Maintenance Therapy for Pancreatic Cancer, a New Approach Based on the Synergy between the Novel Agent GP-2250 (Misetionamide) and Gemcitabine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Culture Conditions
2.2. Spheroid Cultivation
2.3. Tissue
2.4. Reagents
2.5. MTT Cytotoxicity Assay
2.6. FACS Analysis
2.7. Animal Studies
2.8. Maintenance Study
2.9. Immunhistochemival Validation of Therapy Response
2.10. Statistics and Calculations
2.11. Ethical Considerations
3. Results
3.1. Synergy of GP-2250 and Gemcitabine in Pancreatic Cancer Cell Lines
3.2. PDX In Vivo Studies
3.3. Maintenance Therapy
3.4. Immunhistochemival Validation of Therapy Response
3.5. Effect of GP-2250 on CD133+ Cells in Spheroid Cultures
4. Discussion
4.1. Choice of GP-2250 Plus Gemcitabine
4.2. Maintenance Study
4.3. CD133+ Cells
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
µM | Micromole per liter |
5-FU | 5-Fluorouracil |
Bcl-2 | B-cell lymphoma 2 |
CI | Combination Index |
DMEM | Dulbecco’s Modified Eagle Medium |
DMSO | Dimethylsulfoxide |
FOLFIRINOX | 5-Fluorouracil, Leucovorin, Irinotecan, Oxaliplatin |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
Gem, G | Gemcitabine |
GP-2250 | 1.4.5-oxathiazan-dioxide-4.4, Misetionamide |
i.p. | Intraperitoneal |
mg/kg*BW | Milligram per kilogram bodyweight |
Min | Minutes |
mM | Millimole per liter |
mTOR | Mammalian Target of Rapamycin |
MTT | 3-(4.5-Dimethylthiazol-2-yl)-2.5-diphenyltetrazoliumbromide |
NFκB | Nuclear factor kappa light-chain enhancer of activated B cells |
nm | Nanometer |
OS | Overall survival |
PARP | Poly (adenosine diphosphate-ribose) polymerase |
PDAC | Pancreatic ductal adenocarcinoma |
PDX | Patient-derived mouse xenografts |
PFS | Progression-free survival |
RECIST | Response evaluation criteria in solid tumors |
ROS | Reactive oxygen species |
SD | Standard deviation |
SINEs | Selective inhibitors of nuclear export |
References
- German Centre for Cancer Registry Data. German Centre for Cancer Registry Data (2020) Krebs—Cancer in Germany: Pancreas-C25. 2020. Available online: https://www.krebsdaten.de/Krebs/EN/Content/Publications/Cancer_in_Germany/cancer_in_germany_node.html (accessed on 9 March 2020).
- McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv. Nutr. 2016, 7, 418–419. [Google Scholar] [CrossRef]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.W.; Wild, C.P. World Cancer Report 2014, Online-Ausg; International Agency for Research on Cancer: Lyon, France, 2014; ISBN 9789283204435. [Google Scholar]
- Quiñonero, F.; Mesas, C.; Doello, K.; Cabeza, L.; Perazzoli, G.; Jimenez-Luna, C.; Rama, A.R.; Melguizo, C.; Prados, J. The challenge of drug resistance in pancreatic ductal adenocarcinoma: A current overview. Cancer Biol. Med. 2019, 16, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. Pankreaskarzinom Leitlinie: Empfehlungen der Fachgesellschaft zur Diagnostik und Therapie Hämatologischer und Onkologischer Erkrankungen. 2018. Available online: https://www.onkopedia.com/de/onkopedia/guidelines/pankreaskarzinom/@@guideline/html/index.html (accessed on 15 September 2022).
- Schoppmeyer, K.; Mössner, J. Pankreaskarzinom. Internist 2004, 45, 769–776. [Google Scholar] [CrossRef]
- Leitlinienprogramm Onkologie. Leitlinienprogramm Onkologie: Leitlinien. 2021. Available online: https://www.leitlinienprogramm-onkologie.de/index.php?id=7&type=0 (accessed on 11 March 2021).
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef] [PubMed]
- Adamska, A.; Domenichini, A.; Falasca, M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int. J. Mol. Sci. 2017, 18, 1338. [Google Scholar] [CrossRef] [PubMed]
- Vogl, U.M.; Andalibi, H.; Klaus, A.; Vormittag, L.; Schima, W.; Heinrich, B.; Kafka, A.; Winkler, T.; Öhler, L. Nab-paclitaxel and gemcitabine or FOLFIRINOX as first-line treatment in patients with unresectable adenocarcinoma of the pancreas: Does sequence matter? BMC Cancer 2019, 19, 28. [Google Scholar] [CrossRef] [PubMed]
- Macarulla, T.; Pazo-Cid, R.; Guillén-Ponce, C.; López, R.; Vera, R.; Reboredo, M.; Muñoz Martin, A.; Rivera, F.; Díaz Beveridge, R.; La Casta, A.; et al. Phase I/II Trial to Evaluate the Efficacy and Safety of Nanoparticle Albumin-Bound Paclitaxel in Combination With Gemcitabine in Patients With Pancreatic Cancer and an ECOG Performance Status of 2. J. Clin. Oncol. 2019, 37, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Schell, M.J.; Peterman, A.; Bakri, K.; Yates, S.; Gitten, R.; Unger, P.; Lee, J.; Lee, J.-H.; Tynan, M.; et al. Phase III trial comparing a defined duration of therapy versus continuous therapy followed by second-line therapy in advanced-stage IIIB/IV non-small-cell lung cancer. J. Clin. Oncol. 2002, 20, 1335–1343. [Google Scholar] [CrossRef]
- Tournigand, C.; Cervantes, A.; Figer, A.; Lledo, G.; Flesch, M.; Buyse, M.; Mineur, L.; Carola, E.; Etienne, P.-L.; Rivera, F.; et al. OPTIMOX1: A randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-Go fashion in advanced colorectal cancer--a GERCOR study. J. Clin. Oncol. 2006, 24, 394–400. [Google Scholar] [CrossRef]
- Hammel, P.; Vitellius, C.; Boisteau, É.; Wisniewski, M.; Colle, E.; Hilmi, M.; Dengremont, C.; Granier, S.; Turpin, A.; de Mestier, L.; et al. Maintenance therapies in metastatic pancreatic cancer: Present and future with a focus on PARP inhibitors. Ther. Adv. Med. Oncol. 2020, 12, 1758835920937949. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Perez, K.; Wolpin, B.M.; Aguirre, A.J. Beyond the Front Line: Emerging Data for Maintenance Therapy in Pancreatic Cancer. J. Clin. Oncol. 2021, 39, 3199–3206. [Google Scholar] [CrossRef]
- Dahan, L.; Williet, N.; Le Malicot, K.; Phelip, J.-M.; Desrame, J.; Bouché, O.; Petorin, C.; Malka, D.; Rebischung, C.; Aparicio, T.; et al. Randomized Phase II Trial Evaluating Two Sequential Treatments in First Line of Metastatic Pancreatic Cancer: Results of the PANOPTIMOX-PRODIGE 35 Trial. J. Clin. Oncol. 2021, 39, 3242–3250. [Google Scholar] [CrossRef] [PubMed]
- Franck, C.; Canbay, A.; Malfertheiner, P.; Venerito, M. Maintenance Therapy with FOLFIRI after FOLFIRINOX for Advanced Pancreatic Ductal Adenocarcinoma: A Retrospective Single-Center Analysis. J. Oncol. 2019, 2019, 5832309. [Google Scholar] [CrossRef]
- Golan, T.; Hammel, P.; Reni, M.; van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef]
- Martínez-Galán, J.; Rodriguez, I.; Caba, O. Importance of BRCA mutation for the current treatment of pancreatic cancer beyond maintenance. World J. Gastroenterol. 2021, 27, 6515–6521. [Google Scholar] [CrossRef]
- Reiss, K.A.; Mick, R.; O’Hara, M.H.; Teitelbaum, U.; Karasic, T.B.; Schneider, C.; Cowden, S.; Southwell, T.; Romeo, J.; Izgur, N.; et al. Phase II Study of Maintenance Rucaparib in Patients With Platinum-Sensitive Advanced Pancreatic Cancer and a Pathogenic Germline or Somatic Variant in BRCA1, BRCA2, or PALB2. J. Clin. Oncol. 2021, 39, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Roger, E.; Gout, J.; Arnold, F.; Beutel, A.K.; Müller, M.; Abaei, A.; Barth, T.F.E.; Rasche, V.; Seufferlein, T.; Perkhofer, L.; et al. Maintenance Therapy for ATM-Deficient Pancreatic Cancer by Multiple DNA Damage Response Interferences after Platinum-Based Chemotherapy. Cells 2020, 9, 2110. [Google Scholar] [CrossRef]
- Zhang, W.; Du, C.; Sun, Y.; Yang, L.; Cui, C.; Jiang, Z.; Wang, C.; Wang, J.; Zhou, A. Nab-paclitaxel plus S-1 as first-line followed by S-1 maintenance for advanced pancreatic adenocarcinoma: A single-arm phase II trial. Cancer Chemother. Pharmacol. 2018, 82, 655–660. [Google Scholar] [CrossRef]
- Reni, M.; Cereda, S.; Milella, M.; Novarino, A.; Passardi, A.; Mambrini, A.; Di Lucca, G.; Aprile, G.; Belli, C.; Danova, M.; et al. Maintenance sunitinib or observation in metastatic pancreatic adenocarcinoma: A phase II randomised trial. Eur. J. Cancer 2013, 49, 3609–3615. [Google Scholar] [CrossRef]
- Macchini, M.; Centonze, F.; Peretti, U.; Orsi, G.; Militello, A.M.; Valente, M.M.; Cascinu, S.; Reni, M. Epidemiology and geographic distribution of BRCA1-2 and DNA Damage response genes pathogenic variants in pancreatic ductal adenocarcinoma patients. Cancer Treat. Rev. 2022, 104, 102357. [Google Scholar] [CrossRef]
- Buchholz, M.; Majchrzak-Stiller, B.; Hahn, S.; Vangala, D.; Pfirrmann, R.W.; Uhl, W.; Braumann, C.; Chromik, A.M. Innovative substance 2250 as a highly promising anti-neoplastic agent in malignant pancreatic carcinoma—In vitro and in vivo. BMC Cancer 2017, 17, 216. [Google Scholar] [CrossRef] [PubMed]
- Baron, C.; Buchholz, M.; Majchrzak-Stiller, B.; Peters, I.; Fein, D.; Müller, T.; Uhl, W.; Höhn, P.; Strotmann, J.; Braumann, C. Substance GP-2250 as a New Therapeutic Agent for Malignant Peritoneal Mesothelioma-A 3-D In Vitro Study. Int. J. Mol. Sci. 2022, 23, 7293. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak-Stiller, B.; Buchholz, M.; Peters, I.; Strotmann, J.; Möhrke, J.; Zelichowski, L.; Oehlke, L.; Quensel, C.; Fein, D.; Höhn, P.; et al. Oxathiazinane derivatives display both antineoplastic and antibacterial activity: A structure activity study. J. Cancer Res. Clin. Oncol. 2023, 149, 9071–9083. [Google Scholar] [CrossRef]
- Buchholz, M.; Strotmann, J.; Majchrzak-Stiller, B.; Hahn, S.; Peters, I.; Horn, J.; Müller, T.; Höhn, P.; Uhl, W.; Braumann, C. New Therapy Options for Neuroendocrine Carcinoma of the Pancreas-The Emergent Substance GP-2250 and Gemcitabine Prove to Be Highly Effective without the Development of Secondary Resistances In Vitro and In Vivo. Cancers 2022, 14, 2685. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak-Stiller, B.; Buchholz, M.; Peters, I.; Waschestjuk, D.; Strotmann, J.; Höhn, P.; Hahn, S.; Braumann, C.; Uhl, W.; Müller, T.; et al. GP-2250, a novel anticancer agent, inhibits the energy metabolism, activates AMP-Kinase and impairs the NF-kB pathway in pancreatic cancer cells. J. Cell. Mol. Med. 2023, 27, 2082–2092. [Google Scholar] [CrossRef]
- Kasi, A.; Iglesias, J.L. A phase 1/2 study to evaluate the safety, tolerability, and preliminary efficacy of GP-2250 in combination with gemcitabine for advanced or metastatic pancreatic adenocarcinoma. J. Clin. Oncol. 2022, 40, TPS620. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Gu, J.; Zheng, L. Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): A systematic review and meta-analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 12084–12092. [Google Scholar]
- Kim, H.-S.; Yoo, S.-Y.; Kim, K.-T.; Park, J.-T.; Kim, H.-J.; Kim, J.-C. Expression of the stem cell markers CD133 and nestin in pancreatic ductal adenocarcinoma and clinical relevance. Int. J. Clin. Exp. Pathol. 2012, 5, 754–761. [Google Scholar]
- Hermann, P.C.; Huber, S.L.; Herrler, T.; Aicher, A.; Ellwart, J.W.; Guba, M.; Bruns, C.J.; Heeschen, C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007, 1, 313–323. [Google Scholar] [CrossRef]
- Nomura, A.; Dauer, P.; Gupta, V.; McGinn, O.; Arora, N.; Majumdar, K.; Uhlrich, C.; Dalluge, J.; Dudeja, V.; Saluja, A.; et al. Microenvironment mediated alterations to metabolic pathways confer increased chemo-resistance in CD133+ tumor initiating cells. Oncotarget 2016, 7, 56324–56337. [Google Scholar] [CrossRef]
- Banerjee, S.; Nomura, A.; Sangwan, V.; Chugh, R.; Dudeja, V.; Vickers, S.M.; Saluja, A. CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to Minnelide. Clin. Cancer Res. 2014, 20, 2388–2399. [Google Scholar] [CrossRef]
- Weisner, J.; Landel, I.; Reintjes, C.; Uhlenbrock, N.; Trajkovic-Arsic, M.; Dienstbier, N.; Hardick, J.; Ladigan, S.; Lindemann, M.; Smith, S.; et al. Preclinical Efficacy of Covalent-Allosteric AKT Inhibitor Borussertib in Combination with Trametinib in KRAS-Mutant Pancreatic and Colorectal Cancer. Cancer Res. 2019, 79, 2367–2378. [Google Scholar] [CrossRef]
- Miranda-Lorenzo, I.; Dorado, J.; Lonardo, E.; Alcala, S.; Serrano, A.G.; Clausell-Tormos, J.; Cioffi, M.; Megias, D.; Zagorac, S.; Balic, A.; et al. Intracellular autofluorescence: A biomarker for epithelial cancer stem cells. Nat. Methods 2014, 11, 1161–1169. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinská, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; de Jong, S.; Jonkers, J.; Mælandsmo, G.M.; et al. Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 2014, 4, 998–1013. [Google Scholar] [CrossRef]
- Mazur, P.K.; Herner, A.; Mello, S.S.; Wirth, M.; Hausmann, S.; Sánchez-Rivera, F.J.; Lofgren, S.M.; Kuschma, T.; Hahn, S.A.; Vangala, D.; et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat. Med. 2015, 21, 1163–1171. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Mulisch, M.; Welsch, U. Romeis-Mikroskopische Technik. 19. Überarbeitete und Erweiterte Auflage; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Lang, G. Histotechnik: Praxislehrbuch für Die Biomedizinische Analytik. zweite Überarbeitete und Aktualisierte Auflage; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ahn, S.; Lee, J.; Kim, J.; Kim, Y.H.; Yoon, Y.; Han, H.; Kim, H.; Hwang, J. Four-Tier Pathologic Tumor Regression Grading System Predicts the Clinical Outcome in Patients Who Undergo Surgical Resection for Locally Advanced Pancreatic Cancer after Neoadjuvant Chemotherapy. Gut Liver 2022, 16, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Ohkubo, S.; Nakano-Narusawa, Y.; Fukumura, Y.; Hirabayashi, K.; Yamaguchi, H.; Sahara, Y.; Kawanishi, A.; Takahashi, S.; Arai, T.; et al. Objective assessment of tumor regression in post-neoadjuvant therapy resections for pancreatic ductal adenocarcinoma: Comparison of multiple tumor regression grading systems. Sci. Rep. 2020, 10, 18278. [Google Scholar] [CrossRef]
- Chang, T.T.; Chou, T.C. Rational approach to the clinical protocol design for drug combinations: A review. Acta Paediatrica Taiwanica = Taiwan er ke yi xue hui za zhi 2000, 41, 294–302. [Google Scholar]
- Chou, T.-C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef] [PubMed]
- Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA 2007, 297, 267–277. [Google Scholar] [CrossRef]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goéré, D.; Seufferlein, T.; Haustermans, K.; van Laethem, J.L.; Conroy, T.; et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v56–v68. [Google Scholar] [CrossRef]
- Spratlin, J.; Sangha, R.; Glubrecht, D.; Dabbagh, L.; Young, J.D.; Dumontet, C.; Cass, C.; Lai, R.; Mackey, J.R. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin. Cancer Res. 2004, 10, 6956–6961. [Google Scholar] [CrossRef]
- Ohhashi, S.; Ohuchida, K.; Mizumoto, K.; Fujita, H.; Egami, T.; Yu, J.; Toma, H.; Sadatomi, S.; Nagai, E.; Tanaka, M. Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res. 2008, 28, 2205–2212. [Google Scholar] [PubMed]
- Saiki, Y.; Yoshino, Y.; Fujimura, H.; Manabe, T.; Kudo, Y.; Shimada, M.; Mano, N.; Nakano, T.; Lee, Y.; Shimizu, S.; et al. DCK is frequently inactivated in acquired gemcitabine-resistant human cancer cells. Biochem. Biophys. Res. Commun. 2012, 421, 98–104. [Google Scholar] [CrossRef]
- Nakahira, S.; Nakamori, S.; Tsujie, M.; Takahashi, Y.; Okami, J.; Yoshioka, S.; Yamasaki, M.; Marubashi, S.; Takemasa, I.; Miyamoto, A.; et al. Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int. J. Cancer 2007, 120, 1355–1363. [Google Scholar] [CrossRef]
- Qian, Y.; Gong, Y.; Fan, Z.; Luo, G.; Huang, Q.; Deng, S.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; et al. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J. Hematol. Oncol. 2020, 13, 130. [Google Scholar] [CrossRef]
- Watkins, D.J.; Starling, N.; Cunningham, D.; Thomas, J.; Webb, J.; Brown, G.; Barbachano, Y.; Oates, J.; Chau, I. The combination of a chemotherapy doublet (gemcitabine and capecitabine) with a biological doublet (bevacizumab and erlotinib) in patients with advanced pancreatic adenocarcinoma. The results of a phase I/II study. Eur. J. Cancer 2014, 50, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Kindler, H.L.; Friberg, G.; Singh, D.A.; Locker, G.; Nattam, S.; Kozloff, M.; Taber, D.A.; Karrison, T.; Dachman, A.; Stadler, W.M.; et al. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 2005, 23, 8033–8040. [Google Scholar] [CrossRef]
- van Cutsem, E.; Vervenne, W.L.; Bennouna, J.; Humblet, Y.; Gill, S.; van Laethem, J.-L.; Verslype, C.; Scheithauer, W.; Shang, A.; Cosaert, J.; et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol. 2009, 27, 2231–2237. [Google Scholar] [CrossRef] [PubMed]
- Ko, A.H.; Youssoufian, H.; Gurtler, J.; Dicke, K.; Kayaleh, O.; Lenz, H.-J.; Keaton, M.; Katz, T.; Ballal, S.; Rowinsky, E.K. A phase II randomized study of cetuximab and bevacizumab alone or in combination with gemcitabine as first-line therapy for metastatic pancreatic adenocarcinoma. Invest. New Drugs 2012, 30, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, L.; Maute, L.; Heil, G.; Rüssel, J.; Weidmann, E.; Köberle, D.; Fuxius, S.; Weigang-Köhler, K.; Aulitzky, W.E.; Wörmann, B.; et al. A prospective randomised phase-II trial with gemcitabine versus gemcitabine plus sunitinib in advanced pancreatic cancer: A study of the CESAR Central European Society for Anticancer Drug Research-EWIV. Eur. J. Cancer 2015, 51, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef]
- Sofia, R.D.; Martin, K.M.; Costin, J.C. Antineoplastic activity of GP-2250 in-vitro and in mouse xenograft models. Anti-Cancer Drugs 2024, 35, 183–189. [Google Scholar] [CrossRef] [PubMed]
- von Hoff, D.D.; Ramanathan, R.K.; Borad, M.J.; Laheru, D.A.; Smith, L.S.; Wood, T.E.; Korn, R.L.; Desai, N.; Trieu, V.; Iglesias, J.L.; et al. Gemcitabine Plus nab -Paclitaxel Is an Active Regimen in Patients With Advanced Pancreatic Cancer: A Phase I/II Trial. J. Clin. Oncol. 2011, 29, 4548–4554. [Google Scholar] [CrossRef]
- Goldstein, D.; El-Maraghi, R.H.; Hammel, P.; Heinemann, V.; Kunzmann, V.; Sastre, J.; Scheithauer, W.; Siena, S.; Tabernero, J.; Teixeira, L.; et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: Long-term survival from a phase III trial. J. Natl. Cancer Inst. 2015, 107, dju413. [Google Scholar] [CrossRef]
- Wolfe, A.R.; Robb, R.; Hegazi, A.; Abushahin, L.; Yang, L.; Shyu, D.-L.; Trevino, J.G.; Cruz-Monserrate, Z.; Jacob, J.R.; Palanichamy, K.; et al. Altered Gemcitabine and Nab-paclitaxel Scheduling Improves Therapeutic Efficacy Compared with Standard Concurrent Treatment in Preclinical Models of Pancreatic Cancer. Clin. Cancer Res. 2021, 27, 554–565. [Google Scholar] [CrossRef]
- Azmi, A.S.; Aboukameel, A.; Bao, B.; Sarkar, F.H.; Philip, P.A.; Kauffman, M.; Shacham, S.; Mohammad, R.M. Selective inhibitors of nuclear export block pancreatic cancer cell proliferation and reduce tumor growth in mice. Gastroenterology 2013, 144, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Azmi, A.S.; Aboukameel, A.; Kauffman, M.; Shacham, S.; Abou-Samra, A.-B.; Mohammad, R.M. Nuclear retention of Fbw7 by specific inhibitors of nuclear export leads to Notch1 degradation in pancreatic cancer. Oncotarget 2014, 5, 3444–3454. [Google Scholar] [CrossRef] [PubMed]
- Kazim, S.; Malafa, M.P.; Coppola, D.; Husain, K.; Zibadi, S.; Kashyap, T.; Crochiere, M.; Landesman, Y.; Rashal, T.; Sullivan, D.M.; et al. Selective Nuclear Export Inhibitor KPT-330 Enhances the Antitumor Activity of Gemcitabine in Human Pancreatic Cancer. Mol. Cancer Ther. 2015, 14, 1570–1581. [Google Scholar] [CrossRef] [PubMed]
- Azmi, A.S.; Khan, H.Y.; Muqbil, I.; Aboukameel, A.; Neggers, J.E.; Daelemans, D.; Mahipal, A.; Dyson, G.; Kamgar, M.; Al-Hallak, M.N.; et al. Preclinical Assessment with Clinical Validation of Selinexor with Gemcitabine and Nab-Paclitaxel for the Treatment of Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2020, 26, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Franck, C.; Müller, C.; Rosania, R.; Croner, R.S.; Pech, M.; Venerito, M. Advanced Pancreatic Ductal Adenocarcinoma: Moving Forward. Cancers 2020, 12, 1955. [Google Scholar] [CrossRef]
- Petrioli, R.; Torre, P.; Pesola, G.; Paganini, G.; Paolelli, L.; Miano, S.T.; Martellucci, I.; Francini, G.; Francini, E. Gemcitabine plus nab-paclitaxel followed by maintenance treatment with gemcitabine alone as first-line treatment for older adults with locally advanced or metastatic pancreatic cancer. J. Geriatr. Oncol. 2020, 11, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Reure, J.; Follana, P.; Gal, J.; Evesque, L.; Cavaglione, G.; Saint, A.; François, E. Effectiveness and Tolerability of Maintenance Capecitabine Administrated to Patients with Metastatic Pancreatic Cancer Treated with First-Line FOLFIRINOX. Oncology 2016, 90, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Baier, D.; Schoenhacker-Alte, B.; Rusz, M.; Pirker, C.; Mohr, T.; Mendrina, T.; Kirchhofer, D.; Meier-Menches, S.M.; Hohenwallner, K.; Schaier, M.; et al. The Anticancer Ruthenium Compound BOLD-100 Targets Glycolysis and Generates a Metabolic Vulnerability towards Glucose Deprivation. Pharmaceutics 2022, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Xia, L.; Liang, J.; Han, Y.; Wang, H.; Oyang, L.; Tan, S.; Tian, Y.; Rao, S.; Chen, X.; et al. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. J. Exp. Clin. Cancer Res. 2019, 38, 218. [Google Scholar] [CrossRef]
- Gebregiworgis, T.; Bhinderwala, F.; Purohit, V.; Chaika, N.V.; Singh, P.K.; Powers, R. Insights into gemcitabine resistance and the potential for therapeutic monitoring. Metabolomics 2018, 14, 156. [Google Scholar] [CrossRef]
- Shukla, S.K.; Purohit, V.; Mehla, K.; Gunda, V.; Chaika, N.V.; Vernucci, E.; King, R.J.; Abrego, J.; Goode, G.D.; Dasgupta, A.; et al. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 2017, 32, 71–87.e7. [Google Scholar] [CrossRef] [PubMed]
- Verzella, D.; Pescatore, A.; Capece, D.; Vecchiotti, D.; Ursini, M.V.; Franzoso, G.; Alesse, E.; Zazzeroni, F. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis. 2020, 11, 210. [Google Scholar] [CrossRef] [PubMed]
DMEM | DMEM |
10% FCS | |
100 U/mL Penicillin | |
100 µg/mL Streptomycin | |
2 mM L-Glutamine | |
D-10 Medium | DMEM |
10% FCS | |
200 U/mL Penicillin | |
200 µg/mL Streptomycin | |
2 mM L-Glutamine | |
1 mM Sodium Pyruvate | |
DMEM/F12 modified | 50% DMEM/F12 |
50% D-10 Medium | |
100 U/mL Penicillin | |
100 µg/mL Streptomycin | |
1.6 µg/mL Amphotericin | |
10 µM Y27632 1HCl | |
10 µg/mL Ciprofloxacin | |
8.4 ng/mL Choleratoxin | |
10 µg/mL Insulin | |
20 nM 1-Thioglycerol | |
Spheroid Medium | DMEM/F12 |
100 U/mL Penicillin/Streptomycin | |
1× MEM NEAA | |
1:50 B27 supplements | |
100 µg/mL bFGF |
PDX ID | TNM Classification | Union Internationale Contre le Cancer (UICC) Stage |
---|---|---|
Bo69 | pT3 pN1 M0 L1 V1 Pn1 | UICC IIb |
Bo70 | pT3b pN1 M0 L0 V1 Pn1 | UICC IIb |
Bo73 | pT3 pN1 M0 L1 Pn1 | UICC IIb |
Bo80 | pT3 pN1 M0 L1 V1 Pn1 | UICC IIb |
Bo82 | pT3 pN1 M0 L0 Pn1 | UICC IIb |
Bo85 | pT3 pN0 M0 L1 V1 Pn1 | UICC IIa |
Bo103 | pT3 pN1 M0 L1 V1 Pn1 | UICC IIb |
Bo122 | pT3 pN2 M0 L1 V1 Pn1 | UICC III |
Bo6 | pT2 pN1 M0 L1 V1 Pn1 | UICC IIb |
Bo81 | pT3 pN2a M0 L1 V0 Pn1 | UICC IIb |
Bo84 | pT3 pN1 M0 L1 V1 Pn1 | UICC IIb |
Bo66 | pT3 pN0 M0 L1 V0 Pn1 | UICC IIa |
Bo57 | pT3 pN0M0 L1 V0 Pn1 | UICC IIa |
First-Line | Maintenance | ||||
---|---|---|---|---|---|
Tumor | G | GP + G | Tumor | G | GP + G |
Bo80 | PD | PR | Bo81 | PD | SD |
Bo70 | PD | SD | Bo6 | PD | PD |
Bo103 | PD | PR | Bo57 | PD | SD |
Bo85 | PD | PR | Bo85 | PR | PR |
Bo82 | PD | PD | Bo84 | PD | PR |
Bo73 | PD | SD | Bo73 | SD | PR |
Bo69 | SD | PR | Bo69 | PD | PR |
Bo122 | PD | SD | Bo66 | PD | SD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchholz, M.; Majchrzak-Stiller, B.; Peters, I.; Hahn, S.; Skrzypczyk, L.; Beule, L.; Uhl, W.; Braumann, C.; Strotmann, J.; Höhn, P. Maintenance Therapy for Pancreatic Cancer, a New Approach Based on the Synergy between the Novel Agent GP-2250 (Misetionamide) and Gemcitabine. Cancers 2024, 16, 2612. https://doi.org/10.3390/cancers16142612
Buchholz M, Majchrzak-Stiller B, Peters I, Hahn S, Skrzypczyk L, Beule L, Uhl W, Braumann C, Strotmann J, Höhn P. Maintenance Therapy for Pancreatic Cancer, a New Approach Based on the Synergy between the Novel Agent GP-2250 (Misetionamide) and Gemcitabine. Cancers. 2024; 16(14):2612. https://doi.org/10.3390/cancers16142612
Chicago/Turabian StyleBuchholz, Marie, Britta Majchrzak-Stiller, Ilka Peters, Stephan Hahn, Lea Skrzypczyk, Lena Beule, Waldemar Uhl, Chris Braumann, Johanna Strotmann, and Philipp Höhn. 2024. "Maintenance Therapy for Pancreatic Cancer, a New Approach Based on the Synergy between the Novel Agent GP-2250 (Misetionamide) and Gemcitabine" Cancers 16, no. 14: 2612. https://doi.org/10.3390/cancers16142612
APA StyleBuchholz, M., Majchrzak-Stiller, B., Peters, I., Hahn, S., Skrzypczyk, L., Beule, L., Uhl, W., Braumann, C., Strotmann, J., & Höhn, P. (2024). Maintenance Therapy for Pancreatic Cancer, a New Approach Based on the Synergy between the Novel Agent GP-2250 (Misetionamide) and Gemcitabine. Cancers, 16(14), 2612. https://doi.org/10.3390/cancers16142612