Initial Age and Performans Status: Predicators for Re-Irradiation Ability in Patients with Relapsed Brain Metastasis after Initial Stereotactic Radiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient and Treatment Modalities
2.2. Acute Toxicities Reporting
2.3. Follow-Up
2.4. Statistical Analysis
Group Comparison
3. Results
3.1. Patients’ Characteristics
3.2. Brain Metastases and Treatment Characteristics
3.3. Acute Toxicities and Follow-Up
3.4. Follow-Up Outcomes
3.4.1. Radionecrosis
3.4.2. Local Recurrence
3.4.3. Cerebral Recurrence
3.4.4. Overall Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Global Population (n = 198) | Cohort 1 (n = 152) | Cohort 2 (n = 46) | |
---|---|---|---|---|
KPS | ||||
100 | 37 (18.7%) | 21 (13.8%) | 16 (34.8%) | |
90 | 46 (23.2%) | 32 (21.1%) | 14 (30.4%) | |
80 | 54 (27.3%) | 47 (30.9%) | 7 (15.2%) | |
70 | 41 (20.7%) | 35 (23%) | 6 (13.1%) | |
60 | 14 (7.1%) | 11 (7.2%) | 3 (6.5%) | |
50 | 4 (2%) | 4 (2.6%) | 0 | |
40 | 1 (0.5%) | 1 (0.7%) | 0 | |
30 | 0 | 0 | 0 | |
20 | 1 (0.5%) | 1 (0.7%) | 0 |
References
- Ostrom, Q.T.; Wright, C.H.; Barnholtz-Sloan, J.S. Brain Metastases: Epidemiology. Handb. Clin. Neurol. 2018, 149, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Ballman, K.V.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Whitton, A.C.; Greenspoon, J.; Parney, I.F.; Laack, N.N.I.; Ashman, J.B.; et al. Postoperative Stereotactic Radiosurgery Compared with Whole Brain Radiotherapy for Resected Metastatic Brain Disease (NCCTG N107C/CEC·3): A Multicentre, Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2017, 18, 1049–1060. [Google Scholar] [CrossRef]
- Dhermain, F.; Noël, G.; Antoni, D.; Tallet, A. Role of Radiation Therapy in Brain Metastases Management. Cancer Radiother. 2020, 24, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Latorzeff, I.; Antoni, D.; Josset, S.; Noël, G.; Tallet-Richard, A. Radiation Therapy for Brain Metastases. Cancer Radiother. 2022, 26, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lamba, N.; Wen, P.Y.; Aizer, A.A. Epidemiology of Brain Metastases and Leptomeningeal Disease. Neuro Oncol. 2021, 23, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Sperduto, P.W.; Mesko, S.; Li, J.; Cagney, D.; Aizer, A.; Lin, N.U.; Nesbit, E.; Kruser, T.J.; Chan, J.; Braunstein, S.; et al. Survival in Patients With Brain Metastases: Summary Report on the Updated Diagnosis-Specific Graded Prognostic Assessment and Definition of the Eligibility Quotient. J. Clin. Oncol. 2020, 38, JCO2001255. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.; Scott, C.; Rotman, M.; Asbell, S.; Phillips, T.; Wasserman, T.; McKenna, W.G.; Byhardt, R. Recursive Partitioning Analysis (RPA) of Prognostic Factors in Three Radiation Therapy Oncology Group (RTOG) Brain Metastases Trials. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Sato, Y.; Serizawa, T.; Kawabe, T.; Higuchi, Y.; Nagano, O.; Barfod, B.E.; Ono, J.; Kasuya, H.; Urakawa, Y. Subclassification of Recursive Partitioning Analysis Class II Patients with Brain Metastases Treated Radiosurgically. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Serizawa, T.; Shuto, T.; Akabane, A.; Higuchi, Y.; Kawagishi, J.; Yamanaka, K.; Sato, Y.; Jokura, H.; Yomo, S.; et al. Stereotactic Radiosurgery for Patients with Multiple Brain Metastases (JLGK0901): A Multi-Institutional Prospective Observational Study. Lancet Oncol. 2014, 15, 387–395. [Google Scholar] [CrossRef]
- Weltman, E.; Salvajoli, J.V.; Brandt, R.A.; de Morais Hanriot, R.; Prisco, F.E.; Cruz, J.C.; de Oliveira Borges, S.R.; Wajsbrot, D.B. Radiosurgery for Brain Metastases: A Score Index for Predicting Prognosis. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 1155–1161. [Google Scholar] [CrossRef]
- Kuntz, L.; Le Fèvre, C.; Jarnet, D.; Keller, A.; Meyer, P.; Bund, C.; Chambrelant, I.; Antoni, D.; Noel, G. Local Recurrence and Cerebral Progression-Free Survival after Multiple Sessions of Stereotactic Radiotherapy of Brain Metastases: A Retrospective Study of 184 Patients: Statistical Analysis. Strahlenther. Onkol. 2022, 198, 527–536. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE); US Department of Health and Human Services: Washington, DC, USA, 2017.
- Menoux, I.; Armspach, J.-P.; Noël, G.; Antoni, D. Imaging methods used in the differential diagnosis between brain tumour relapse and radiation necrosis after stereotactic radiosurgery of brain metastases: Literature review. Cancer Radiother. 2016, 20, 837–845. [Google Scholar] [CrossRef]
- Matuszak, J.; Waissi, W.; Clavier, J.B.; Noël, G.; Namer, I.J. Métastases cérébrales: Apport de l’acquisition tardive en TEP/TDM au 18F-FDG pour le diagnostic différentiel entre récurrence tumorale et radionécrose. Médecine Nucléaire 2016, 40, 196. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Zhao, B.; Zhao, P.; Ge, M.; Gao, M.; Ding, F.; Xu, S.; Liu, Y. Postcontrast T1 Mapping for Differential Diagnosis of Recurrence and Radionecrosis after Gamma Knife Radiosurgery for Brain Metastasis. AJNR Am. J. Neuroradiol. 2018, 39, 1025–1031. [Google Scholar] [CrossRef]
- Mangesius, J.; Mangesius, S.; Demetz, M.; Uprimny, C.; Di Santo, G.; Galijasevic, M.; Minasch, D.; Gizewski, E.R.; Ganswindt, U.; Virgolini, I.; et al. A Multi-Disciplinary Approach to Diagnosis and Treatment of Radionecrosis in Malignant Gliomas and Cerebral Metastases. Cancers 2022, 14, 6264. [Google Scholar] [CrossRef] [PubMed]
- Zindler, J.D.; Slotman, B.J.; Lagerwaard, F.J. Patterns of Distant Brain Recurrences after Radiosurgery Alone for Newly Diagnosed Brain Metastases: Implications for Salvage Therapy. Radiother. Oncol. 2014, 112, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Peacock, D.N.; Peiffer, A.M.; Lucas, J.T.; Isom, S.; Kuremsky, J.G.; Urbanic, J.J.; Bourland, J.D.; Laxton, A.W.; Tatter, S.B.; Shaw, E.G.; et al. A Nomogram for Predicting Distant Brain Failure in Patients Treated with Gamma Knife Stereotactic Radiosurgery without Whole Brain Radiotherapy. Neuro Oncol. 2014, 16, 1283–1288. [Google Scholar] [CrossRef]
- Aoyama, H.; Shirato, H.; Tago, M.; Nakagawa, K.; Toyoda, T.; Hatano, K.; Kenjyo, M.; Oya, N.; Hirota, S.; Shioura, H.; et al. Stereotactic Radiosurgery plus Whole-Brain Radiation Therapy vs. Stereotactic Radiosurgery Alone for Treatment of Brain Metastases: A Randomized Controlled Trial. JAMA 2006, 295, 2483–2491. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, R.B.; Alexander, B.M.; Mahadevan, A.; Niemierko, A.; Rajakesari, S.; Arvold, N.D.; Floyd, S.R.; Oh, K.S.; Loeffler, J.S.; Shih, H.A. The Impact of Different Stereotactic Radiation Therapy Regimens for Brain Metastases on Local Control and Toxicity. Adv. Radiat. Oncol. 2017, 2, 391–397. [Google Scholar] [CrossRef]
- Minniti, G.; Clarke, E.; Lanzetta, G.; Osti, M.F.; Trasimeni, G.; Bozzao, A.; Romano, A.; Enrici, R.M. Stereotactic Radiosurgery for Brain Metastases: Analysis of Outcome and Risk of Brain Radionecrosis. Radiat. Oncol. 2011, 6, 48. [Google Scholar] [CrossRef]
- Kohutek, Z.A.; Yamada, Y.; Chan, T.A.; Brennan, C.W.; Tabar, V.; Gutin, P.H.; Yang, T.J.; Rosenblum, M.K.; Ballangrud, Å.; Young, R.J.; et al. Long-Term Risk of Radionecrosis and Imaging Changes after Stereotactic Radiosurgery for Brain Metastases. J. Neurooncol. 2015, 125, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Ruben, J.D.; Dally, M.; Bailey, M.; Smith, R.; McLean, C.A.; Fedele, P. Cerebral Radiation Necrosis: Incidence, Outcomes, and Risk Factors with Emphasis on Radiation Parameters and Chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Vigneau, E.; Jacquemin, J.; Benadon, B.; Dat Nguyen, T.; Marchand-Créty, C. Efficacy and Safety of Hypofractionated Stereotactic Radiotherapy for Brain Metastases Using Three Fractions: A Single-Centre Retrospective Study. Cancer Radiother. 2021, 25, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.; Borsky, K.; Stark, L.S.; Tanadini-Lang, S.; Kroeze, S.G.C.; Krayenbühl, J.; Guckenberger, M.; Andratschke, N. Repeated Courses of Radiosurgery for New Brain Metastases to Defer Whole Brain Radiotherapy: Feasibility and Outcome With Validation of the New Prognostic Metric Brain Metastasis Velocity. Front. Oncol. 2018, 8, 551. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Reddy, S.K.; Kamath, R.K.; Sreenija, Y.; Nair, H.; Sashidharan, A.; Remesan Nair, R.A.; Pushpuja, K.U.; Kannan, R.; Edappattu, A.; et al. Prospective Evaluation of Response to Treatment, Survival Functions, Recurrence Pattern and Toxicity Profile in Indian Patients with Oligo-Brain Metastasis Treated with Only SRS. Neurol. India 2023, 71, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Ostdiek-Wille, G.P.; Amin, S.; Wang, S.; Zhang, C.; Lin, C. Single Fraction Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy Provide Equal Prognosis with Overall Survival in Patients with Brain Metastases at Diagnosis without Surgery at Primary Site. PeerJ 2023, 11, e15357. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Jaeckle, K.; Ballman, K.V.; Farace, E.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Barker, F.G.; Deming, R.; Burri, S.H.; et al. Effect of Radiosurgery Alone vs. Radiosurgery With Whole Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3 Brain Metastases: A Randomized Clinical Trial. JAMA 2016, 316, 401–409. [Google Scholar] [CrossRef]
- Minniti, G.; D’Angelillo, R.M.; Scaringi, C.; Trodella, L.E.; Clarke, E.; Matteucci, P.; Osti, M.F.; Ramella, S.; Enrici, R.M.; Trodella, L. Fractionated Stereotactic Radiosurgery for Patients with Brain Metastases. J. Neurooncol. 2014, 117, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Chambrelant, I.; Jarnet, D.; Bou-Gharios, J.; Le Fèvre, C.; Kuntz, L.; Antoni, D.; Jenny, C.; Noël, G. Stereotactic Radiation Therapy of Single Brain Metastases: A Literature Review of Dosimetric Studies. Cancers 2023, 15, 3937. [Google Scholar] [CrossRef]
- Kuntz, L.; Le Fèvre, C.; Jarnet, D.; Keller, A.; Meyer, P.; Thiery, A.; Cebula, H.; Noel, G.; Antoni, D. Changes in the Characteristics of Patients Treated for Brain Metastases with Repeat Stereotactic Radiotherapy (SRT): A Retrospective Study of 184 Patients. Radiat. Oncol. 2023, 18, 21. [Google Scholar] [CrossRef]
- Becco Neto, E.; Chaves de Almeida Bastos, D.; Telles, J.P.M.; Figueiredo, E.G.; Teixeira, M.J.; de Assis de Souza Filho, F.; Prabhu, S. Predictors of Survival After Stereotactic Radiosurgery for Untreated Single Non-Small Cell Lung Cancer Brain Metastases: 5- and 10-Year Results. World Neurosurg. 2023, 172, e447–e452. [Google Scholar] [CrossRef] [PubMed]
Variables | Global Population (n = 198) | Cohort 1 (n = 152) | Cohort 2 (n = 46) | p-Value | |
---|---|---|---|---|---|
Gender | >0.999 | ||||
Male | 103 (52.0%) | 79 (52.0%) | 24 (52.1%) | ||
Female | 95 (48.0%) | 73 (48.0%) | 22 (47.9%) | ||
Age at treatment (years) | 0.031 | ||||
Mean | 66 [32–91] | 67 [32–89] | 63.3 [32–91] | ||
Median | 66.5 | 67.5 | 62 | ||
Time between primitive diagnosis and BM treatment (months) | 0.391 | ||||
Mean | 35.6 [0–288] | 36.4 [0–288] | 33.1 [0–264] | ||
Median | 17 | 17.5 | 12 | ||
Nb of patients with BM at the diagnosis | 39 (19.7%) | 29 (19.1%) | 10 (21.7%) | 0.677 | |
KPS | <0.001 | ||||
>80% | 83 (41.9%) | 53 (34.9%) | 30 (65.2%) | ||
≤80% | 115 (58.1%) | 99 (65.1%) | 16 (34.8%) | ||
RPA group | 0.486 | ||||
I | 17 (8.6%) | 11 (7.3%) | 6 (13.0%) | ||
IIa | 53 (26.8%) | 40 (26.3%) | 13 (28.3%) | ||
IIb | 66 (33.3%) | 49 (32.2%) | 17 (37.0%) | ||
IIc | 42 (21.2%) | 35 (23.0%) | 7 (15.2%) | ||
III | 20 (10.1%) | 17 (11.2%) | 3 (6.5%) | ||
DS-GPA class | 0.406 | ||||
1 | 38 (19.2%) | 32 (21.0%) | 6 (13.0%) | ||
2 | 83 (42.0%) | 64 (42.1%) | 19 (41.3%) | ||
3 | 57 (28.8%) | 41 (27.0%) | 16 (34.8%) | ||
4 | 10 (5.0%) | 9 (5.9%) | 1 (2.2%) | ||
NA | 10 (5.0%) | 6 (4.0%) | 4 (8.7%) | ||
Primitive cancer | 0.121 | ||||
Lungs | 119 (60.1%) | 87 (57.2%) | 32 (69.5%) | ||
Adenocarcinoma | 70 (58.8%) | 49 (56.3%) | 21 (65.6%) | ||
Epidermoid | 32 (26.9%) | 27 (31.0%) | 5 (15.6%) | ||
Small cells | 17 (14.3%) | 11 (12.7%) | 6 (18.8%) | ||
Breast | 23 (11.6%) | 20 (13.1%) | 3 (6.5%) | ||
RH+ HER2- | 18 (78.3%) | 16 (80.0%) | 2 (66.7%) | ||
RH+ HER2+ | 2 (8.7%) | 1 (5.0%) | 1 (32.3%) | ||
RH- HER2+ | 3 (13.0%) | 3 (15.0%) | 0 | ||
Digestive | 18 (9.1%) | 17 (11.2%) | 1 (2.2%) | ||
Melanoma | 17 (8.6%) | 12 (7.9%) | 5 (10.9%) | ||
BRAF mutation | 9 (52.9%) | 7 (58.3%) | 2 (40.0%) | ||
Kidney | 11 (5.6%) | 10 (6.6%) | 1 (2.2%) | ||
Others | 10 (5.0%) | 6 (4.0%) | 4 (8.7%) | ||
Initial tumor stage | 0.589 | ||||
1 | 21 (10.6%) | 17 (11.2%) | 4 (8.7%) | ||
2 | 48 (24.3%) | 34 (22.4%) | 14 (30.4%) | ||
3 | 46 (23.2%) | 35 (23.0%) | 11 (23.9%) | ||
4 | 45 (22.7%) | 37 (24.3%) | 8 (17.4%) | ||
NA | 38 (19.2%) | 29 (19.1%) | 9 (19.6%) | ||
Initial node stage | 0.472 | ||||
0 | 65 (32.8%) | 52 (34.2%) | 13 (28.2%) | ||
1 | 29 (14.7%) | 24 (15.8%) | 5 (10.9%) | ||
2 | 39 (19.7%) | 30 (19.7%) | 9 (19.6%) | ||
3 | 27 (13.6%) | 18 (11.9%) | 9 (19.6%) | ||
NA | 38 (19.2%) | 28 (18.4%) | 10 (21.7%) | ||
Initial metastases stage | 0.397 | ||||
0 | 108 (54.5%) | 80 (52.6%) | 28 (60.9%) | ||
1 | 77 (38.9%) | 62 (40.8%) | 15 (32.6%) | ||
NA | 13 (6.6%) | 10 (6.6%) | 3 (6.5%) | ||
Extracranial metastases | 0.689 | ||||
Yes | 122 (61.6%) | 92 (60.5%) | 30 (65.2%) | ||
No | 76 (38.4%) | 60 (39.5%) | 16 (34.8%) | ||
Control of the primary tumor site | 0.332 | ||||
Yes | 72 (36.4%) | 52 (34.2%) | 20 (43.5%) | ||
No | 126 (63.6%) | 100 (65.8%) | 26 (56.5%) |
Variables | Global Population (n = 198) | Cohort 1 (n = 152) | Cohort 2 (n = 46) | p-Value | |
---|---|---|---|---|---|
Size (mm) | 0.491 | ||||
Mean | 17 [3–57] | 16.8 [3–57] | 17.8 [4–49] | ||
Median | 15 | 15 | 16.5 | ||
Volume (cc) | 0.930 | ||||
Mean | 5.7 [0.03–61.8] | 5.7 [0.03–61.8] | 5.8 [0.1–39.6] | ||
Median | 2.6 | 2.5 | 2.5 | ||
Localization | 0.818 | ||||
Supra-tentorial | 151 (76.3%) | 117 (77.0%) | 34 (73.9%) | ||
Sub-tentorial | 47 (23.7%) | 35 (23.0%) | 12 (26.1%) | ||
Technique of treatment | 0.098 | ||||
DCAT | 168 (84.8%) | 125 (82.2%) | 43 (93.5%) | ||
VMAT | 30 (15.2%) | 27 (17.8%) | 3 (6.5%) | ||
Prescribed dose at isocenter | 0.829 | ||||
33 Gy | 157 (79.3%) | 120 (79.0%) | 37 (80.4%) | ||
20 Gy | 41 (20.7%) | 32 (21.0%) | 9 (19.6%) | ||
Associated treatment | 0.339 | ||||
Corticosteroids | 192 (97.0%) | 146 (96.0%) | 46 (100%) |
Variables | Global Population (n = 198) | Cohort 1 (n = 152) | Cohort 2 (n = 46) | p-Value | |
---|---|---|---|---|---|
Symptom before treatment | 0.030 | ||||
Grade 0 | 110 (55.6%) | 91 (59.9%) | 19 (41.3%) | ||
Grade 1 | 67 (33.8%) | 49 (32.2%) | 18 (39.1%) | ||
Grade 2 | 21 (10.6%) | 12 (7.9%) | 9 (19.6%) | ||
Symptom during treatment | 0.497 | ||||
Grade 0 | 109 (55.0%) | 87 (57.2%) | 22 (47.9%) | ||
Grade 1 | 69 (34.9%) | 51 (33.6%) | 18 (39.1%) | ||
Grade 2 | 20 (10.1%) | 14 (9.2%) | 6 (13.0%) | ||
Increased corticosteroids during RT | 12 (6.1%) | 11 (7.3%) | 1 (2.2%) | 0.302 |
Variables | Global Population (n = 198) | Cohort 1 (n = 152) | Cohort 2 (n = 46) | p-Value | |
---|---|---|---|---|---|
Follow-up post-SRT (months) | <0.001 | ||||
Mean | 20.1 [0–141] | 16.8 [0–140.7] | 30.8 [2–101] | ||
Median | 9 | 6.1 | 22 | ||
Radionecrosis | 13 (6.6%) | 8 (5.3%) | 5 (10.9%) | 0.185 | |
Delay between SRT and radionecrosis (months) | 0.550 | ||||
Mean | 11.7 [3–45] | 12.4 [3–45] | 10.6 [5–15] | ||
Median | 9 | 7.5 | 12 | ||
Local recurrence | 21 (10.6%) | 8 (5.3%) | 13 (28.3%) | <0.001 | |
Delay between SRT and local recurrence (months) | 0.360 | ||||
Mean | 11.9 [2–40] | 9.4 [3–24] | 13.5 [2–40] | ||
Median | 9 | 10.5 | 11 | ||
Cerebral recurrence | 52 (26.3%) | 14 (9.2%) | 38 (82.6%) | <0.001 | |
Delay between SRT and cerebral recurrence (months) | 0.448 | ||||
Mean | 10.8 [1–72] | 9.2 [1–72] | 11.4 [1–70] | ||
Median | 5 | 3 | 5 | ||
Death | 173 (87.4%) | 132 (86.8%) | 41 (89.1%) | 0.804 | |
Delay between SRT and death (months) | <0.001 | ||||
Mean | 12.7 [0–87] | 9 [0–87] | 24.8 [2–83] | ||
Median | 7 | 5.5 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chambrelant, I.; Kuntz, L.; Le Fèvre, C.; Jarnet, D.; Jacob, J.; Noël, G. Initial Age and Performans Status: Predicators for Re-Irradiation Ability in Patients with Relapsed Brain Metastasis after Initial Stereotactic Radiotherapy. Cancers 2024, 16, 2602. https://doi.org/10.3390/cancers16142602
Chambrelant I, Kuntz L, Le Fèvre C, Jarnet D, Jacob J, Noël G. Initial Age and Performans Status: Predicators for Re-Irradiation Ability in Patients with Relapsed Brain Metastasis after Initial Stereotactic Radiotherapy. Cancers. 2024; 16(14):2602. https://doi.org/10.3390/cancers16142602
Chicago/Turabian StyleChambrelant, Isabelle, Laure Kuntz, Clara Le Fèvre, Delphine Jarnet, Julian Jacob, and Georges Noël. 2024. "Initial Age and Performans Status: Predicators for Re-Irradiation Ability in Patients with Relapsed Brain Metastasis after Initial Stereotactic Radiotherapy" Cancers 16, no. 14: 2602. https://doi.org/10.3390/cancers16142602
APA StyleChambrelant, I., Kuntz, L., Le Fèvre, C., Jarnet, D., Jacob, J., & Noël, G. (2024). Initial Age and Performans Status: Predicators for Re-Irradiation Ability in Patients with Relapsed Brain Metastasis after Initial Stereotactic Radiotherapy. Cancers, 16(14), 2602. https://doi.org/10.3390/cancers16142602