scholar] [CrossRef]
- Verleye, L.; De Gendt, C.; Vrijens, F.; Schillemans, V.; Camberlin, C.; Silversmit, G.; Stordeur, S.; Van Eycken, E.; Dubois, C.; Robays, J.; et al. Patterns of care for non-small cell lung cancer patients in Belgium: A population-based study. Eur. J. Cancer Care 2018, 27, e12747. [Google Scholar] [CrossRef] [PubMed]
- Carrato, A.; Vergnenègre, A.; Thomas, M.; McBride, K.; Medina, J.; Cruciani, G. Clinical management patterns and treatment outcomes in patients with non-small cell lung cancer (NSCLC) across Europe: EPICLIN-Lung study. Curr. Med. Res. Opin. 2014, 30, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Skov, B.G.; Rørvig, S.B.; Jensen, T.H.L.; Skov, T. The prevalence of programmed death ligand-1 (PD-L1) expression in non-small cell lung cancer in an unselected, consecutive population. Mod. Pathol. 2020, 33, 109–117. [Google Scholar] [CrossRef]
- Burghuber, O.C.; Kirchbacher, K.; Mohn-Staudner, A.; Hochmair, M.; Breyer, M.K.; Studnicka, M.; Mueller, M.R.; Feurstein, P.; Schrott, A.; Lamprecht, B.; et al. Results of the Austrian National Lung Cancer Audit. Clin. Med. Insights. Oncol. 2020, 14, 1179554920950548. [Google Scholar] [CrossRef]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef]
- Houda, I.; Dickhoff, C.; Uyl-de Groot, C.A.; Reguart, N.; Provencio, M.; Levy, A.; Dziadziuszko, R.; Pompili, C.; Di Maio, M.; Thomas, M.; et al. New systemic treatment paradigms in resectable non-small cell lung cancer and variations in patient access across Europe. Lancet Reg. Health Eur. 2024, 38, 100840. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.D.; Hu, C.; Komaki, R.R.; Masters, G.A.; Blumenschein, G.R.; Schild, S.E.; Bogart, J.A.; Forster, K.M.; Magliocco, A.M.; Kavadi, V.S.; et al. Long-Term Results of NRG Oncology RTOG 0617: Standard- Versus High-Dose Chemoradiotherapy with or without Cetuximab for Unresectable Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2020, 38, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Bowes, K.; Jovanoski, N.; Brown, A.E.; Di Maio, D.; Belleli, R.; Chadda, S.; Abogunrin, S. Treatment patterns and survival of patients with locoregional recurrence in early-stage NSCLC: A literature review of real-world evidence. Med. Oncol. 2022, 40, 4. [Google Scholar] [CrossRef]
- West, H.; Hu, X.; Zhang, S.; Song, Y.; Chirovsky, D.; Gao, C.; Lerner, A.; Jiang, A.; Signorovitch, J.; Samkari, A. Treatment Patterns and Outcomes in Resected Early-stage Non-small Cell Lung Cancer: An Analysis of the SEER-Medicare Data. Clin. Lung Cancer 2023, 24, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Borghetti, P.; Volpi, G.; Facheris, G.; Cossali, G.; Mataj, E.; La Mattina, S.; Singh, N.; Imbrescia, J.; Bonù, M.L.; Tomasini, D.; et al. Unresectable stage III non-small cell lung cancer: Could durvalumab be safe and effective in real-life clinical scenarios? Results of a single-center experience. Front. Oncol. 2023, 13, 1208204. [Google Scholar] [CrossRef] [PubMed]
- Pirker, R.; Prosch, H.; Popper, H.; Klepetko, W.; Dieckmann, K.; Burghuber, O.C.; Klikovits, T.; Hoda, M.A.; Zöchbauer-Müller, S.; Filipits, M. Lung Cancer in Austria. J. Thorac. Oncol. 2021, 16, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Österreichischer Krebsreport 2022. Available online: https://www.krebsreport.at/Krebsreport-2022.pdf (accessed on 29 February 2024).
- Guirado, M.; Fernández Martín, E.; Fernández Villar, A.; Navarro Martín, A.; Sánchez-Hernández, A. Clinical impact of delays in the management of lung cancer patients in the last decade: Systematic review. Clin. Transl. Oncol. 2022, 24, 1549–1568. [Google Scholar] [CrossRef]
- Vinas, F.; Ben Hassen, I.; Jabot, L.; Monnet, I.; Chouaid, C. Delays for diagnosis and treatment of lung cancers: A systematic review. Clin. Respir. J. 2016, 10, 267–271. [Google Scholar] [CrossRef]
- Olsson, J.K.; Schultz, E.M.; Gould, M.K. Timeliness of care in patients with lung cancer: A systematic review. Thorax 2009, 64, 749–756. [Google Scholar] [CrossRef]
- Jacobsen, M.M.; Silverstein, S.C.; Quinn, M.; Waterston, L.B.; Thomas, C.A.; Benneyan, J.C.; Han, P.K.J. Timeliness of access to lung cancer diagnosis and treatment: A scoping literature review. Lung Cancer 2017, 112, 156–164. [Google Scholar] [CrossRef]
- Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv1–iv21. [Google Scholar] [CrossRef] [PubMed]
- Remon, J.; Soria, J.C.; Peters, S. Early and locally advanced non-small-cell lung cancer: An update of the ESMO Clinical Practice Guidelines focusing on diagnosis, staging, systemic and local therapy. Ann. Oncol. 2021, 32, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 358–376. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Zaim, R.; Redekop, K.; Uyl-de Groot, C.A. Immune checkpoint inhibitors for the treatment of non-small cell lung cancer: A comparison of the regulatory approvals in Europe and the United States. J. Cancer Policy 2022, 33, 100346. [Google Scholar] [CrossRef] [PubMed]
- Hofmarcher, T.; Lindgren, P.; Wilking, N. Systemic anti-cancer therapy patterns in advanced non-small cell lung cancer in Europe. J. Cancer Policy 2022, 34, 100362. [Google Scholar] [CrossRef]
- EMA Recommends Granting a Marketing Authorisation for Durvalumab for the Treatment of Locally Advanced, Unresectable NSCLC [27 July 2018; ESMO > Oncology News > Archive]. Available online: https://www.esmo.org/oncology-news/archive/ema-recommends-granting-a-marketing-authorisation-for-durvalumab-for-the-treatment-of-locally-advanced-unresectable-nsclc (accessed on 26 March 2024).
- European Medicines Agency. Imfinzi Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/imfinzi-epar-product-information_en.pdf (accessed on 29 February 2024).
- European Medicines Agency. Tecentriq Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/tecentriq-epar-product-information_en.pdf (accessed on 29 February 2024).
- Felip, E.; Altorki, N.; Zhou, C.; Csőszi, T.; Vynnychenko, I.; Goloborodko, O.; Luft, A.; Akopov, A.; Martinez-Marti, A.; Kenmotsu, H.; et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet 2021, 398, 1344–1357. [Google Scholar] [CrossRef] [PubMed]
- Felip, E.; Altorki, N.; Zhou, C.; Vallières, E.; Martínez-Martí, A.; Rittmeyer, A.; Chella, A.; Reck, M.; Goloborodko, O.; Huang, M.; et al. Overall survival with adjuvant atezolizumab after chemotherapy in resected stage II-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase III trial. Ann. Oncol. 2023, 34, 907–919. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Opdivo Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/opdivo-epar-product-information_en.pdf (accessed on 29 February 2024).
- Forde, P.M.; Spicer, J.; Lu, S.; Provencio, M.; Mitsudomi, T.; Awad, M.M.; Felip, E.; Broderick, S.R.; Brahmer, J.R.; Swanson, S.J.; et al. Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. N. Engl. J. Med. 2022, 386, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Keytruda Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/keytruda-epar-product-information_en.pdf (accessed on 29 February 2024).
- O’Brien, M.; Paz-Ares, L.; Marreaud, S.; Dafni, U.; Oselin, K.; Havel, L.; Esteban, E.; Isla, D.; Martinez-Marti, A.; Faehling, M.; et al. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB-IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): An interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol. 2022, 23, 1274–1286. [Google Scholar] [CrossRef]
- European Medicines Agency. Tagrisso Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/tagrisso-epar-product-information_en.pdf (accessed on 29 February 2024).
- Wakelee, H.; Liberman, M.; Kato, T.; Tsuboi, M.; Lee, S.H.; Gao, S.; Chen, K.N.; Dooms, C.; Majem, M.; Eigendorff, E.; et al. Perioperative Pembrolizumab for Early-Stage Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Suda, K.; Hamada, A.; Tsutani, Y. Recent Advances in Perioperative Immunotherapies in Lung Cancer. Biomolecules 2023, 13, 1377. [Google Scholar] [CrossRef] [PubMed]
- Heymach, J.V.; Harpole, D.; Mitsudomi, T.; Taube, J.M.; Galffy, G.; Hochmair, M.; Winder, T.; Zukov, R.; Garbaos, G.; Gao, S.; et al. Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 1672–1684. [Google Scholar] [CrossRef]
- Tsuboi, M.; Weder, W.; Escriu, C.; Blakely, C.; He, J.; Dacic, S.; Yatabe, Y.; Zeng, L.; Walding, A.; Chaft, J.E. Neoadjuvant osimertinib with/without chemotherapy versus chemotherapy alone for EGFR-mutated resectable non-small-cell lung cancer: NeoADAURA. Future Oncol. 2021, 17, 4045–4055. [Google Scholar] [CrossRef]
- Zemanova, M.; Pirker, R.; Petruzelka, L.; Zbozínkova, Z.; Jovanovic, D.; Rajer, M.; Bogos, K.; Purkalne, G.; Ceriman, V.; Chaudhary, S.; et al. Care of patients with non-small-cell lung cancer stage III—The Central European real-world experience. Radiol. Oncol. 2020, 54, 209–220. [Google Scholar] [CrossRef]
- Maxwell, S.S.; Weller, D. Lung cancer and Covid-19: Lessons learnt from the pandemic and where do we go from here? NPJ Prim. Care Respir. Med. 2022, 32, 19. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.; Alpert, N.; McCardle, K.; Taioli, E. Shift in lung cancer stage at diagnosis during the COVID-19 pandemic in New York City. Transl. Lung Cancer Res. 2022, 11, 1514–1516. [Google Scholar] [CrossRef]
- Melocchi, L.; Mengoli, M.C.; Bogina, G.; Facchetti, M.; Migliorati, F.; Gandolfi, L.; Rossi, G. COVID-19 and lung cancer. Pathologica 2023, 115, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Mangone, L.; Marinelli, F.; Bisceglia, I.; Filice, A.; De Leonibus, L.; Rapicetta, C.; Paci, M. The Influence of COVID-19 on New Lung Cancer Diagnoses, by Stage and Treatment, in Northern Italy. Biology 2023, 12, 390. [Google Scholar] [CrossRef]
- Blayney, D.W.; Bariani, G.; Das, D.; Dawood, S.; Gnant, M.; De Guzman, R.; Martin, S.E.; O’Mahony, D.; Roach, A.; Ruff, P.; et al. Spotlight on International Quality: COVID-19 and Its Impact on Quality Improvement in Cancer Care. JCO Glob. Oncol. 2021, 7, 1513–1521. [Google Scholar] [CrossRef]
- Guidelines for good pharmacoepidemiology practice (GPP). Pharmacoepidemiol. Drug Saf. 2016, 25, 2–10. [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Dietel, M.; Savelov, N.; Salanova, R.; Micke, P.; Bigras, G.; Hida, T.; Antunez, J.; Guldhammer Skov, B.; Hutarew, G.; Sua, L.F.; et al. Real-world prevalence of programmed death ligand 1 expression in locally advanced or metastatic non-small-cell lung cancer: The global, multicenter EXPRESS study. Lung Cancer 2019, 134, 174–179. [Google Scholar] [CrossRef]
- Terrenato, I.; Ercolani, C.; Di Benedetto, A.; Gallo, E.; Melucci, E.; Casini, B.; Rollo, F.; Palange, A.; Visca, P.; Pescarmona, E.; et al. A Real-World Systematic Analysis of Driver Mutations’ Prevalence in Early- and Advanced-Stage NSCLC: Implications for Targeted Therapies in the Adjuvant Setting. Cancers 2022, 14, 2971. [Google Scholar] [CrossRef]
- Provencio, M.; Carcereny, E.; López Castro, R.; Calvo, V.; Rodríguez Abreu, D.; Cobo, M.; Ortega, A.L.; Bernabé, R.; Guirado, M.; Massutí, B.; et al. Real-world treatment patterns and survival outcomes for patients with stage III non-small cell lung cancer in Spain: A nationwide cohort study. Transl. Lung Cancer Res. 2023, 12, 2113–2128. [Google Scholar] [CrossRef]
- Provencio, M.; Cobo, M.; Rodriguez-Abreu, D.; Calvo, V.; Carcereny, E.; Cantero, A.; Bernabé, R.; Benitez, G.; Castro, R.L.; Massutí, B.; et al. Determination of essential biomarkers in lung cancer: A real-world data study in Spain with demographic, clinical, epidemiological and pathological characteristics. BMC Cancer 2022, 22, 732. [Google Scholar] [CrossRef]
- Salas, C.; Martín-López, J.; Martínez-Pozo, A.; Hernández-Iglesias, T.; Carcedo, D.; Ruiz de Alda, L.; García, J.F.; Rojo, F. Real-world biomarker testing rate and positivity rate in NSCLC in Spain: Prospective Central Lung Cancer Biomarker Testing Registry (LungPath) from the Spanish Society of Pathology (SEAP). J. Clin. Pathol. 2022, 75, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Stephan-Falkenau, S.; Streubel, A.; Mairinger, T.; Kollmeier, J.; Misch, D.; Thiel, S.; Bauer, T.; Pfannschmidt, J.; Hollmann, M.; Wessolly, M.; et al. Landscape of Genomic Alterations and PD-L1 Expression in Early-Stage Non-Small-Cell Lung Cancer (NSCLC)-A Single Center, Retrospective Observational Study. Int. J. Mol. Sci. 2022, 23, 12511. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.S.I.; Malmros, K.; Mager, U.; Ericson Lindquist, K.; Hejny, K.; Holmgren, B.; Seidal, T.; Dejmek, A.; Dobra, K.; Planck, M.; et al. PD-L1 Expression in Non-Small Cell Lung Cancer Specimens: Association with Clinicopathological Factors and Molecular Alterations. Int. J. Mol. Sci. 2022, 23, 4517. [Google Scholar] [CrossRef]
- Hondelink, L.M.; Ernst, S.M.; Atmodimedjo, P.; Cohen, D.; Wolf, J.L.; Dingemans, A.C.; Dubbink, H.J.; von der Thüsen, J.H. Prevalence, clinical and molecular characteristics of early stage EGFR-mutated lung cancer in a real-life West-European cohort: Implications for adjuvant therapy. Eur. J. Cancer 2023, 181, 53–61. [Google Scholar] [CrossRef]
- Helland, Å.; Andersen, K.K.; Myklebust, T.; Johannesen, T.B.; Aarøe, J.; Enerly, E. EGFR-mutation testing and TKI treatment patterns in locally advanced and metastatic NSCLC in Norway—A nationwide retrospective cohort study. Cancer Treat. Res. Commun. 2022, 33, 100636. [Google Scholar] [CrossRef] [PubMed]
- Adizie, J.B.; Tweedie, J.; Khakwani, A.; Peach, E.; Hubbard, R.; Wood, N.; Gosney, J.R.; Harden, S.V.; Beckett, P.; Popat, S.; et al. Biomarker Testing for People with Advanced Lung Cancer in England. JTO Clin. Res. Rep. 2021, 2, 100176. [Google Scholar] [CrossRef]
- Michaelidou, K.; Karniadakis, I.; Pantelaion, V.; Koutoulaki, C.; Boukla, E.; Folinas, K.; Dimaras, P.; Papadaki, M.A.; Koutsopoulos, A.V.; Mavroudis, D.; et al. Rapid and reliable testing for clinically actionable EGFR mutations in non-small cell lung cancer using the IdyllaTM platform: A real-world two-center experience in Greece. Expert Rev. Mol. Diagn. 2024, 24, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Tsao, M.S.; Kambartel, K.O.; Isobe, H.; Huang, M.S.; Barrios, C.H.; Khattak, A.; de Marinis, F.; Kothari, S.; Arunachalam, A.; et al. Molecular testing and treatment patterns for patients with advanced non-small cell lung cancer: PIvOTAL observational study. PLoS ONE 2018, 13, e0202865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Yuan, J.Q.; Wang, K.F.; Fu, X.H.; Han, X.R.; Threapleton, D.; Yang, Z.Y.; Mao, C.; Tang, J.L. The prevalence of EGFR mutation in patients with non-small cell lung cancer: A systematic review and meta-analysis. Oncotarget 2016, 7, 78985–78993. [Google Scholar] [CrossRef] [PubMed]
- Melosky, B.; Kambartel, K.; Häntschel, M.; Bennetts, M.; Nickens, D.J.; Brinkmann, J.; Kayser, A.; Moran, M.; Cappuzzo, F. Worldwide Prevalence of Epidermal Growth Factor Receptor Mutations in Non-Small Cell Lung Cancer: A Meta-Analysis. Mol. Diagn. Ther. 2022, 26, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Ramlau, R.; Cufer, T.; Berzinec, P.; Dziadziuszko, R.; Olszewski, W.; Popper, H.; Bajcic, P.; Dusšk, L.; Zbozinkova, Z.; Pirker, R. Epidermal Growth Factor Receptor Mutation-Positive Non-Small-Cell Lung Cancer in the Real-World Setting in Central Europe: The INSIGHT Study. J. Thorac. Oncol. 2015, 10, 1370–1374. [Google Scholar] [CrossRef] [PubMed]
- Pasello, G.; Lorenzi, M.; Pretelli, G.; Comacchio, G.M.; Pezzuto, F.; Schiavon, M.; Buja, A.; Frega, S.; Bonanno, L.; Guarneri, V.; et al. Diagnostic-Therapeutic Pathway and Outcomes of Early Stage NSCLC: A Focus on EGFR Testing in the Real-World. Front. Oncol. 2022, 12, 909064. [Google Scholar] [CrossRef] [PubMed]
- Kerr, K.M.; Bibeau, F.; Thunnissen, E.; Botling, J.; Ryška, A.; Wolf, J.; Öhrling, K.; Burdon, P.; Malapelle, U.; Büttner, R. The evolving landscape of biomarker testing for non-small cell lung cancer in Europe. Lung Cancer 2021, 154, 161–175. [Google Scholar] [CrossRef]
- Gosney, J.R.; Paz-Ares, L.; Jänne, P.; Kerr, K.M.; Leighl, N.B.; Lozano, M.D.; Malapelle, U.; Mok, T.; Sheffield, B.S.; Tufman, A.; et al. Pathologist-initiated reflex testing for biomarkers in non-small-cell lung cancer: Expert consensus on the rationale and considerations for implementation. ESMO Open 2023, 8, 101587. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, S.; Feng, X.; Xu, W.; Luo, R.; Zhu, Z.; Zeng, Q.; He, Z. Advances in efficacy prediction and monitoring of neoadjuvant immunotherapy for non-small cell lung cancer. Front. Oncol. 2023, 13, 1145128. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.T.; Jin, Y.; Lo, E.; Chen, Y.; Hanlon Newell, A.E.; Kong, Y.; Inge, L.J. Real-World Biomarker Test Utilization and Subsequent Treatment in Patients with Early-Stage Non-small Cell Lung Cancer in the United States, 2011–2021. Oncol. Ther. 2023, 11, 343–360. [Google Scholar] [CrossRef]
- Waser, N.; Vo, L.; McKenna, M.; Penrod, J.R.; Goring, S. Real-world treatment patterns in resectable (stages I–III) non-small-cell lung cancer: A systematic literature review. Future Oncol. 2022, 18, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, J.B.; Horvat, P.; Rosenlund, M.; Kejs, A.M.; Patel, D.; Juarez-Garcia, A.; Lacoin, L.; Daumont, M.J.; Penrod, J.R.; O’Donnell, J.C.; et al. Initial treatment and survival in Danish patients diagnosed with non-small-cell lung cancer (2005–2015): SCAN-LEAF study. Future Oncol. 2022, 18, 205–214. [Google Scholar] [CrossRef]
- Soares, M.; Antunes, L.; Redondo, P.; Borges, M.; Hermans, R.; Patel, D.; Grimson, F.; Munro, R.; Chaib, C.; Lacoin, L.; et al. Treatment and outcomes for early non-small-cell lung cancer: A retrospective analysis of a Portuguese hospital database. Lung Cancer Manag. 2021, 10, Lmt46. [Google Scholar] [CrossRef]
- Evers, J.; Hendriks, L.E.L.; De Jaeger, K.; Wijsman, R.; De Ruysscher, D.; Terhaard, C.; van der Sangen, M.; Siesling, S.; Struikmans, H.; Aarts, M.J. Trends and variations in the treatment of stage I-III small cell lung cancer from 2008 to 2019: A nationwide population-based study from the Netherlands. Lung Cancer 2021, 162, 61–70. [Google Scholar] [CrossRef]
- Meldgaard, P.; Kristensen, M.; Conte, S.; Kaae Andersen, K.; Jovanovic, A.; Meldgaard, E. Improved overall survival for Stage III NSCLC patients treated with curative-intended therapy from 2010 to 2018—A cohort study in Denmark. Acta Oncol. 2023, 62, 1672–1679. [Google Scholar] [CrossRef]
- Menon, U.; Vedsted, P.; Zalounina Falborg, A.; Jensen, H.; Harrison, S.; Reguilon, I.; Barisic, A.; Bergin, R.J.; Brewster, D.H.; Butler, J.; et al. Time intervals and routes to diagnosis for lung cancer in 10 jurisdictions: Cross-sectional study findings from the International Cancer Benchmarking Partnership (ICBP). BMJ Open 2019, 9, e025895. [Google Scholar] [CrossRef]
- Cancer Research UK. Breaking Down Changes in NHS Cancer Waiting Times in England. Available online: https://news.cancerresearchuk.org/2023/08/17/breaking-down-nhs-englands-changes-in-standards-for-cancer-care/ (accessed on 29 February 2024).
- Round, T.; L’Esperance, V.; Bayly, J.; Brain, K.; Dallas, L.; Edwards, J.G.; Haswell, T.; Hiley, C.; Lovell, N.; McAdam, J.; et al. COVID-19 and the multidisciplinary care of patients with lung cancer: An evidence-based review and commentary. Br. J. Cancer 2021, 125, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Martel, P.; Hajjam, M.E.; Grimaldi, L.; Leprieur, E.G. Incidental diagnosis of lung cancer on chest CT scan performed for suspected or documented COVID-19 infection. Respir. Med. Res. 2024, 85, 101084. [Google Scholar] [CrossRef]
- Arak, H.; Eronat, O.; Dogan, I.; Aydin, E.S.; Aytekin, A. The Impact of the COVID-19 Pandemic on the Diagnosis and Treatment Characteristics of Operated Lung Cancer Patients. J. Coll. Physicians Surg. Pak. 2023, 33, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, R.; Shi, F.; Wu, J.; Jiang, F.; Song, Q. Diagnostic Efficacy of CT Examination on Early Detection of Lung Cancer during Pandemic of COVID-19. Diagnostics 2022, 12, 2317. [Google Scholar] [CrossRef] [PubMed]
- Bailey, H.; Lee, A.; Eccles, L.; Yuan, Y.; Burlison, H.; Forshaw, C.; Varol, N. Treatment patterns and outcomes of patients with metastatic non-small cell lung cancer in five European countries: A real-world evidence survey. BMC Cancer 2023, 23, 603. [Google Scholar] [CrossRef] [PubMed]
- Slowley, A.; Phiri, K.; Multani, J.K.; Casey, V.; Mpima, S.; Yasuda, M.; Chen, C.C.; Manuguid, F.; Chao, J.; Aziez, A.; et al. Real-world treatment patterns and clinical outcomes after introduction of immune checkpoint inhibitors: Results from a retrospective chart review of patients with advanced/metastatic non-small cell lung cancer in the EU5. Thorac. Cancer 2023, 14, 2846–2858. [Google Scholar] [CrossRef]
- Socialministerium. The Austrian DRG System. Available online: https://www.sozialministerium.at/Themen/Gesundheit/Gesundheitssystem/Krankenanstalten/Leistungsorientierte-Krankenanstaltenfinanzierung-(LKF).html (accessed on 29 February 2024).
- Austrian Federal Office for Safety in Health Care (BASG). Central Authorisation. Available online: https://www.basg.gv.at/en/companies/marketing-authorisation-life-cycle/marketing-authorisation-procedure/central-authorisation?sword_list%5B0%5D=monoklonal&cHash=6da53ed631a7b1cabbce3d76c399ac26 (accessed on 29 February 2024).
- Ludwig Boltzmann Institut. Arzneimittelerstattung im Stationären Sektor in Österreich. Available online: https://eprints.aihta.at/1183/1/HTA-Projektbericht_Nr.109.pdf (accessed on 29 February 2024).
Overall (N = 319) | Stage I (N = 115) | Stage II (N = 98) | Stage III (N = 106) | ||
---|---|---|---|---|---|
Age (years) | median (IQR) | 69.0 (62.0–76.0) | 70.0 (62.0–76.0) | 65.5 (61.0–74.0) | 70.0 (60.0–76.0) |
<70, % (n/N) | 51.7 (165/319) | 49.6 (57/115) | 58.2 (57/98) | 48.1 (51/106) | |
Male, % (n/N) | 53.3 (170/319) | 44.3 (51/115) | 53.1 (52/98) | 63.2 (67/106) | |
Ever smokers (current & former), ‡ % (n/N) | 92.8 (270/291) | 88.3 (91/103) | 95.6 (86/90) | 94.9 (93/98) | |
Pack-years of smoking, median (IQR) | 40.0 (29.3–50.0) | 36.3 (20.5–50.0) | 40.0 (30.0–50.0) | 45.0 (30.0–52.5) | |
BMI (kg/m2), ‡ median (IQR) | 25.1 (22.3–28.4) | 26.0 (22.5–29.7) | 25.9 (23.4–29.0) | 24.0 (21.5–26.6) | |
ECOG performance status score 0–1, ‡ % (n/N) | 89.3 (201/225) | 92.9 (79/85) | 90.8 (59/65) | 84.0 (63/75) | |
History of other primary malignancies, % (n/N) | 21.6 (69/319) | 25.2 (29/115) | 20.4 (20/98) | 18.9 (20/106) | |
Histological disease diagnosis, % (n/N) | 94.4 (301/319) | 98.3 (113/115) | 91.8 (90/98) | 92.5 (98/106) | |
Primary tumor size (cm), ‡ median (IQR) | 2.9 (1.8–4.7) | 1.9 (1.3–2.7) | 3.8 (2.4–4.8) | 4.7 (2.5–7.2) | |
Most common primary tumor histology, ‡,⌠ % (n/N) | Non-squamous | 50.6 (159/314) | 63.2 (72/114) | 47.4 (46/97) | 39.8 (41/103) |
Squamous | 35.4 (111/314) | 21.1 (24/114) | 38.1 (37/97) | 48.5 (50/103) | |
Adenosquamous | 11.5 (36/314) | 11.4 (13/114) | 12.4 (12/97) | 10.7 (11/103) | |
Imaging testing performed, % (n/N) | 97.2 (310/319) | 96.5 (111/115) | 98.0 (96/98) | 97.2 (103/106) | |
Most common ∫ type of testing performed, % (n/N) | CT | 92.9 (288/310) | 95.5 (106/111) | 95.8 (92/96) | 87.4 (90/103) |
PET-CT | 53.9 (167/310) | 55.9 (62/111) | 55.2 (53/96) | 50.5 (52/103) | |
Brain MRI | 25.5 (79/310) | 24.3 (27/111) | 32.3 (31/96) | 20.4 (21/103) |
Overall (N = 319) | Stage I (N = 115) | Stage II (N = 98) | Stage III (N = 106) | |
---|---|---|---|---|
Frequencies of treatment modalities, % (n/N) | ||||
Any (non)pharmacologic treatment (SUR, ST, and/or RT) † | 96.2 (307/319) | 99.1 (114/115) | 96.9 (95/98) | 92.5 (98/106) |
SUR (±RT or ST) | 67.4 (215/319) | 81.7 (94/115) | 84.7 (83/98) | 35.8 (38/106) |
Receipt of (neo)adjuvant ST, among resected patients | ||||
Receipt of neoadjuvant ST | 8.8 (19/215) | . | 3.6 (3/83) | 42.1 (16/38) |
Receipt of adjuvant ST | 29.3 (63/215) | 8.5 (8/94) | 44.6 (37/83) | 47.4 (18/38) |
Type of resection, among resected patients ⌠ | ||||
Lobectomy | 77.7 (167/215) | 76.6 (72/94) | 81.9 (68/83) | 71.1 (27/38) |
Segmentectomy | 7.9 (17/215) | 13.8 (13/94) | 3.6 (3/83) | 2.6 (1/38) |
Wedge resection | 7.4 (16/215) | 9.6 (9/94) | 6.0 (5/83) | 5.3 (2/38) |
Surgical approach, among resected patients (unknown for n = 4) ∫ | ||||
VATS | 50.7 (107/211) | 71.0 (66/93) | 40.2 (33/82) | 22.2 (8/36) |
Thoracotomy | 46.9 (99/211) | 24.7 (23/93) | 58.5 (48/82) | 77.8 (28/36) |
Surgical Margin, among resected patients (unknown for n = 12) | ||||
R0 | 95.6 (194/203) | 97.8 (90/92) | 93.4 (71/76) | 94.3 (33/35) |
R1 | 3.9 (8/203) | 1.1 (1/92) | 6.6 (5/76) | 5.7 (2/35) |
R2 | 0.5 (1/203) | 1.1 (1/92) | . | . |
Most common reasons for not performing SUR, among unresected patients (unknown for n = 20) ‡ | ||||
Poor cardiorespiratory reserve | 31.9 (23/72) | 38.9 (7/18) | 22.2 (2/9) | 31.1 (14/45) |
Comorbidity | 29.2 (21/72) | 44.4 (8/18) | 22.2 (2/9) | 24.4 (11/45) |
Advanced age | 20.8 (15/72) | 16.7 (3/18) | 44.4 (4/9) | 17.8 (8/45) |
Unresectable disease stage IIIC | 12.5 (9/72) | . | . | 20.0 (9/45) |
Patient frailty | 11.1 (8/72) | 5.6 (1/18) | 22.2 (2/9) | 11.1 (5/45) |
ST (±RT or SUR) | 43.6 (139/319) | 7.8 (9/115) | 43.9 (43/98) | 82.1 (87/106) |
Most common reasons for not receiving ST, among those not receiving ST (unknown for n = 28) ‡ | ||||
Not indicated | 66.4 (93/140) | 83.9 (73/87) | 43.2 (19/44) | 11.1 (1/9) |
Patient’s refusal | 9.3 (13/140) | 1.1 (1/87) | 20.5 (9/44) | 33.3 (3/9) |
Tumor board decision | 7.9 (11/140) | 9.2 (8/87) | 2.3 (1/44) | 22.2 (2/9) |
RT (±ST or SUR) | 22.3 (71/319) | 16.5 (19/115) | 14.3 (14/98) | 35.8 (38/106) |
CRT (±SUR) | 10.0 (32/319) | . | 1.0 (1/98) | 29.2 (31/106) |
cCRT, among those receiving CRT | 50.0 (16/32) | . | 100.0 (1/1) | 48.4 (15/31) |
sCRT, among those receiving CRT | 46.9 (15/32) | . | . | 48.4 (15/31) |
Both cCRT and sCRT, among those receiving CRT | 3.1 (1/32) | . | . | 3.2 (1/31) |
Time from histological NSCLC confirmation to start of ITS, among patients receiving that treatment, median (IQR)¶ | ||||
Any (non)pharmacologic treatment, days § | 24.0 (7.0–39.0) | 25.5 (0.0–40.0) | 27.0 (7.0–42.0) | 21.5 (12.0–33.0) |
SUR, days § | 26.0 (0.0–44.0) | 19.0 (0.0–34.0) | 26.0 (2.0–44.0) | 53.0 (21.0–101.0) |
RT, months | 2.1 (1.3–3.5) | 1.4 (1.2–1.7) | 1.9 (1.0–2.5) | 2.9 (1.7–4.5) |
ST, months | 1.2 (0.7–2.0) | 2.2 (1.9–2.4) | 2.0 (1.4–2.8) | 0.8 (0.5–1.3) |
Pharmacologic categories and drug classes among patients treated with ST, % (n/N) | ||||
Chemotherapy | 94.2 (131/139) | 100.0 (9/9) | 97.7 (42/43) | 92.0 (80/87) |
Platinum compound | 93.5 (130/139) | 100.0 (9/9) | 97.7 (42/43) | 90.8 (79/87) |
Folic acid analogue | 39.6 (55/139) | 66.7 (6/9) | 37.2 (16/43) | 37.9 (33/87) |
Vinca alkaloid and analogue | 26.6 (37/139) | 22.2 (2/9) | 46.5 (20/43) | 17.2 (15/87) |
Taxane | 14.4 (20/139) | 11.1 (1/9) | . | 21.8 (19/87) |
Antimetabolite | 13.7 (19/139) | . | 11.6 (5/43) | 16.1 (14/87) |
Topoisomerase II inhibitor | 1.4 (2/139) | . | 2.3 (1/43) | 1.1 (1/87) |
ICI | 28.1 (39/139) | . | 4.7 (2/43) | 42.5 (37/87) |
Anti-PD-1 | 20.9 (29/139) | . | 4.7 (2/43) | 31.0 (27/87) |
Anti-PD-L1 | 7.2 (10/139) | . | . | 11.5 (10/87) |
Targeted therapy | 0.7 (1/139) | . | . | 1.1 (1/87) |
ALK TKI | 0.7 (1/139) | . | . | 1.1 (1/87) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hochmair, M.; Terbuch, A.; Lang, D.; Trockenbacher, C.; Augustin, F.; Ghanim, B.; Maurer, D.; Taghizadeh, H.; Kamhuber, C.; Wurm, R.; et al. Real-World Treatment Patterns and Timeliness of Clinical Care Pathway for Non-Small Cell Lung Cancer Patients in Austria: The PRATER Retrospective Study. Cancers 2024, 16, 2586. https://doi.org/10.3390/cancers16142586
Hochmair M, Terbuch A, Lang D, Trockenbacher C, Augustin F, Ghanim B, Maurer D, Taghizadeh H, Kamhuber C, Wurm R, et al. Real-World Treatment Patterns and Timeliness of Clinical Care Pathway for Non-Small Cell Lung Cancer Patients in Austria: The PRATER Retrospective Study. Cancers. 2024; 16(14):2586. https://doi.org/10.3390/cancers16142586
Chicago/Turabian StyleHochmair, Maximilian, Angelika Terbuch, David Lang, Christian Trockenbacher, Florian Augustin, Bahil Ghanim, Dominik Maurer, Hossein Taghizadeh, Christoph Kamhuber, Robert Wurm, and et al. 2024. "Real-World Treatment Patterns and Timeliness of Clinical Care Pathway for Non-Small Cell Lung Cancer Patients in Austria: The PRATER Retrospective Study" Cancers 16, no. 14: 2586. https://doi.org/10.3390/cancers16142586
APA StyleHochmair, M., Terbuch, A., Lang, D., Trockenbacher, C., Augustin, F., Ghanim, B., Maurer, D., Taghizadeh, H., Kamhuber, C., Wurm, R., Lindenmann, J., Braz, P., Bundalo, T., Begic, M., Bauer, J., Reimann, P., Müser, N., Huemer, F., Schlintl, V., ... Hötzenecker, K. (2024). Real-World Treatment Patterns and Timeliness of Clinical Care Pathway for Non-Small Cell Lung Cancer Patients in Austria: The PRATER Retrospective Study. Cancers, 16(14), 2586. https://doi.org/10.3390/cancers16142586