Predicting the Diagnosis of Prostate Cancer with a Novel Blood-Based Biomarker: Comparison of Its Performance with Prostate-Specific Antigen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhai, Z.; Zheng, Y.; Li, N.; Deng, Y.; Zhou, L.; Tian, T.; Yang, S.; Hao, Q.; Song, D.; Wu, Y.; et al. Incidence and disease burden of prostate cancer from 1990 to 2017: Results from the Global Burden of Disease Study 2017. Cancer 2020, 126, 1969–1978. [Google Scholar] [CrossRef]
- Yusim, I.; Krenawi, M.; Mazor, E.; Novack, V.; Mabjeesh, N.J. The use of prostate specific antigen density to predict clinically significant prostate cancer. Sci. Rep. 2020, 10, 20015. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, A.; Yanagisawa, T.; Bekku, K.; Kardoust Parizi, M.; Laukhtina, E.; Klemm, J.; Chiujdea, S.; Mori, K.; Kimura, S.; Fazekas, T.; et al. Comparing the Performance of Digital Rectal Examination and Prostate-specific Antigen as a Screening Test for Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2024, 7, 697–704. [Google Scholar] [CrossRef]
- Dragan, J.; Kania, J.; Salagierski, M. Active surveillance in prostate cancer management: Where do we stand now? Arch. Med. Sci. 2021, 17, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Moradi, A.; Srinivasan, S.; Clements, J.; Batra, J. Beyond the biomarker role: Prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev. 2019, 38, 333–346. [Google Scholar] [CrossRef]
- Balk, S.P.; Ko, Y.J.; Bubley, G.J. Biology of prostate-specific antigen. J. Clin. Oncol. 2003, 21, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chisholm, G.D.; Habib, F.K. The distribution of PSA, cathepsin-D, and pS2 in BPH and cancer of the prostate. Prostate 1992, 21, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Lacher, D.A.; Thompson, T.D.; Hughes, J.P.; Saraiya, M. Total, free, and percent free prostate-specific antigen levels among U.S. men, 2001–2004. Adv. Data 2006, 14, 2178–2182. [Google Scholar]
- Vickers, A.; Cronin, A.; Roobol, M.; Savage, C.; Peltola, M.; Pettersson, K.; Scardino, P.T.; Schroder, F.; Lilja, H. Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: An independent replication. J. Clin. Oncol. 2010, 28, 2493–2498. [Google Scholar] [CrossRef]
- Adamy, A.; Yee, D.S.; Matsushita, K.; Maschino, A.; Cronin, A.; Vickers, A.; Guillonneau, B.; Scardino, P.T.; Eastham, J.A. Role of prostate specific antigen and immediate confirmatory biopsy in predicting progression during active surveillance for low risk prostate cancer. J. Urol. 2011, 185, 477–482. [Google Scholar] [CrossRef]
- David, M.K.; Leslie, S.W. Prostate Specific Antigen. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2024. [Google Scholar]
- Gupta, A.; Roobol, M.J.; Savage, C.J.; Peltola, M.; Pettersson, K.; Scardino, P.T.; Vickers, A.J.; Schroder, F.H.; Lilja, H. A four-kallikrein panel for the prediction of repeat prostate biopsy: Data from the European Randomized Study of Prostate Cancer screening in Rotterdam, Netherlands. Br. J. Cancer 2010, 103, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Ditonno, F.; Franco, A.; Manfredi, C.; Veccia, A.; Valerio, M.; Bukavina, L.; Zukowski, L.B.; Vourganti, S.; Stenzl, A.; Andriole, G.L.; et al. Novel non-MRI imaging techniques for primary diagnosis of prostate cancer: Micro-ultrasound, contrast-enhanced ultrasound, elastography, multiparametric ultrasound, and PSMA PET/CT. Prostate Cancer Prostatic Dis. 2024, 27, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Masud, N.; Aldahish, A.; Iczkowski, K.A.; Kale, A.; Shah, G.V. Zinc finger protein-like 1 is a novel neuroendocrine biomarker for prostate cancer. Int. J. Oncol. 2023, 62, 38. [Google Scholar] [CrossRef] [PubMed]
- Alzghoul, S.; Hailat, M.; Zivanovic, S.; Que, L.; Shah, G.V. Measurement of serum prostate cancer markers using a nanopore thin film based optofluidic chip. Biosens. Bioelectron. 2016, 77, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Alzghoul, S.; Hailat, M.; Zivanovic, S.; Shah, G.; Que, L. Detection of neuroendocrine marker in blood samples using an optofluidic chip. In Proceedings of the 18th International Conference on Solid-State Sensors, Anchorage, AK, USA, 21–25 June 2015. [Google Scholar]
- Metz, C.E. Basic principles of ROC analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Griner, P.F.; Mayewski, R.J.; Mushlin, A.I.; Greenland, P. Selection and interpretation of diagnostic tests and procedures. Principles and applications. Ann. Intern. Med. 1981, 94, 557–592. [Google Scholar] [PubMed]
- Ilic, D.; Djulbegovic, M.; Jung, J.H.; Hwang, E.C.; Zhou, Q.; Cleves, A.; Agoritsas, T.; Dahm, P. Prostate cancer screening with prostate-specific antigen (PSA) test: A systematic review and meta-analysis. BMJ 2018, 362, k3519. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.P.; Deibl, M.; Steiner, H.; Bektic, J.; Pelzer, A.; Spranger, R.; Klocker, H.; Bartsch, G.; Horninger, W. Longitudinal PSA changes in men with and without prostate cancer: Assessment of prostate cancer risk. Prostate 2005, 64, 240–245. [Google Scholar] [CrossRef]
- Matoso, A.; Epstein, J.I. Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology 2019, 74, 135–145. [Google Scholar] [CrossRef]
- Lazzeri, M.; Haese, A.; Abrate, A.; de la Taille, A.; Redorta, J.P.; McNicholas, T.; Lughezzani, G.; Lista, G.; Larcher, A.; Bini, V.; et al. Clinical performance of serum prostate-specific antigen isoform [-2]proPSA (p2PSA) and its derivatives, %p2PSA and the prostate health index (PHI), in men with a family history of prostate cancer: Results from a multicentre European study, the PROMEtheuS project. BJU Int. 2013, 112, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Punnen, S.; Pavan, N.; Parekh, D.J. Finding the Wolf in Sheep’s Clothing: The 4Kscore Is a Novel Blood Test That Can Accurately Identify the Risk of Aggressive Prostate Cancer. Rev. Urol. 2015, 17, 3–13. [Google Scholar] [PubMed]
- Strom, P.; Nordstrom, T.; Aly, M.; Egevad, L.; Gronberg, H.; Eklund, M. The Stockholm-3 Model for Prostate Cancer Detection: Algorithm Update, Biomarker Contribution, and Reflex Test Potential. Eur. Urol. 2018, 74, 204–210. [Google Scholar] [CrossRef]
- Lazzeri, M.; Abrate, A.; Lughezzani, G.; Gadda, G.M.; Freschi, M.; Mistretta, F.; Lista, G.; Fossati, N.; Larcher, A.; Kinzikeeva, E.; et al. Relationship of chronic histologic prostatic inflammation in biopsy specimens with serum isoform [-2]proPSA (p2PSA), %p2PSA, and prostate health index in men with a total prostate-specific antigen of 4-10 ng/ml and normal digital rectal examination. Urology 2014, 83, 606–612. [Google Scholar] [CrossRef]
- Wang, T.J.; Slawin, K.M.; Rittenhouse, H.G.; Millar, L.S.; Mikolajczyk, S.D. Benign prostatic hyperplasia-associated prostate-specific antigen (BPSA) shows unique immunoreactivity with anti-PSA monoclonal antibodies. Eur. J. Biochem. 2000, 267, 4040–4045. [Google Scholar] [CrossRef] [PubMed]
- Marcu, M.; Radu, E.; Sajin, M. Neuroendocrine transdifferentiation of prostate carcinoma cells and its prognostic significance. Rom. J. Morphol. Embryol. 2010, 51, 7–12. [Google Scholar]
- Marcu, M.; Radu, E.; Sajin, M. Neuroendocrine differentiation in prostate adenocarcinoma biopsies and its correlation to histological grading. Curr. Health Sci. J. 2010, 36, 37–42. [Google Scholar]
- Sagnak, L.; Topaloglu, H.; Ozok, U.; Ersoy, H. Prognostic significance of neuroendocrine differentiation in prostate adenocarcinoma. Clin. Genitourin. Cancer 2011, 9, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Hansson, J.; Abrahamsson, P.A. Neuroendocrine differentiation in prostatic carcinoma. Scand. J. Urol. Nephrol. Suppl. 2003, 212, 28–36. [Google Scholar] [CrossRef]
- Helpap, B.; Kollermann, J.; Oehler, U. Neuroendocrine differentiation in prostatic carcinomas: Histogenesis, biology, clinical relevance, and future therapeutical perspectives. Urol. Int. 1999, 62, 133–138. [Google Scholar] [CrossRef]
- Segawa, N.; Mori, I.; Utsunomiya, H.; Nakamura, M.; Nakamura, Y.; Shan, L.; Kakudo, K.; Katsuoka, Y. Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol. Int. 2001, 51, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.H.; Partin, A.W.; Veltri, R.W.; Epstein, J.I. Neuroendocrine differentiation in prostate cancer: Enhanced prediction of progression after radical prostatectomy. Hum. Pathol. 1996, 27, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Terry, S.; Beltran, H. The many faces of neuroendocrine differentiation in prostate cancer progression. Front. Oncol. 2014, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsson, P.A. Neuroendocrine differentiation and hormone-refractory prostate cancer. Prostate Suppl. 1996, 6, 3–8. [Google Scholar] [CrossRef]
A: The cohort * | |||||
Source | Normal | BPH | PCa | Other Cancers | Total |
MCW | 98 | 19 | 150 | 80 | 347 |
LSUHSC | 0 | 0 | 81 | 0 | 81 |
Individumed | 0 | 0 | 80 | 0 | 80 |
Total | 98 | 19 | 311 | 80 | 508 |
B: Racial distribution | |||||
Normal | BPH | PCa | Other Cancers | Total | |
African Americans | 6 | 1 | 54 | 3 | 64 |
Caucasian | 92 | 18 | 257 | 77 | 444 |
Total | 98 | 19 | 311 | 80 | 508 |
C: Clinical profile of the cohort | |||||
Number of Subjects (n), Source | Average Age (years) | Age Range (years) | Clinical Diagnosis | ||
98 (MCW) | 68.66 | 58–86 | Normal | ||
19 (MCW) | 71.47 | 59–89 | BPH | ||
311 (MCW, LSUHSC, Individumed) | 67.01 | 59–89 | PCa | ||
80 (MCW) | 71.3 | 54–93 | Other Cancers | ||
D: AJCC Prognostic stage distribution of PCa patients | |||||
Number of Subjects (n) | Average Age (years) | Age Range (years) | Tumor Stage | ||
11 (LSUHSC, Individumed) | 60.82 | 48–71 | Stage I | ||
89 (LSU, Individumed) | 61.16 | 48–75 | Stage II | ||
57 (LSUHSC, Individumed) | 62.26 | 48–75 | Stage III | ||
4 (LSUHSC) | 59.67 | 54–62 | Stage IV |
A: Normal Patients | |||||
Biomarker | FP | FN | TP | TN | Total |
NEM | 3 | 0 | 0 | 95 | 98 |
PSA | 8 | 0 | 0 | 90 | 98 |
B: BPH Patients | |||||
Biomarker | PCa+ | PCa− | Total | ||
NEM | 6 | 13 | 19 | ||
PSA | 14 | 5 | 19 | ||
C: PCa Patients | |||||
Biomarker | PCa+ | PCa− | Total | ||
NEM | 310 | 1 | 311 | ||
PSA | 269 | 42 | 311 | ||
D: Biomarker Performance. | |||||
Biomarker | Accuracy | PPV | NPV | Subjects (n) | |
NEM (normal + PCa) | 0.933 | 0.982 | 0.993 | 311 + 98 | |
PSA (normal + PCa) | 0.880 | 0.965 | 0.719 | 311 + 98 | |
NEM (BPH + PCa) | 0.981 | 0.925 | 0.981 | 311 + 19 | |
PSA (BPH + PCa) | 0.821 | 0.821 | 0.331 | 311 + 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanders, J.L.; Iczkowski, K.A.; Shah, G.V. Predicting the Diagnosis of Prostate Cancer with a Novel Blood-Based Biomarker: Comparison of Its Performance with Prostate-Specific Antigen. Cancers 2024, 16, 2619. https://doi.org/10.3390/cancers16152619
Sanders JL, Iczkowski KA, Shah GV. Predicting the Diagnosis of Prostate Cancer with a Novel Blood-Based Biomarker: Comparison of Its Performance with Prostate-Specific Antigen. Cancers. 2024; 16(15):2619. https://doi.org/10.3390/cancers16152619
Chicago/Turabian StyleSanders, Johnmesha L., Kenneth A. Iczkowski, and Girish V. Shah. 2024. "Predicting the Diagnosis of Prostate Cancer with a Novel Blood-Based Biomarker: Comparison of Its Performance with Prostate-Specific Antigen" Cancers 16, no. 15: 2619. https://doi.org/10.3390/cancers16152619
APA StyleSanders, J. L., Iczkowski, K. A., & Shah, G. V. (2024). Predicting the Diagnosis of Prostate Cancer with a Novel Blood-Based Biomarker: Comparison of Its Performance with Prostate-Specific Antigen. Cancers, 16(15), 2619. https://doi.org/10.3390/cancers16152619