Chemotoxicity and Associated Risk Factors in Colorectal Cancer: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategies and Data Sources
2.2. Inclusion and Exclusion Criteria
2.3. Study Selections and Screening
2.4. Data Extraction and Data Synthesis
2.5. Methodological Quality Appraisal
2.6. Meta-Analytical and Statistical Methods
2.6.1. Publication Bias
2.6.2. Pooled Estimations
3. Results
3.1. Search Results and Methodological Quality Evaluation
3.2. Study Characteristics
Authors (Year)/ Location | Study Design | Cancer Types | Samples (N)/F(%)/ Mean Age [Range] | Primary Regimens | Prevalence of Top 2 Moderate-to-Severe Chemotoxicity Subgroups a |
---|---|---|---|---|---|
Ali et al. (2016) [30]/ Canada and France | PL | CRC/ mixed stages | 138/F50%/ 62 [28–87] | 5-FU | GI (20%)/ Neuropathy (13%) |
Antonio et al. (2018) [58]/ Europe | P | Older Adults CRC/ mixed stages | 193/F32%/ 80 [75–89] | 5-FU | Diarrhea (9.5%)/ Fatigue, Neutropenia (8.1%) |
Aparicio et al. (2016) [31]/ Europe | P | Older Adults mCRC/IV | 271/F42%/ 80 [75–92] | 5-FU | Neutropenia (22%)/ GI (20.8%) |
Backshall et al. (2011) [32]/ Europe | P | mCRC/IV | 52/F35%/ 79 [42–86] | Cape | Hand-foot-syndrome (11%)/ Diarrhea (9%) |
Barret et al. (2011) [33]/ Europe | P | mCRC/IV | 114/F32%/ 65 [22–92] | 5-FU | Neuropathy (85.5%)/ GI (28.7%) |
Beukers et al. (2021) [34]/ Europe | R | Older Adults Colon/III | 97/F52%/ 77 [70–85] | 5-FU | Diarrhea (30%)/ Hand-foot syndrome (20%) |
Breton et al. (2021) [35]/ Europe | P | mCRC/IV | 2190/F38%/ 67 [59–75] | 5-FU | Composite GI (15%)/ Neutropenia (13.2%) |
Feliu et al. (2022) [7]/ Europe | P | Older Adults CRC/mixed stages | 321/F32%/ 78 [70–90] | 5-FU | Fatigue (12%)/ Diarrhea (10%) |
Folprecht et al. (2008) [39]/ Europe | P | CRC/mixed stages | 2691/F33%/ 70 [18–79] | 5-FU | Neutropenia (28.9%)/ Diarrhea (20.5%) |
Gallois et al. (2019) [40]/ Europe | P | Older Adults mCRC/IV | 168/F44%/ 75 [70–92] | 5-FU | Nausea, vomiting (15%)/ Diarrhea (8%) |
Garg et al. (2012) [41]/ Australia | PL | CRC/III | 173/F43%/ 63 [54–72] | 5-FU | Neutropenia (55%)/ GI (50.6%, mucositis 12%) |
Hochster et al. (2007) [43]/ USA | P | Older Adults CRC/ mixed stages | 55/F47%/ 81 [75–90] | Leucovorin | GI (35.7%)/ Diarrhea (25%) |
Jung et al. (2015) [44]/ S.Korea | P | Colon/III | 229/F59%/ 61 [53–67] | 5-FU | Neutropenia (40%) |
Karabulut et al. (2022) [45]/Turkey | P | mCRC/IV | 137/F61%/ 62 [18–83] | 5-FU | Anemia (30%)/ GI (15.5%) |
Li et al. (2021) [46]/China | PL | CRC/no data | 233/F34%/ 58 [28–87] | Cape | Nausea (35%)/ Vomiting (35%) |
Okada et al. (2017) [48]/ Japan | R | mCRC/IV | 108/F56%/ 65 [34–83] | 5-FU | Non-hematological (57%)/ Hematological toxicity (45%) |
Osterlund et al. (2007) [49]/Europe | RCT | mCRC/IV | 150/F49%/ 60 [31–75] | 5-FU | GI (51%)/ Neutropenia (16%) |
Retornaz et al. (2020) [50]/ Europe | PL | Older Adults Colon/ mixed stages | 97/F51%/ 79 [70–90] | 5-FU | Fatigue (64%)/ GI (40%) |
Sastre et al. (2012) [51]/ Europe | P | Older Adults mCRC/IV | 66/F42%/ 70 [70–86] | Cetuximab/ Cape | Neuropathy (16%)/ Diarrhea (16%) |
Seymour et al. (2011) [52]/ Europe | P | mCRC/IV | 440/F41%/ 74 [35–86] | 5-FU | Pain (16%)/ Diarrhea (10%) |
Stein et al. (2016) [53]/ Europe | PL | mCRC/IV | 1249/F45%/ 74 [21–99] | Cape | Pain, Anemia, Diarrhea (12%)/ Nausea (8%) |
Tominga et al. (2016) [54]/ Japan | R | CRC/III | 135/F58%/ 63 [58–71] | 5FU/Cape | Neutropenia (52%)/ Anorexia (17%) |
Tsuchihashi et al. (2018) [55]/Japan | R | mCRC/IV | 523/F41%/ 63 [55–85] | Regorafenib, Trifluridine, Tipiracil | Hand-foot-syndrome (20%)/ Anemia (12%) |
Watanabe et al. (2018) [56]/Canada | PL | CRC/III | 371/F49%/ 64 [60–89] | Cape/5-FU | GI (80%)/ Neuropathy (80%) |
Yamada et al. (2013) [57]/ Japan | P | mCRC/IV | 512/F36%/ 63 [33–79] | 5-FU/OX | Neutropenia (43%)/ GI (12%) |
Authors (Year)/ Location | Study Design | Cancer Stages | Samples(N)/ F(%)/ Mean Age [Range] | Primary Regimens | Chemotoxicity Measures | Prevalence of Top Moderate-to-Severe Chemotoxicity Subgroups |
---|---|---|---|---|---|---|
Brown et al. (2022) [36]/ USA | P | Colon/ II-III | 533/ F56%/ 59 [47–70] | 5-FU | Physicians’ chart and progress note review | Discontinuation of chemotherapy (13%) |
Cespedes Feliciano et al. (2017) [37]/USA | P | Colon/ II-IV | 533/ F55.4%/ 59 [no data] | 5-FU | Physicians’ chart and progress note review and EMR ICD9 codes | Early discontinuation (36%)/ Neuropathy (24.1%) |
Decoster et al. (2018) [38]/Europe | P | Older Adults mCRC/ IV | 252/ F38%/ 77 [69–91] | 5-FU | Physicians’ chart and progress note review | Vascular toxicity (35%)/ GI toxicity (13.6%) |
Grimes, C. (2022) [42]/ USA | R | CRC/III | 89/ F58%/ 62 [no data] | 5-FU | Physicians’ chart and progress note review | Diarrhea (6.7%)/ Nausea (5.6%) |
Looijaard et al. (2020) [47]/Europe | P | Older Adults Colon/III | 53/ F45%/ 71 [68–74] | 5-FU | Physicians’ chart and progress note review | Dose reduction/ incompletion (52.8%) |
3.3. Systematic Review: Prevalence and Risk Factors of Chemotoxicity
3.3.1. Patient Characteristics
3.3.2. Prevalence of Clinician-Reported Chemotoxicity
3.3.3. Risk Factors of Clinician-Reported Chemotoxicity
3.4. Meta-Analysis: Prevalence and Risk Factors of Chemotoxicity
3.4.1. Publication Bias (Asymmetry and Heterogeneity) Assessment
3.4.2. Pooled Prevalence of Chemotoxicity
Study Characteristics a | Sub-Variables | Studies n; Total Sample n | Pooled Prevalence of Overall Chemotoxicity d % (95% CI) | Test for Heterogeneity between Studies e | ||
---|---|---|---|---|---|---|
QdfBetween | I2 (%)Between | pBetween | ||||
Total Studies a | 17; n = 8819 | 45.7 (38.2 to 53.2) | 112.5416 | 78.14 | <0.001 | |
Location b | Europe | 12; n = 7793 | 45.4 (36.3 to 55.3) | 154.6511 | 98.32 | <0.001 |
Asia | 2; n = 462 | 40.1 (30.8 to 49.8) | 223.531 | 99.41 | 0.049 | |
Publication year | 2007–2010 | 3; n = 2896 | 46.1 (23.6 to 29.7) | 158.392 | 95.49 | 0.012 |
2011–2015 | 4; n = 894 | 37.0 (26.9 to 47.7) | 133.413 | 98.65 | 0.005 | |
2016–2020 | 6; n = 2294 | 55.9 (33.9 to 76.8) | 148.855 | 95.42 | 0.044 | |
2021–2024 | 4; n = 2735 | 47.5 (39.2 to 55.8) | 133.523 | 88.41 | 0.043 | |
Study design c | Observational | 16; n = 8669 | 45.5 (37.1 to 53.5) | 140.8915 | 96.89 | 0.023 |
Female prevalence | <50.0% | 13; n = 8258 | 47.6 (37.6 to 57.7) | 35.3212 | 91.23 | 0.010 |
≥50.0% | 4; n = 561 | 46.7 (42.6 to 50.8) | 28.523 | 89.41 | 0.043 | |
Sample size | n < 100 | 4; n = 301 | 40.5 (22.9 to 59.4) | 158.423 | 78.75 | 0.044 |
100 ≤ n < 500 | 10; n = 2388 | 52.9 (39.6 to 65.9) | 192.529 | 66.49 | 0.013 | |
n ≥ 500 | 3; n = 6130 | 38.8 (24.3 to 54.5) | 151.452 | 74.32 | 0.007 | |
Age group (Participants’ age range) | 18 ≤ age < 65 | 11; n = 7916 | 33.4 (22.3 to 39.5) | 185.8910 | 85.65 | 0.041 |
65≥ Older Adults | 6; n = 903 | 50.1 (27.6 to 69.9) | 133.555 | 86.56 | 0.035 | |
Cancer Types | Colon only | 4; n = 870 | 47.1 (42.3 to 51.8) | 321.323 | 98.61 | 0.019 |
Mixed stages CRC | 5; n = 3196 | 48.8 (32.0 to 65.7) | 139.324 | 88.53 | 0.043 | |
Metastatic CRC | 7; n = 4520 | 41.9 (32.9 to 51.4) | 98.496 | 89.65 | 0.041 |
Study Sub-Variables | Studies n; Total Sample n | Pooled Prevalence by Rank (%: 95% CI) a | Asymmetry Tests | Heterogeneity Tests between Studies | |||||
---|---|---|---|---|---|---|---|---|---|
Begg’s Test | Egger’s Test | ||||||||
Kendall’s T | p b | SE | p c | Qdf Between | I2 (%)Between | p bBetween | |||
Pooled Prevalence of Moderate-to-Severe Chemotoxicity | |||||||||
Non-Hematological Toxicity | 16; n = 6602 | 39.2 (33.7 to 44.7) | 0.34 | 0.600 | 40.9 | 0.943 | 121.6915 | 88.56 | 0.033 |
Hematological Toxicity | 19; n = 6882 | 25.3 (19.4 to 31.5) | 0.29 | 0.491 | 20.5 | 0.423 | 132.6518 | 93.79 | 0.049 |
Pooled Prevalence of Moderate-to-Severe Chemotoxicity Subgroups | |||||||||
Abdominal pain | 3; n = 1655 | 24.3 (2.01 to 60.1) | 0.33 | 0.412 | 60.3 | 0.143 | 56.12 | 99.61 | <0.001 |
GI Toxicity | 20; n = 9489 | 22.9 (16.4 to 30.1) | 0.23 | 0.598 | 20.40. | 0.892 | 132.5219 | 98.59 | <0.001 |
Neuropathy | 9; n = 5382 | 17.9 (4.9 to 36.5) | 0.4/2 | 0.394 | 30.2 | 0.352 | 122.598 | 95.89 | 0.049 |
Neutropenia | 14; n = 8227 | 17.9 (11.1 to 25.9) | 0.51 | 0.341 | 50.3 | 0.422 | 144.6513 | 98.51 | <0.001 |
Nausea/Vomiting | 10; n = 5089 | 17.8 (8.5 to 29.6) | 0.41 | 0.535 | 50.6 | 0.314 | 69.59 | 98.66 | <0.001 |
Diarrhea | 18; n = 7209 | 14.1 (11.1 to 17.4) | 0.31 | 0.591 | 40.4 | 0.289 | 144.0117 | 98.11 | <0.001 |
Leukocytosis | 2; n = 2287 | 12.9 (0.4 to 38.2) | 0.32 | 0.542 | 30.4 | 0.132 | 243.311 | 99.51 | 0.035 |
Fatigue | 7; n = 2772 | 12.6 (4.6 to 23.7) | 0.38 | 0.224 | 40.5 | 0.499 | 132.566 | 99.92 | <0.001 |
Anemia | 7; n = 2547 | 10.4 (4.5 to 18.3) | 0.56 | 0.621 | 30.4 | 0.289 | 132.556 | 89.61 | <0.001 |
Leukopenia | 3; n = 4452 | 10.2 (3.6 to 19.6) | 0.41 | 0.214 | 50.6 | 0.512 | 241.952 | 89.52 | 0.021 |
Mucositis/stomatitis | 7; n = 2608 | 9.5 (2.9 to 18.7) | 0.59 | 0.399 | 60.2 | 0.526 | 87.46 | 95.41 | 0.014 |
Hand-Foot-Syndrome | 5; n = 700 | 9.0 (1.8 to 20.9) | 0.16 | 0.841 | 60.5 | 0.431 | 353.174 | 97.84 | 0.019 |
Anorexia | 5; n = 1804 | 6.4 (3.7 to 9.6) | 0.41 | 0.412 | 50.4 | 0.122 | 101.424 | 99.41 | <0.001 |
Coagulation disorders | 2; n = 2757 | 4.9 (4.1 to 5.8) | 0.33 | 0.312 | 50.5 | 0.082 | 99.491 | 89.59 | <0.001 |
Constipation | 2; n = 341 | 3.4 (1.8 to 5.6) | 0.14 | 0.623 | 50.6 | 0.412 | 93.041 | 84.23 | 0.048 |
Pooled Prevalence of Mild Chemotoxicity | |||||||||
Overall Chemotoxicity | 6; n = 1309 | 61.7 (48.0 to 74.6) | 0.54 | 0.841 | 20.3 | 0.347 | 122.685 | 95.92 | <0.001 |
Non-Hematological Toxicity | 3; n = 473 | 50.1(21.1 to 78.9) | 0.55 | 0.792 | 30.1 | 0.572 | 134.882 | 92.51 | 0.002 |
Hematological Toxicity | 4; n = 913 | 22.1 (6.6 to 43.5) | 0.41 | 0.852 | 20.9 | 0.123 | 156.413 | 85.91 | 0.024 |
Pooled Prevalence of Mild Chemotoxity Subgroups | |||||||||
Diarrhea | 4; n = 956 | 58.9 (28.8 to 85.6) | 0.41 | 0.312 | 20.4 | 0.312 | 111.313 | 78.41 | 0.048 |
Hand-Foot-Syndrome | 2; n = 202 | 51.7 (0.4 to 98.8) | 0.52 | 0.411 | 40.1 | 0.522 | 198.561 | 88.51 | 0.009 |
Anemia | 3; n = 763 | 36.5 (1.5 to 84.9) | 0.33 | 0.012 | 20.3 | 0.731 | 153.662 | 94.55 | 0.014 |
Mucositis/stomatitis | 3; n = 884 | 28.6 (7.2 to 57.0) | 0.28 | 0.102 | 40.9 | 0.341 | 142.652 | 93.41 | <0.001 |
Neutropenia | 3; n = 884 | 25.7 (6.2 to 52.3) | 0.62 | 0.531 | 50.3 | 0.512 | 166.242 | 99.79 | <0.001 |
Nausea/Vomiting | 3; n = 1572 | 18.3 (0.6 to 52.3) | 0.38 | 0.512 | 20.5 | 0.823 | 143.662 | 95.12 | <0.001 |
Fatigue | 2; n = 492 | 17.1 (0.5 to 63.7) | 0.12 | 0.312 | 20.4 | 0.623 | 98.421 | 98.55 | 0.032 |
Coagulation disorders | 2; n = 1422 | 4.3 (0.7 to 10.7) | 0.52 | 0.432 | 20.3 | 0.412 | 102.031 | 85.66 | 0.045 |
3.4.3. Pooled Associations of Age as a Predictor of Chemotoxicity Prevalence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020, 159, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Wong, M.C.; Huang, J.; Lok, V.; Wang, J.; Fung, F.; Ding, H.; Zheng, Z.-J. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location. Clin. Gastroenterol. Hepatol. 2021, 19, 955–966.e961. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.H.J.; Chee, C.E. Making sense of adjuvant chemotherapy in colorectal cancer. J. Gastrointest. Oncol. 2019, 10, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, C.-S.; Tan, H.-Y.; Tam, C.W.; Wang, N.; Feng, Y. Efficacy of herbal medicines intervention for colorectal cancer patients with chemotherapy-induced gastrointestinal toxicity—A systematic review and meta-analysis. Front. Oncol. 2021, 11, 629132. [Google Scholar] [CrossRef] [PubMed]
- Feliu, J.; Espinosa, E.; Basterretxea, L.; Paredero, I.; Llabrés, E.; Jiménez-Munárriz, B.; Antonio-Rebollo, M.; Losada, B.; Pinto, A.; Custodio, A.B.; et al. Prediction of chemotoxicity, unplanned hospitalizations and early death in older patients with colorectal cancer treated with chemotherapy. Cancers 2022, 14, 127. [Google Scholar] [CrossRef]
- Rutherford, C.; Müller, F.; Faiz, N.; King, M.T.; White, K. Patient-reported outcomes and experiences from the perspective of colorectal cancer survivors: Meta-synthesis of qualitative studies. J. Patient Rep. Outcomes 2020, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Yazbeck, V.; Alesi, E.; Myers, J.; Hackney, M.H.; Cuttino, L.; Gewirtz, D.A. An overview of chemotoxicity and radiation toxicity in cancer therapy. Adv. Cancer Res. 2022, 155, 1–27. [Google Scholar] [CrossRef]
- Tantoy, I.Y.; Cataldo, J.K.; Aouizerat, B.E.; Dhruva, A.; Miaskowski, C. A Review of the literature on multiple co-occurring symptoms in patients with colorectal cancer who received chemotherapy alone or chemotherapy with targeted therapies. Cancer Nurs. 2016, 39, 437–445. [Google Scholar] [CrossRef]
- Shaw, R.D.; Ivatury, S.J. Late and Long-term Symptom management in colorectal cancer survivorship. Dis. Colon Rectum 2021, 64, 1447–1450. [Google Scholar] [CrossRef] [PubMed]
- Han, C.J.; Reding, K.W.; Kalady, M.F.; Yung, R.; Greenlee, H.; Paskett, E.D. Factors associated with long-term gastrointestinal symptoms in colorectal cancer survivors in the women’s health initiatives (WHI study). PLoS ONE 2023, 18, e0286058. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Ryan, E.J.; Doherty, G.A. Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: The role of inflammation. World J. Gastroenterol. 2014, 20, 3751–3761. [Google Scholar] [CrossRef] [PubMed]
- Grenon, N.N.; Chan, J. Managing toxicities associated with colorectal cancer chemotherapy and targeted therapy: A new guide for nurses. Clin. J. Oncol. Nurs. 2009, 13, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, A.; Sedrak, M.S.; Gross, C.P.; Tew, W.P.; Klepin, H.D.; Wildes, T.M.; Muss, H.B.; Dotan, E.; Freedman, R.A.; O’Connor, T.; et al. Development and validation of a risk tool for predicting severe toxicity in older adults receiving chemotherapy for early-stage breast Cancer. J. Clin. Oncol. 2021, 39, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Schiefen, J.K.; Madsen, L.T.; Dains, J.E. Instruments that predict oncology treatment risk in the senior population. J. Adv. Pract. Oncol. 2017, 8, 528–533. [Google Scholar] [PubMed] [PubMed Central]
- Kurtz, D.M.; Esfahani, M.S.; Scherer, F.; Soo, J.; Jin, M.C.; Liu, C.L.; Newman, A.M.; Dührsen, U.; Hüttmann, A.; Casasnovas, O.; et al. Dynamic risk profiling using serial tumor biomarkers for personalized outcome prediction. Cell 2019, 178, 699–713.e619. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Sun, C.-L.; Cohen, H.J.; Muss, H.B.; Bae, M.; Sedrak, M.S. Toxicity risk score and clinical decline after adjuvant chemotherapy in older breast cancer survivors. J. Natl. Cancer Inst. 2023, 115, 578–585. [Google Scholar] [CrossRef]
- Kotani, D.; Oki, E.; Nakamura, Y.; Yukami, H.; Mishima, S.; Bando, H.; Shirasu, H.; Yamazaki, K.; Watanabe, J.; Kotaka, M. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat. Med. 2023, 29, 127–134. [Google Scholar] [CrossRef]
- Choi, C.S.; Kin, K.; Cao, K.; Hutcheon, E.; Lee, M.; Chan, S.T.F.; Arafat, Y.; Baird, P.N.; Yeung, J.M.C. The association of body composition on chemotherapy toxicities in non-metastatic colorectal cancer patients: A systematic review. ANZ J. Surg. 2024, 94, 327–334. [Google Scholar] [CrossRef]
- Lee, S.; Kang, D.H.; Ahn, T.S.; Kim, S.S.; Yun, J.H.; Kim, H.J.; Seo, S.H.; Kim, T.W.; Kong, H.J.; Baek, M.J. The impact of pre-chemotherapy body composition and immunonutritional markers on chemotherapy adherence in stage III colorectal cancer patients. J. Clin. Med. 2023, 12, 1423. [Google Scholar] [CrossRef] [PubMed]
- Basch, E.; Jia, X.; Heller, G.; Barz, A.; Sit, L.; Fruscione, M.; Appawu, M.; Iasonos, A.; Atkinson, T.; Goldfarb, S.; et al. Adverse symptom event reporting by patients vs clinicians: Relationships with clinical outcomes. J. Natl. Cancer Inst. 2009, 101, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Hertz, D.L. Concerns regarding use of patient-reported outcomes in biomarker studies of chemotherapy-induced peripheral neuropathy. Pharmacogenomics J. 2019, 19, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Beukers, K.; Voorn, M.J.; Trepels, R.; Vogelaar, J.; Havermans, R.C.; Janssen-Heijnen, M.L. Associations between outcome variables of nutritional screening methods and systemic treatment tolerance in patients with colorectal cancer: A systematic review. J. Geriatr. Oncol. 2022, 13, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Drami, I.; Pring, E.T.; Gould, L.; Malietzis, G.; Naghibi, M.; Athanasiou, T.; Glynne-Jones, R.; Jenkins, J.T. Body composition and dose-limiting toxicity in colorectal cancer chemotherapy treatment; A systematic review of the literature. Could muscle mass be the new body surface area in chemotherapy dosing? Clin. Rev. Oncol. 2021, 33, e540–e552. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhang, Y.; Kwong, J.S.W.; Zhang, C.; Li, S.; Sun, F.; Niu, Y.; Du, L. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: A systematic review. J. Evid. Based Med. 2015, 8, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.L.; Sutton, A.J.; Jones, D.R.; Abrams, K.R.; Rushton, L. Comparison of two methods to detect publication bias in meta-analysis. JAMA 2006, 295, 676–680. [Google Scholar] [CrossRef] [PubMed]
- George, B.J.; Aban, I.B. An application of meta-analysis based on DerSimonian and Laird method. J. Nucl. Cardiol. 2016, 23, 690–692. [Google Scholar] [CrossRef]
- Ali, R.; Baracos, V.E.; Sawyer, M.B.; Bianchi, L.; Roberts, S.; Assenat, E.; Mollevi, C.; Senesse, P. Lean body mass as an independent determinant of dose-limiting toxicity and neuropathy in patients with colon cancer treated with FOLFOX regimens. Cancer Med. 2016, 5, 607–616. [Google Scholar] [CrossRef]
- Aparicio, T.; Lavau-Denes, S.; Phelip, J.M.; Maillard, E.; Jouve, J.L.; Gargot, D.; Gasmi, M.; Locher, C.; Adhoute, X.; Michel, P.; et al. Randomized phase III trial in elderly patients comparing LV5FU2 with or without irinotecan for first-line treatment of metastatic colorectal cancer. Ann. Oncol. 2016, 27, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Backshall, A.; Sharma, R.; Clarke, S.J.; Keun, H.C. Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clin. Cancer Res. 2011, 17, 3019–3028. [Google Scholar] [CrossRef] [PubMed]
- Barret, M.; Malka, D.; Aparicio, T.; Dalban, C.; Locher, C.; Sabate, J.M.; Louafi, S.; Mansourbakht, T.; Bonnetain, F.; Attar, A.; et al. Nutritional status affects treatment tolerability and survival in metastatic colorectal cancer patients: Results of an AGEO prospective multicenter study. Oncology 2011, 81, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Beukers, K.; Bessems, S.A.M.; van de Wouw, A.J.; van den Berkmortel, F.W.P.J.; Belgers, H.J.; Konsten, J.L.M.; Sipers, W.M.W.H.; Janssen-Heijnen, M.L.G. Associations between the Geriatric-8 and 4-meter gait speed test and subsequent delivery of adjuvant chemotherapy in older patients with colon cancer. J. Geriatr. Oncol. 2021, 12, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Breton, C.; Aparicio, T.; Le Malicot, K.; Ducreux, M.; Lecomte, T.; Bachet, J.-B.; Taieb, J.; Legoux, J.-L.; De Gramont, A.; Bennouna, J.; et al. Predictive factors of severe early treatment-related toxicity in patients receiving first-line treatment for metastatic colorectal cancer: Pooled analysis of 2190 patients enrolled in Fédération Francophone de Cancérologie Digestive (FFCD) trials. Eur. J. Cancer 2021, 153, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Meyerhardt, J.A.; Cespedes Feliciano, E.M.; Cheng, E.; Caan, B.J. The association of abdominal adiposity with premature discontinuation of postoperative chemotherapy in colon cancer. Clin. Nutr. 2022, 41, 1600–1604. [Google Scholar] [CrossRef] [PubMed]
- Cespedes Feliciano, E.M.; Lee, V.S.; Prado, C.M.; Meyerhardt, J.A.; Alexeeff, S.; Kroenke, C.H.; Xiao, J.; Castillo, A.L.; Caan, B.J. Muscle mass at the time of diagnosis of nonmetastatic colon cancer and early discontinuation of chemotherapy, delays, and dose reductions on adjuvant FOLFOX: The C-SCANS study. Cancer 2017, 123, 4868–4877. [Google Scholar] [CrossRef]
- Decoster, L.; Kenis, C.; Naessens, B.; Houbier, G.; De Man, M.; Lambrecht, G.; Monsaert, E.; Moons, V.; Vergauwe, P.; Prenen, H.; et al. Integrating geriatric assessment in the first line chemotherapy treatment in older patients with metastatic colorectal cancer: Results of a prospective observational cohort study (AVAPLUS). J. Geriatr. Oncol. 2018, 9, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Folprecht, G.; Seymour, M.T.; Saltz, L.; Douillard, J.-Y.; Hecker, H.; Stephens, R.J.; Maughan, T.S.; Cutsem, E.V.; Rougier, P.; Mitry, E.; et al. Irinotecan/Fluorouracil combination in first-line therapy of older and younger patients with metastatic colorectal cancer: Combined analysis of 2,691 Patients in randomized controlled trials. J. Clin. Oncol. 2008, 26, 1443–1451. [Google Scholar] [CrossRef]
- Gallois, C.; Artru, P.; Lièvre, A.; Auclin, E.; Lecomte, T.; Locher, C.; Marthey, L.; Zaimi, Y.; Faroux, R.; Pernot, S.; et al. Evaluation of two nutritional scores’ association with systemic treatment toxicity and survival in metastatic colorectal cancer: An AGEO prospective multicentre study. Eur. J. Cancer 2019, 119, 35–43. [Google Scholar] [CrossRef]
- Garg, M.B.; Lincz, L.F.; Adler, K.; Scorgie, F.E.; Ackland, S.P.; Sakoff, J.A. Predicting 5-fluorouracil toxicity in colorectal cancer patients from peripheral blood cell telomere length: A multivariate analysis. Br. J. Cancer 2012, 107, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Grimes, C. Sarcopenia and Tolerance of Chemotherapy in Patients with Stage III Colon Cancer. Doctoral Dissertation, Rush University, Chicago, IL, USA, 2022. [Google Scholar]
- Hochster, H.S.; Luo, W.; Popa, E.C.; Lyman, B.T.; Mulcahy, M.; Beatty, P.A.; Benson, A.B. Phase II study of uracil-tegafur with leucovorin in elderly (≥75 years old) patients with colorectal cancer: ECOG 1299. J. Clin. Oncol. 2007, 25, 5397–5402. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-W.; Kim, J.W.; Kim, J.-Y.; Kim, S.-W.; Yang, H.K.; Lee, J.W.; Lee, K.-W.; Kim, D.-W.; Kang, S.-B.; Kim, K.-I.; et al. Effect of muscle mass on toxicity and survival in patients with colon cancer undergoing adjuvant chemotherapy. Support Care Cancer 2015, 23, 687–694. [Google Scholar] [CrossRef]
- Karabulut, S.; Dogan, I.; Usul Afsar, C.; Karabulut, M.; Ak, N.; Duran, A.; Tastekin, D. Does nutritional status affect treatment tolerability, chemotherapy response and survival in metastatic gastric cancer patients? Results of a prospective multicenter study in Turkey. J. Oncol. Pharm. Prac. 2022, 28, 127–134. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.; Deng, Y.; Yan, T.; Gu, H.; Zhou, Y.; Yao, H.; Wei, H.; Chen, W. Risk prediction models based on hematological/body parameters for chemotherapy-induced adverse effects in Chinese colorectal cancer patients. Support Care Cancer 2021, 29, 7931–7947. [Google Scholar] [CrossRef]
- Looijaard, S.; Meskers, C.G.M.; Slee-Valentijn, M.S.; Bouman, D.E.; Wymenga, A.N.M.; Klaase, J.M.; Maier, A.B. Computed tomography-based body composition is not consistently associated with outcome in older patients with colorectal cancer. Oncologist 2020, 25, e492–e501. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Yamazaki, S.; Kaiga, T.; Funada, T.; Kochi, M.; Takayama, T. Impact of nutritional status in the era of FOLFOX/FIRI-based chemotherapy. World J. Surg. Oncol. 2017, 15, 162. [Google Scholar] [CrossRef]
- Osterlund, P.; Ruotsalainen, T.; Korpela, R.; Saxelin, M.; Ollus, A.; Valta, P.; Kouri, M.; Elomaa, I.; Joensuu, H. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: A randomised study. Br. J. Cancer 2007, 97, 1028–1034. [Google Scholar] [CrossRef]
- Retornaz, F.; Guillem, O.; Rousseau, F.; Morvan, F.; Rinaldi, Y.; Nahon, S.; Castagna, C.; Boulahssass, R.; Grino, M.; Gholam, D. Predicting Chemotherapy Toxicity and Death in Older Adults with Colon Cancer: Results of MOST Study. Oncologist 2019, 25, e85–e93. [Google Scholar] [CrossRef]
- Sastre, J.; Grávalos, C.; Rivera, F.; Massuti, B.; Valladares-Ayerbes, M.; Marcuello, E.; Manzano, J.L.; Benavides, M.; Hidalgo, M.; Díaz-Rubio, E.; et al. First-line cetuximab plus capecitabine in elderly patients with advanced colorectal cancer: Clinical outcome and subgroup analysis according to KRAS status from a Spanish TTD Group Study. Oncologist 2012, 17, 339–345. [Google Scholar] [CrossRef]
- Seymour, M.T.; Thompson, L.C.; Wasan, H.S.; Middleton, G.; Brewster, A.E.; Shepherd, S.F.; O’Mahony, M.S.; Maughan, T.S.; Parmar, M.; Langley, R.E. Chemotherapy options in elderly and frail patients with metastatic colorectal cancer (MRC FOCUS2): An open-label, randomised factorial trial. Lancet 2011, 377, 1749–1759. [Google Scholar] [CrossRef]
- Stein, A.; Quidde, J.; Schröder, J.K.; Göhler, T.; Tschechne, B.; Valdix, A.R.; Höffkes, H.G.; Schirrmacher-Memmel, S.; Wohlfarth, T.; Hinke, A.; et al. Capecitabine in the routine first-line treatment of elderly patients with advanced colorectal cancer--results from a non-interventional observation study. BMC Cancer 2016, 16, 82. [Google Scholar] [CrossRef]
- Tominaga, T.; Nonaka, T.; Sumida, Y.; Hidaka, S.; Sawai, T.; Nagayasu, T. The C-Reactive protein to albumin ratio as a predictor of severe side effects of adjuvant chemotherapy in stage III colorectal cancer patients. PLoS ONE 2016, 11, e0167967. [Google Scholar] [CrossRef]
- Tsuchihashi, K.; Ito, M.; Moriwaki, T.; Fukuoka, S.; Taniguchi, H.; Takashima, A.; Kumekawa, Y.; Kajiwara, T.; Yamazaki, K.; Esaki, T.; et al. Role of predictive value of the modified glasgow prognostic score for later-line chemotherapy in patients with metastatic colorectal cancer. Clin. Color. Cancer 2018, 17, e687–e697. [Google Scholar] [CrossRef]
- Watanabe, A.; Yang, C.C.; Cheung, W.Y. Association of baseline patient characteristics with adjuvant chemotherapy toxicities in stage III colorectal cancer patients. Med. Oncol. 2018, 35, 125. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Takahari, D.; Matsumoto, H.; Baba, H.; Nakamura, M.; Yoshida, K.; Yoshida, M.; Iwamoto, S.; Shimada, K.; Komatsu, Y.; et al. Leucovorin, fluorouracil, and oxaliplatin plus bevacizumab versus S-1 and oxaliplatin plus bevacizumab in patients with metastatic colorectal cancer (SOFT): An open-label, non-inferiority, randomised phase 3 trial. Lancet Oncol. 2013, 14, 1278–1286. [Google Scholar] [CrossRef]
- Antonio, M.; Carmona-Bayonas, A.; Saldaña, J.; Navarro, V.; Tebé, C.; Salazar, R.; Borràs, J.M. Factors Predicting adherence to a tailored-dose adjuvant treatment on the basis of geriatric assessment in elderly people with colorectal cancer: A prospective study. Clin. Color. Cancer 2018, 17, e59–e68. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Mo, J.-L.; Liu, J.-H.; Li, X.; Tan, L.-M.; Zhang, W.; Zhou, H.-H.; Liu, Z.-Q. Pharmacogenomics of 5-fluorouracil in colorectal cancer: Review and update. Cell. Oncol. 2020, 43, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Zanuso, V.; Fregoni, V.; Gervaso, L. Side effects of adjuvant chemotherapy and their impact on outcome in elderly breast cancer patients: A cohort study. Future Sci. OA 2020, 6, FSO617. [Google Scholar] [CrossRef]
- Reck, M.; Wehler, T.; Orlandi, F.; Nogami, N.; Barone, C.; Moro-Sibilot, D.; Shtivelband, M.; Larriba, J.L.G.; Rothenstein, J.; Früh, M.; et al. Safety and patient-reported outcomes of atezolizumab plus chemotherapy with or without bevacizumab versus bevacizumab plus chemotherapy in non–small-cell lung cancer. J. Clin. Oncol. 2020, 38, 2530–2542. [Google Scholar] [CrossRef]
- Jordan, T.; Nuamek, T.; Fornacon-Wood, I.; Califano, R.; Coote, J.; Harris, M.; Mistry, H.; Taylor, P.; Woolf, D.; Faivre-Finn, C. A study demonstrating users’ preference for the adapted-REQUITE patient-reported outcome questionnaire over PRO-CTCAE® in patients with lung cancer. Front. Oncol. 2024, 14, 1328871. [Google Scholar] [CrossRef] [PubMed]
- Tahir, N.; Goldschmidt, J.H.; Culakova, E.; Poniewierski, M.S.; Wolff, D.A.; Dale, D.C.; Crawford, J.; Lyman, G.H. Assessment of hematologic and non-hematologic toxicity in older cancer patients receiving systemic chemotherapy: Results from a prospective nationwide registry. Blood 2004, 104, 3131. [Google Scholar] [CrossRef]
- Podolski, A.J.; Gucalp, R. GI Toxicities from Cancer Therapy. In Geriatric Gastroenterology; Pitchumoni, C.S., Dharmarajan, T.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–39. [Google Scholar]
- Aprile, G.; Rihawi, K.; De Carlo, E.; Sonis, S.T. Treatment-related gastrointestinal toxicities and advanced colorectal or pancreatic cancer: A critical update. World J. Gastroenterol. 2015, 21, 11793–11803. [Google Scholar] [CrossRef] [PubMed]
- Ba, Y.; Shi, Y.; Jiang, W.; Feng, J.; Cheng, Y.; Xiao, L.; Zhang, Q.; Qiu, W.; Xu, B.; Xu, R.; et al. Current management of chemotherapy-induced neutropenia in adults: Key points and new challenges: Committee of Neoplastic Supportive-Care (CONS), China Anti-Cancer Association Committee of Clinical Chemotherapy, China Anti-Cancer Association. Cancer Biol. Med. 2020, 17, 896–909. [Google Scholar] [CrossRef]
- Ju, M.; Gao, Z.; Gu, G.; Huang, H.; Sun, A.; Zheng, C.; Li, H.; Zhang, Y.; Li, K. Prognostic value of circulating tumor cells associated with white blood cells in solid cancer: A systematic review and meta-analysis of 1471 patients with solid tumors. BMC Cancer 2023, 23, 1224. [Google Scholar] [CrossRef] [PubMed]
- Todoric, J.; Antonucci, L.; Karin, M. Targeting inflammation in cancer prevention and therapy. Cancer Prev. Res. 2016, 9, 895–905. [Google Scholar] [CrossRef]
- Vijay, A.; Valdes, A.M. Role of the gut microbiome in chronic diseases: A narrative review. Eur. J. Clin. Nutr. 2022, 76, 489–501. [Google Scholar] [CrossRef]
- Li, D.; Sun, C.-L.; Kim, H.; Soto-Perez-De-Celis, E.; Chung, V.; Koczywas, M.; Fakih, M.; Chao, J.; Chien, L.C.; Charles, K.; et al. Geriatric Assessment–Driven Intervention (GAIN) on Chemotherapy-Related Toxic Effects in Older Adults With Cancer. JAMA Oncol. 2021, 7, e214158. [Google Scholar] [CrossRef]
- Caan, B.J.; Meyerhardt, J.A.; Brown, J.C.; Campbell, K.L.; Feliciano, E.M.C.; Lee, C.; Ross, M.C.; Quinney, S.; Quesenberry, C.; Sternfeld, B. Recruitment strategies and design considerations in a trial of resistance training to prevent dose-limiting toxicities in colon cancer patients undergoing chemotherapy. Contemp. Clin. Trials 2021, 101, 106242. [Google Scholar] [CrossRef]
- de Lima Bezerra, A.D.; de Sousa, I.M.; de Souza, A.P.S.; de Carvalho, A.L.M.; Fayh, A.P.T. Early nutritional intervention does not prevent long-term adverse events in women with breast cancer: A pilot study. Clin. Nutr. 2023, 53, 268–273. [Google Scholar] [CrossRef]
Authors (Year) b/ Statistical Methods | Nutrition | Geriatric Assessments | Biomarkers | Demographic/ Clinical Factors |
---|---|---|---|---|
Ali et al. (2016) [30]/ Group comparisons | Body mass with neuropathy | |||
Backshall et al. (2011) [32]/ Group comparisons | Metabolic lipid panel | |||
Barret et al. (2011) [33]/ Odds Ratios (ORs) | Weight loss, low albumin | |||
Beukers et al. (2021) [34]/ ORs | Comprehensive Frailty | Female sex/ Cancer stages | ||
Breton et al. (2021) [35]/ ORs | Physical Frailty (Performance) | Alkaline phosphatase (ALP) | Surgical history. Hx of aggressive chemotherapy | |
Feliu et al. (2022) [7]/ Beta coefficient | Weight loss | Comprehensive Frailty | Kidney function | |
Folprecht et al. (2008) [39]/ Group comparisons | High WBC, ALP, lactate | |||
Gallois et al. (2019) [40]/ ORs | Weight loss, low albumin | |||
Garg et al. (2012) [41]/ Beta Coefficient | Short telomere length, high platelet lymphocyte ratio, and low neutrophil count with hematological and GI toxicity | Younger age with neutropenia and GI toxicity | ||
Hochster et al. (2007) [43]/ ORs | Physical Frailty (Performance) | CEA, liver panels, creatine | Older age with GI toxicity (diarrhea) | |
Jung et al. (2015) [44]/ ORs | Psoas muscle mass | |||
Karabulut et al. (2022) [45]/ Group comparisons | Low BMI, Weight loss, low albumin | |||
Li et al. (2021) [46]/ ORs | Weight loss with hand–foot syndrome, and nausea, low hemoglobin and albumin with hematological toxicity. | Increased WBC, high CRP with hematological toxicity | Older age with GI and hematological toxicity. Younger age with neutropenia. | |
Okada et al. (2017) [48]/ Group comparisons | Low albumin with hepatotoxicity | |||
Osterlund et al. (2007) [49]/ Group comparisons | Lactobacillus | |||
Retornaz et al. (2020) [50]/ ORs | Low albumin | Physical Frailty (Grip strength, Performance) | Increased CRP, and ALP | Hx of aggressive chemotherapy |
Seymour et al. (2011) [52]/ ORs | Physical Frailty (Performance) | Increased WBC | Baseline quality of life | |
Tominga et al. (2016) [54]/ ORs | Low albumin | CRP/albumin ratio. Elevated neutrophil/lymphocyte ratio | ||
Watanabe et al. (2018) [56]/ ORs | Low hemoglobin with hematological toxicity | Increased age and female sex with hematological toxicity | ||
Brown et al. (2022) [36] */ Group comparisons | BMI and abdominal adiposity | |||
Cespedes Feliciano et al. (2017) [37] */ORs | BMI, muscle mass index | |||
Decoster et al. (2018) [38] */ Group comparisons | Physical Frailty (Performance) | |||
Grimes, C. (2022) [42] */ Group comparisons | Sarcopenia | |||
Looijaard et al. (2020) [47] */ Group comparisons | Hx of aggressive chemotherapy |
Meta-Regression a: Age (Continuous Variable) and the Prevalence of Chemotoxicity | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unadjusted Analyses | Adjusted Analyses b | ||||||||||||
Age (y.o.): Predictor | Unstandardized c B | Standardized c β | Unstandardized c B | Standardized c β | Sample n | ||||||||
B (SE) | t | p d | β (SE) | t | p d | B (SE) | t | p d | β (SE) | t | p d | ||
Overall chemotoxicity | 0.54 (0.49) | 0.03 | 0.512 | 0.62 (0.25) | 0.47 | 0.640 | 0.44 (0.32) | 0.01 | 0.211 | 0.56 (0.33) | 0.35 | 0.879 | 8819 |
Non-Hematological chemotoxicity | 0.40 (0.40) | 0.11 | 0.413 | 0.89 (0.97) | 0.35 | 0.396 | 0.35 (0.29) | 0.21 | 0.314 | 0.93 (0.34) | 0.12 | 0.145 | 6602 |
Hematological chemotoxicity | 0.41 (0.38) | 0.09 | 0.331 | 0.76 (0.51) | 0.15 | 0.574 | 0.51 (0.43) | 0.04 | 0.421 | 1.21 (0.45) | 0.41 | 0.652 | 6882 |
Neutropenia | −1.09 (0.56) | 2.13 | 0.003 | −1.78 (0.54) | 2.41 | 0.002 | −1.01 (0.41) | 3.12 | 0.003 | −1.44 (0.39) | 1.98 | 0.004 | 8227 |
Nausea/ Vomiting | 1.32 (0.85) | 3.13 | 0.028 | 1.72 (0.56) | 3.35 | 0.001 | 1.14 (0.72) | 2.19 | 0.012 | 1.65 (0.56) | 3.12 | 0.001 | 5089 |
Diarrhea | 1.05 (0.31) | 2.41 | 0.012 | 1.51 (0.29) | 3.16 | 0.004 | 1.01 (0.31) | 2.41 | 0.001 | 1.33 (0.32) | 2.91 | 0.005 | 7209 |
GI toxicity | 1.02 (0.44) | 3.01 | 0.044 | 1.97 (0.43) | 2.11 | 0.005 | 1.03 (0.35) | 2.98 | <0.001 | 1.85 (0.32) | 2.53 | 0.001 | 9489 |
Age Group and the Prevalence of Chemotoxicity (Meta-ANOVA and Meta-Regression) a | ||||||
---|---|---|---|---|---|---|
Meta-ANOVA | Meta-Regression | |||||
Adult Group (All Participants’ Age Range from ≥18 to <65 Years Old) | Older Adult Group (All Participants’ Age ≥65 Years Old) | F/p c | Adjusted OR b,c (95% CIs) Ref. Adult Group | |||
Mean (SD) | Sample n | Mean (SD) | Sample n | |||
Overall Chemotoxicity | 43.5(5.1) | 7916 | 49.8 (5.3) | 903 | 4.898, 0.002 | 1.14 (1.01, 1.56), p = 0.045 |
Non-Hematological chemotoxicity | 39.6 (3.8) | 5476 | 37.4(6.8) | 1126 | 0.214, 0.643 | 0.84 (0.75, 1.32), p = 0.984 |
Hematological chemotoxicity | 24.3 (4.4) | 5483 | 22.0 (8.4) | 1399 | 0.106, 0.745 | 1.35 (0.85, 1.56), p = 0.845 |
Neutropenia | 24.3 (6.9) | 7396 | 13.7 (4.7) | 831 | 5.382, 0.002 | 0.65 (0.32, 0.95), p = 0.031 |
Nausea/Vomiting | 22.9 (5.2) | 4498 | 18.3 (7.6) | 591 | 0.045, 0.831 | 0.98 (0.75, 1.32), p = 0.652 |
Diarrhea | 14.2 (2.9) | 6007 | 16.8 (4.3) | 1202 | 3.214, 0.003 | 1.27 (1.05, 1.95), p = 0.003 |
GI toxicity | 18.1 (4.2) | 8472 | 25.9 (4.8) | 1017 | 2.494, <0.001 | 1.65 (1.12, 2.01), p = 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.J.; Ning, X.; Burd, C.E.; Spakowicz, D.J.; Tounkara, F.; Kalady, M.F.; Noonan, A.M.; McCabe, S.; Von Ah, D. Chemotoxicity and Associated Risk Factors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 2597. https://doi.org/10.3390/cancers16142597
Han CJ, Ning X, Burd CE, Spakowicz DJ, Tounkara F, Kalady MF, Noonan AM, McCabe S, Von Ah D. Chemotoxicity and Associated Risk Factors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers. 2024; 16(14):2597. https://doi.org/10.3390/cancers16142597
Chicago/Turabian StyleHan, Claire J., Xia Ning, Christin E. Burd, Daniel J. Spakowicz, Fode Tounkara, Matthew F. Kalady, Anne M. Noonan, Susan McCabe, and Diane Von Ah. 2024. "Chemotoxicity and Associated Risk Factors in Colorectal Cancer: A Systematic Review and Meta-Analysis" Cancers 16, no. 14: 2597. https://doi.org/10.3390/cancers16142597
APA StyleHan, C. J., Ning, X., Burd, C. E., Spakowicz, D. J., Tounkara, F., Kalady, M. F., Noonan, A. M., McCabe, S., & Von Ah, D. (2024). Chemotoxicity and Associated Risk Factors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers, 16(14), 2597. https://doi.org/10.3390/cancers16142597