Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Information Sources and Search Strategy
2.3. Data Collection, Analysis, and Outcomes
3. Results
3.1. Search Results
3.2. Nuclear Medicine
3.2.1. Bone Scintigraphy
3.2.2. Single-Photon Emission-Computed Tomography
3.3. Clinical Research
3.4. Radiology
3.4.1. Computed Tomography
3.4.2. Magnetic Resonance Imaging
3.5. Molecular Biology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA. Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- He, X.; Jiao, Y.; Yang, X.; Hu, Y. A Novel Prediction Tool for Overall Survival of Patients Living with Spinal Metastatic Disease. World Neurosurg. 2020, 144, e824–e836. [Google Scholar] [CrossRef]
- Faiella, E.; Santucci, D.; Calabrese, A.; Russo, F.; Vadalà, G.; Zobel, B.B.; Soda, P.; Iannello, G.; De Felice, C.; Denaro, V. Artificial Intelligence in Bone Metastases: An MRI and CT Imaging Review. Int. J. Environ. Res. Public. Health 2022, 19, 1880. [Google Scholar] [CrossRef]
- D’Oronzo, S.; Coleman, R.; Brown, J.; Silvestris, F. Metastatic Bone Disease: Pathogenesis and Therapeutic Options. J. Bone Oncol. 2019, 15, 100205. [Google Scholar] [CrossRef]
- Clemons, M.; Gelmon, K.A.; Pritchard, K.I.; Paterson, A.H.G. Bone-Targeted Agents and Skeletal-Related Events in Breast Cancer Patients with Bone Metastases: The State of the Art. Curr. Oncol. 2012, 19, 259–268. [Google Scholar] [CrossRef]
- Coleman, R. The Role of Zoledronic Acid in Cancer: Clinical Studies in the Treatment and Prevention of Bone Metastases. Semin. Oncol. 2001, 28, 11–16. [Google Scholar] [CrossRef]
- Stopeck, A.T.; Lipton, A.; Body, J.-J.; Steger, G.G.; Tonkin, K.; De Boer, R.H.; Lichinitser, M.; Fujiwara, Y.; Yardley, D.A.; Viniegra, M.; et al. Denosumab Compared with Zoledronic Acid for the Treatment of Bone Metastases in Patients With Advanced Breast Cancer: A Randomized, Double-Blind Study. J. Clin. Oncol. 2010, 28, 5132–5139. [Google Scholar] [CrossRef]
- Santini, D.; Pantano, F.; Iuliani, M.; Ribelli, G.; Manca, P.; Vincenzi, B.; Tonini, G. Bone-Modifying Agents and Anticancer Agents with Bone Effects. In Management of Bone Metastases; Denaro, V., Di Martino, A., Piccioli, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 13–25. ISBN 978-3-319-73484-2. [Google Scholar]
- Silvestris, N.; Pantano, F.; Ibrahim, T.; Gamucci, T.; De Vita, F.; Di Palma, T.; Pedrazzoli, P.; Barni, S.; Bernardo, A.; Febbraro, A.; et al. Natural History of Malignant Bone Disease in Gastric Cancer: Final Results of a Multicenter Bone Metastasis Survey. PLoS ONE 2013, 8, e74402. [Google Scholar] [CrossRef]
- Di Martino, A.; Martinelli, N.; Loppini, M.; Piccioli, A.; Denaro, V. Is Endoprosthesis Safer than Internal Fixation for Metastatic Disease of the Proximal Femur? A Systematic Review. Injury 2017, 48 (Suppl. S3), S48–S54. [Google Scholar] [CrossRef]
- Di Martino, A.; Vincenzi, B.; Denaro, L.; Barnaba, S.A.; Papalia, R.; Santini, D.; Tonini, G.; Denaro, V. “Internal Bracing” Surgery in the Management of Solid Tumor Metastases of the Thoracic and Lumbar Spine. Oncol. Rep. 2009, 21, 431–435. [Google Scholar] [CrossRef]
- Denaro, V.; Di Martino, A. Spinal Metastases: Diagnosis and Management. In Management of Bone Metastases; Denaro, V., Di Martino, A., Piccioli, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 137–147. ISBN 978-3-319-73484-2. [Google Scholar]
- Elfarra, F.-G.; Calin, M.A.; Parasca, S.V. Computer-Aided Detection of Bone Metastasis in Bone Scintigraphy Images Using Parallelepiped Classification Method. Ann. Nucl. Med. 2019, 33, 866–874. [Google Scholar] [CrossRef]
- Xu, C.; Liu, W.; Yin, C.; Li, W.; Liu, J.; Sheng, W.; Tang, H.; Li, W.; Zhang, Q. Establishment and Validation of a Machine Learning Prediction Model Based on Big Data for Predicting the Risk of Bone Metastasis in Renal Cell Carcinoma Patients. Comput. Math. Methods Med. 2022, 2022, 5676570. [Google Scholar] [CrossRef]
- Ali, O.; Abdelbaki, W.; Shrestha, A.; Elbasi, E.; Alryalat, M.A.A.; Dwivedi, Y.K. A Systematic Literature Review of Artificial Intelligence in the Healthcare Sector: Benefits, Challenges, Methodologies, and Functionalities. J. Innov. Knowl. 2023, 8, 100333. [Google Scholar] [CrossRef]
- Thio, Q.C.B.S.; Karhade, A.V.; Ogink, P.T.; Bramer, J.A.M.; Ferrone, M.L.; Calderón, S.L.; Raskin, K.A.; Schwab, J.H. Development and Internal Validation of Machine Learning Algorithms for Preoperative Survival Prediction of Extremity Metastatic Disease. Clin. Orthop. 2020, 478, 322–333. [Google Scholar] [CrossRef]
- Hsu, F.-C.; Lee, H.-L.; Chen, Y.-J.; Shen, Y.-A.; Tsai, Y.-C.; Wu, M.-H.; Kuo, C.-C.; Lu, L.-S.; Yeh, S.-D.; Huang, W.-S.; et al. A Few-Shot Learning Approach Assists in the Prognosis Prediction of Magnetic Resonance-Guided Focused Ultrasound for the Local Control of Bone Metastatic Lesions. Cancers 2022, 14, 445. [Google Scholar] [CrossRef]
- Siddique, S.; Chow, J.C.L. Artificial Intelligence in Radiotherapy. Rep. Pract. Oncol. Radiother. 2020, 25, 656–666. [Google Scholar] [CrossRef]
- Chow, J.C.L. Artificial Intelligence in Radiotherapy and Patient Care. In Artificial Intelligence in Medicine; Lidströmer, N., Ashrafian, H., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–13. ISBN 978-3-030-58080-3. [Google Scholar]
- Li, M.D.; Ahmed, S.R.; Choy, E.; Lozano-Calderon, S.A.; Kalpathy-Cramer, J.; Chang, C.Y. Artificial Intelligence Applied to Musculoskeletal Oncology: A Systematic Review. Skeletal Radiol. 2022, 51, 245–256. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Isaac, A.; Dalili, D.; Dalili, D.; Weber, M.-A. State-of-the-Art Imaging for Diagnosis of Metastatic Bone Disease. Radiologe 2020, 60, 1–16. [Google Scholar] [CrossRef]
- Zhao, Z.; Pi, Y.; Jiang, L.; Xiang, Y.; Wei, J.; Yang, P.; Zhang, W.; Zhong, X.; Zhou, K.; Li, Y.; et al. Deep Neural Network Based Artificial Intelligence Assisted Diagnosis of Bone Scintigraphy for Cancer Bone Metastasis. Sci. Rep. 2020, 10, 17046. [Google Scholar] [CrossRef]
- Groot, O.Q.; Bongers, M.E.R.; Karhade, A.V.; Kapoor, N.D.; Fenn, B.P.; Kim, J.; Verlaan, J.J.; Schwab, J.H. Natural Language Processing for Automated Quantification of Bone Metastases Reported in Free-Text Bone Scintigraphy Reports. Acta Oncol. 2020, 59, 1455–1460. [Google Scholar] [CrossRef]
- Koizumi, M.; Wagatsuma, K.; Miyaji, N.; Murata, T.; Miwa, K.; Takiguchi, T.; Makino, T.; Koyama, M. Evaluation of a Computer-Assisted Diagnosis System, BONENAVI Version 2, for Bone Scintigraphy in Cancer Patients in a Routine Clinical Setting. Ann. Nucl. Med. 2015, 29, 138–148. [Google Scholar] [CrossRef]
- Koizumi, M.; Motegi, K.; Koyama, M.; Terauchi, T.; Yuasa, T.; Yonese, J. Diagnostic Performance of a Computer-Assisted Diagnosis System for Bone Scintigraphy of Newly Developed Skeletal Metastasis in Prostate Cancer Patients: Search for Low-Sensitivity Subgroups. Ann. Nucl. Med. 2017, 31, 521–528. [Google Scholar] [CrossRef]
- Papandrianos, N.; Papageorgiou, E.; Anagnostis, A.; Papageorgiou, K. Efficient Bone Metastasis Diagnosis in Bone Scintigraphy Using a Fast Convolutional Neural Network Architecture. Diagnostics 2020, 10, 532. [Google Scholar] [CrossRef] [PubMed]
- Papandrianos, N.; Papageorgiou, E.; Anagnostis, A.; Papageorgiou, K. Bone Metastasis Classification Using Whole Body Images from Prostate Cancer Patients Based on Convolutional Neural Networks Application. PLoS ONE 2020, 15, e0237213. [Google Scholar] [CrossRef]
- Lin, Q.; Luo, M.; Gao, R.; Li, T.; Man, Z.; Cao, Y.; Wang, H. Deep Learning Based Automatic Segmentation of Metastasis Hotspots in Thorax Bone SPECT Images. PLoS ONE 2020, 15, e0243253. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Gao, R.; Luo, M.; Wang, H.; Cao, Y.; Man, Z.; Wang, R. Semi-Supervised Segmentation of Metastasis Lesions in Bone Scan Images. Front. Mol. Biosci. 2022, 9, 956720. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, X.; Liu, L.; Cao, Y.; Man, Z.; Zeng, X.; Huang, X. Detecting Multiple Lesions of Lung Cancer-Caused Metastasis with Bone Scans Using a Self-Defined Object Detection Model Based on SSD Framework. Phys. Med. Biol. 2022, 67, 225009. [Google Scholar] [CrossRef]
- Acar, E.; Leblebici, A.; Ellidokuz, B.E.; Başbınar, Y.; Kaya, G.Ç. Machine Learning for Differentiating Metastatic and Completely Responded Sclerotic Bone Lesion in Prostate Cancer: A Retrospective Radiomics Study. Br. J. Radiol. 2019, 92, 20190286. [Google Scholar] [CrossRef]
- De Groot, T.M.; Ramsey, D.; Groot, O.Q.; Fourman, M.; Karhade, A.V.; Twining, P.K.; Berner, E.A.; Fenn, B.P.; Collins, A.K.; Raskin, K.; et al. Does the SORG Machine-Learning Algorithm for Extremity Metastases Generalize to a Contemporary Cohort of Patients? Temporal Validation From 2016 to 2020. Clin. Orthop. 2023, 481, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.-M.; Wang, Y.; Xue, Q.; Zhu, Y. Differentiation of Bone Metastasis in Elderly Patients with Lung Adenocarcinoma Using Multiple Machine Learning Algorithms. Cancer Control 2023, 30, 10732748231167958. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liang, H.; Zhou, L.; Lu, H.; Chen, F.; Ge, Y.; Hu, Z.; Wang, B.; Hu, A.; Hong, W.; et al. Deep Learning of Bone Metastasis in Small Cell Lung Cancer: A Large Sample-Based Study. Front. Oncol. 2023, 13, 1097897. [Google Scholar] [CrossRef] [PubMed]
- Le, Y.; Xu, W.; Guo, W. The Construction and Validation of a New Predictive Model for Overall Survival of Clear Cell Renal Cell Carcinoma Patients with Bone Metastasis Based on Machine Learning Algorithm. Technol. Cancer Res. Treat. 2023, 22, 153303382311651. [Google Scholar] [CrossRef] [PubMed]
- Paulino Pereira, N.R.; Janssen, S.J.; Van Dijk, E.; Harris, M.B.; Hornicek, F.J.; Ferrone, M.L.; Schwab, J.H. Development of a Prognostic Survival Algorithm for Patients with Metastatic Spine Disease. J. Bone Jt. Surg. 2016, 98, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, S.; Nishio, M.; Sakamoto, R.; Yakami, M.; Fujimoto, K.; Emoto, Y.; Kubo, T.; Iizuka, Y.; Nakagomi, K.; Miyasa, K.; et al. Deep Learning–Based Algorithm Improved Radiologists’ Performance in Bone Metastases Detection on CT. Eur. Radiol. 2022, 32, 7976–7987. [Google Scholar] [CrossRef] [PubMed]
- Tajima, T.; Akai, H.; Sugawara, H.; Furuta, T.; Yasaka, K.; Kunimatsu, A.; Yoshioka, N.; Akahane, M.; Abe, O.; Ohtomo, K.; et al. Feasibility of Accelerated Whole-Body Diffusion-Weighted Imaging Using a Deep Learning-Based Noise-Reduction Technique in Patients with Prostate Cancer. Magn. Reson. Imaging 2022, 92, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, Y.; Tang, X.; Liu, C.; Liu, R. Deep Learning-Based Magnetic Resonance Imaging of the Spine in the Diagnosis and Physiological Evaluation of Spinal Metastases. J. Bone Oncol. 2023, 40, 100483. [Google Scholar] [CrossRef]
- Jakubicek, R.; Chmelik, J.; Jan, J.; Ourednicek, P.; Lambert, L.; Gavelli, G. Learning–Based Vertebra Localization and Labeling in 3D CT Data of Possibly Incomplete and Pathological Spines. Comput. Methods Programs Biomed. 2020, 183, 105081. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Zhang, H.; Wang, Y.; Qian, H.; Zhu, Y.; Dong, B.; Xu, F.; Chen, N.; Liu, S.; Pan, J.; et al. Deep Convolutional Neural Networks Combine Raman Spectral Signature of Serum for Prostate Cancer Bone Metastases Screening. Nanomed. Nanotechnol. Biol. Med. 2020, 29, 102245. [Google Scholar] [CrossRef]
- Albaradei, S.; Uludag, M.; Thafar, M.A.; Gojobori, T.; Essack, M.; Gao, X. Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models. Front. Genet. 2021, 12, 771092. [Google Scholar] [CrossRef]
- Park, S.B.; Chung, C.K.; Gonzalez, E.; Yoo, C. Causal Inference Network of Genes Related with Bone Metastasis of Breast Cancer and Osteoblasts Using Causal Bayesian Networks. J. Bone Metab. 2018, 25, 251. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, M.; Motegi, K.; Koyama, M.; Ishiyama, M.; Togawa, T.; Makino, T.; Arisaka, Y.; Terauchi, T. Diagnostic Performance of a Computer-Assisted Diagnostic System: Sensitivity of BONENAVI for Bone Scintigraphy in Patients with Disseminated Skeletal Metastasis Is Not so High. Ann. Nucl. Med. 2020, 34, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Li, T.; Cao, C.; Cao, Y.; Man, Z.; Wang, H. Deep Learning Based Automated Diagnosis of Bone Metastases with SPECT Thoracic Bone Images. Sci. Rep. 2021, 11, 4223. [Google Scholar] [CrossRef] [PubMed]
- Papandrianos, N.; Papageorgiou, E.I.; Anagnostis, A. Development of Convolutional Neural Networks to Identify Bone Metastasis for Prostate Cancer Patients in Bone Scintigraphy. Ann. Nucl. Med. 2020, 34, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Nakayama, M.; Nomura, K.; Tomita, Y.; Nakajima, K.; Yamashina, M.; Okizaki, A. The Utility of a Deep Learning-Based Algorithm for Bone Scintigraphy in Patient with Prostate Cancer. Ann. Nucl. Med. 2020, 34, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.-C.; Hsieh, T.-C.; Yen, K.-Y.; Kao, C.-H. Lesion-Based Bone Metastasis Detection in Chest Bone Scintigraphy Images of Prostate Cancer Patients Using Pre-Train, Negative Mining, and Deep Learning. Diagnostics 2021, 11, 518. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.-S.; Wang, Y.-F.; Su, Y.-C.; Wei, L.-H.; Liao, J.-G.; Li, Y.-C. Artificial Neural Network to Predict Skeletal Metastasis in Patients with Prostate Cancer. J. Med. Syst. 2009, 33, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-W.; Hsieh, T.-C.; Lai, Y.-C.; Hsu, Y.-J.; Hsu, Z.-K.; Chan, P.-K.; Kao, C.-H. Artificial Intelligence of Object Detection in Skeletal Scintigraphy for Automatic Detection and Annotation of Bone Metastases. Diagnostics 2023, 13, 685. [Google Scholar] [CrossRef]
- Ntakolia, C.; Diamantis, D.E.; Papandrianos, N.; Moustakidis, S.; Papageorgiou, E.I. A Lightweight Convolutional Neural Network Architecture Applied for Bone Metastasis Classification in Nuclear Medicine: A Case Study on Prostate Cancer Patients. Healthcare 2020, 8, 493. [Google Scholar] [CrossRef]
- Inaki, A.; Nakajima, K.; Wakabayashi, H.; Mochizuki, T.; Kinuya, S. Fully Automated Analysis for Bone Scintigraphy with Artificial Neural Network: Usefulness of Bone Scan Index (BSI) in Breast Cancer. Ann. Nucl. Med. 2019, 33, 755–765. [Google Scholar] [CrossRef]
- Kikushima, S.; Hanawa, N.; Kotake, F. Diagnostic Performance of Bone Scintigraphy Analyzed by Three Artificial Neural Network Systems. Ann. Nucl. Med. 2015, 29, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, P.; Pi, Y.; Jiang, L.; Zhong, X.; Cheng, J.; Xiang, Y.; Wei, J.; Li, L.; Yi, Z.; et al. Automatic Identification of Suspicious Bone Metastatic Lesions in Bone Scintigraphy Using Convolutional Neural Network. BMC Med. Imaging 2021, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Feng, M.; Qiao, T.; Cai, H.; Xu, K.; Yu, X.; Jiang, W.; Lv, Z.; Wang, Y.; Li, D. Deep Learning for the Automatic Diagnosis and Analysis of Bone Metastasis on Bone Scintigrams. Cancer Manag. Res. 2022, 14, 51–65. [Google Scholar] [CrossRef]
- Pi, Y.; Zhao, Z.; Xiang, Y.; Li, Y.; Cai, H.; Yi, Z. Automated Diagnosis of Bone Metastasis Based on Multi-View Bone Scans Using Attention-Augmented Deep Neural Networks. Med. Image Anal. 2020, 65, 101784. [Google Scholar] [CrossRef] [PubMed]
- Higashiyama, S.; Yoshida, A.; Kawabe, J. Study of the Usefulness of Bone Scan Index Calculated From 99m-Technetium-Hydroxymethylene Diphosphonate (99mTc-HMDP) Bone Scintigraphy for Bone Metastases from Prostate Cancer Using Deep Learning Algorithms. Curr. Med. Imaging Former. Curr. Med. Imaging Rev. 2021, 17, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-C.; Ting, C.-Y.; Yang, M.-H.; Chan, H.-P. Comparison of Irregular Flux Viewer System with BONENAVI Version for Identification of Tc-99m MDP Whole Body Bone Scan Metastasis Images. J. X-ray Sci. Technol. 2021, 29, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.B.; Grazal, C.; Wedin, R.; Kuo, C.; Chen, Y.; Christensen, B.R.; Cullen, J.; Forsberg, J.A. Machine Learning Algorithms to Estimate 10-Year Survival in Patients with Bone Metastases Due to Prostate Cancer: Toward a Disease-Specific Survival Estimation Tool. BMC Cancer 2022, 22, 476. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, Z.; Luo, Z.; Liao, W.; Liu, Z.; Liu, J. Machine Learning for the Prediction of Bone Metastasis in Patients with Newly Diagnosed Thyroid Cancer. Cancer Med. 2021, 10, 2802–2811. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-C.; Li, M.-X.; Qian, W.-X.; Luo, Z.-W.; Liao, W.-J.; Liu, Z.-L.; Liu, J.-M. Application of Machine Learning Techniques to Predict Bone Metastasis in Patients with Prostate Cancer. Cancer Manag. Res. 2021, 13, 8723–8736. [Google Scholar] [CrossRef]
- Xiong, F.; Cao, X.; Shi, X.; Long, Z.; Liu, Y.; Lei, M. A Machine Learning–Based Model to Predict Early Death among Bone Metastatic Breast Cancer Patients: A Large Cohort of 16,189 Patients. Front. Cell Dev. Biol. 2022, 10, 1059597. [Google Scholar] [CrossRef]
- Li, M.-P.; Liu, W.-C.; Sun, B.-L.; Zhong, N.-S.; Liu, Z.-L.; Huang, S.-H.; Zhang, Z.-H.; Liu, J.-M. Prediction of Bone Metastasis in Non-Small Cell Lung Cancer Based on Machine Learning. Front. Oncol. 2023, 12, 1054300. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, Q.; Shi, X.; Ye, Q.; Lei, M.; Wang, B. Development of a Web-Based Calculator to Predict Three-Month Mortality among Patients with Bone Metastases from Cancer of Unknown Primary: An Internally and Externally Validated Study Using Machine-Learning Techniques. Front. Oncol. 2022, 12, 1095059. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Huang, H.; Zhang, S.; Zhang, Y.; Jing, H.; Sun, T.; Zhang, X.; Lu, L.; Zhang, M. Predictive Models Based on Machine Learning for Bone Metastasis in Patients with Diagnosed Colorectal Cancer. Front. Public Health 2022, 10, 984750. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Zhang, W.; Huang, J.; Tian, J.; Zhong, X.; Luo, J.; Zhu, S.; He, Z.; Tong, Y.; Meng, X.; et al. Bone Metastasis Risk and Prognosis Assessment Models for Kidney Cancer Based on Machine Learning. Front. Public Health 2022, 10, 1015952. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Shi, X.; Wang, S.; Qin, Y.; Wang, B.; Che, X.; Lei, M. Machine Learning Approaches for Prediction of Early Death among Lung Cancer Patients with Bone Metastases Using Routine Clinical Characteristics: An Analysis of 19,887 Patients. Front. Public Health 2022, 10, 1019168. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, D.; Cadieux, B.; Higano, C.S.; Henry, D.H.; Bachmann, B.A.; Rehn, M.; Stopeck, A.T.; Saad, H. Risk Factors Associated with Skeletal-Related Events Following Discontinuation of Denosumab Treatment among Patients with Bone Metastases from Solid Tumors: A Real-World Machine Learning Approach. J. Bone Oncol. 2022, 34, 100423. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, X.; Zhang, Z.; Jiang, Y. Deep Learning on MRI Images for Diagnosis of Lung Cancer Spinal Bone Metastasis. Contrast Media Mol. Imaging 2021, 2021, 5294379. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Oh, J.S.; Lee, J.J. Diagnostic Performance of Deep Learning Models for Detecting Bone Metastasis on Whole-Body Bone Scan in Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Huo, T.; Xie, Y.; Fang, Y.; Wang, Z.; Liu, P.; Duan, Y.; Zhang, J.; Wang, H.; Xue, M.; Liu, S.; et al. Deep Learning-Based Algorithm Improves Radiologists’ Performance in Lung Cancer Bone Metastases Detection on Computed Tomography. Front. Oncol. 2023, 13, 1125637. [Google Scholar] [CrossRef]
- Hong, J.H.; Jung, J.-Y.; Jo, A.; Nam, Y.; Pak, S.; Lee, S.-Y.; Park, H.; Lee, S.E.; Kim, S. Development and Validation of a Radiomics Model for Differentiating Bone Islands and Osteoblastic Bone Metastases at Abdominal CT. Radiology 2021, 299, 626–632. [Google Scholar] [CrossRef]
- Hoshiai, S.; Hanaoka, S.; Masumoto, T.; Nomura, Y.; Mori, K.; Okamoto, Y.; Saida, T.; Ishiguro, T.; Sakai, M.; Nakajima, T. Effectiveness of Temporal Subtraction Computed Tomography Images Using Deep Learning in Detecting Vertebral Bone Metastases. Eur. J. Radiol. 2022, 154, 110445. [Google Scholar] [CrossRef] [PubMed]
- Koike, Y.; Yui, M.; Nakamura, S.; Yoshida, A.; Takegawa, H.; Anetai, Y.; Hirota, K.; Tanigawa, N. Artificial Intelligence-Aided Lytic Spinal Bone Metastasis Classification on CT Scans. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhou, H.; Sun, S.; Tian, Z.; Ren, H.; Feng, J.; Jiang, X. Machine Learning Based Gray-Level Co-Occurrence Matrix Early Warning System Enables Accurate Detection of Colorectal Cancer Pelvic Bone Metastases on MRI. Front. Oncol. 2023, 13, 1121594. [Google Scholar] [CrossRef] [PubMed]
- Masoudi, S.; Mehralivand, S.; Harmon, S.A.; Lay, N.; Lindenberg, L.; Mena, E.; Pinto, P.A.; Citrin, D.E.; Gulley, J.L.; Wood, B.J.; et al. Deep Learning Based Staging of Bone Lesions from Computed Tomography Scans. IEEE Access 2021, 9, 87531–87542. [Google Scholar] [CrossRef] [PubMed]
- Paudyal, R.; Shah, A.D.; Akin, O.; Do, R.K.G.; Konar, A.S.; Hatzoglou, V.; Mahmood, U.; Lee, N.; Wong, R.J.; Banerjee, S.; et al. Artificial Intelligence in CT and MR Imaging for Oncological Applications. Cancers 2023, 15, 2573. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.; Zhu, L.; Tan, Y.L.; Teo, E.C.; Tan, J.H.; Kumar, N.; Vellayappan, B.A.; Ooi, B.C.; Quek, S.T.; Makmur, A.; et al. Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review. Cancers 2023, 15, 1837. [Google Scholar] [CrossRef]
- Stadlbauer, A.; Meyer-Bäse, A. Artificial Intelligence in Oncology: A Topical Collection in 2022. Cancers 2023, 15, 1065. [Google Scholar] [CrossRef] [PubMed]
- Bonnelye, E.; Juárez, P. Targeting Bone Metastasis in Cancers. Cancers 2021, 13, 4490. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.E.; Shah, H.R.; Covington, M.F.; Koppula, B.R.; Fine, G.C.; Wiggins, R.H.; Hoffman, J.M.; Morton, K.A. PET-CT in Clinical Adult Oncology: I. Hematologic Malignancies. Cancers 2022, 14, 5941. [Google Scholar] [CrossRef]
- Davila, D.; Antoniou, A.; Chaudhry, M.A. Evaluation of Osseous Metastasis in Bone Scintigraphy. Semin. Nucl. Med. 2015, 45, 3–15. [Google Scholar] [CrossRef]
- Van Der Meulen, N.P.; Strobel, K.; Lima, T.V.M. New Radionuclides and Technological Advances in SPECT and PET Scanners. Cancers 2021, 13, 6183. [Google Scholar] [CrossRef]
- Usama, S.M.; Marker, S.C.; Hernandez Vargas, S.; AghaAmiri, S.; Ghosh, S.C.; Ikoma, N.; Tran Cao, H.S.; Schnermann, M.J.; Azhdarinia, A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers 2022, 14, 1619. [Google Scholar] [CrossRef]
- Takenaka, D.; Ohno, Y.; Matsumoto, K.; Aoyama, N.; Onishi, Y.; Koyama, H.; Nogami, M.; Yoshikawa, T.; Matsumoto, S.; Sugimura, K. Detection of Bone Metastases in Non-small Cell Lung Cancer Patients: Comparison of Whole-body Diffusion-weighted Imaging (DWI), Whole-body MR Imaging without and with DWI, Whole-body FDG-PET/CT, and Bone Scintigraphy. J. Magn. Reson. Imaging 2009, 30, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Santucci, D.; Faiella, E.; Cordelli, E.; Calabrese, A.; Landi, R.; De Felice, C.; Beomonte Zobel, B.; Grasso, R.F.; Iannello, G.; Soda, P. The Impact of Tumor Edema on T2-Weighted 3T-MRI Invasive Breast Cancer Histological Characterization: A Pilot Radiomics Study. Cancers 2021, 13, 4635. [Google Scholar] [CrossRef]
- Faiella, E.; Vaccarino, F.; Ragone, R.; D’Amone, G.; Cirimele, V.; Piccolo, C.L.; Vertulli, D.; Grasso, R.F.; Zobel, B.B.; Santucci, D. Can Machine Learning Models Detect and Predict Lymph Node Involvement in Prostate Cancer? A Comprehensive Systematic Review. J. Clin. Med. 2023, 12, 7032. [Google Scholar] [CrossRef]
- Ellmann, S.; Beck, M.; Kuwert, T.; Uder, M.; Bäuerle, T. Multimodal Imaging of Bone Metastases: From Preclinical to Clinical Applications. J. Orthop. Transl. 2015, 3, 166–177. [Google Scholar] [CrossRef]
- Ellmann, S.; Seyler, L.; Evers, J.; Heinen, H.; Bozec, A.; Prante, O.; Kuwert, T.; Uder, M.; Bäuerle, T. Prediction of Early Metastatic Disease in Experimental Breast Cancer Bone Metastasis by Combining PET/CT and MRI Parameters to a Model-Averaged Neural Network. Bone 2019, 120, 254–261. [Google Scholar] [CrossRef]
- Jung, K.; Lein, M. Bone Turnover Markers in Serum and Urine as Diagnostic, Prognostic and Monitoring Biomarkers of Bone Metastasis. Biochim. Biophys. Acta BBA-Rev. Cancer 2014, 1846, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Rong, M.; Shao, X.; Zhang, H.; Liu, S.; Dong, B.; Xue, W.; Wang, T.; Li, T.; Pan, J. Surface-Enhanced Raman Spectroscopy of Serum Accurately Detects Prostate Cancer in Patients with Prostate-Specific Antigen Levels of 4–10 Ng/mL. Int. J. Nanomed. 2017, 12, 5399–5407. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Shao, X.; Zhu, Y.; Dong, B.; Wang, Y.; Kang, X.; Chen, N.; Chen, Z.; Liu, S.; Xue, W. Surface-Enhanced Raman Spectroscopy before Radical Prostatectomy Predicts Biochemical Recurrence Better than CAPRA-S. Int. J. Nanomed. 2019, 14, 431–440. [Google Scholar] [CrossRef]
- Nathan, S.S.; Healey, J.H.; Mellano, D.; Hoang, B.; Lewis, I.; Morris, C.D.; Athanasian, E.A.; Boland, P.J. Survival in Patients Operated on for Pathologic Fracture: Implications for End-of-Life Orthopedic Care. J. Clin. Oncol. 2005, 23, 6072–6082. [Google Scholar] [CrossRef] [PubMed]
- Willeumier, J.J.; Van Der Linden, Y.M.; Van Der Wal, C.W.P.G.; Jutte, P.C.; Van Der Velden, J.M.; Smolle, M.A.; Van Der Zwaal, P.; Koper, P.; Bakri, L.; De Pree, I.; et al. An Easy-to-Use Prognostic Model for Survival Estimation for Patients with Symptomatic Long Bone Metastases. J. Bone Jt. Surg. 2018, 100, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Janssen, S.J.; Van Der Heijden, A.S.; Van Dijke, M.; Ready, J.E.; Raskin, K.A.; Ferrone, M.L.; Hornicek, F.J.; Schwab, J.H. 2015 Marshall Urist Young Investigator Award: Prognostication in Patients with Long Bone Metastases: Does a Boosting Algorithm Improve Survival Estimates? Clin. Orthop. Relat. Res. 2015, 473, 3112–3121. [Google Scholar] [CrossRef] [PubMed]
- Umirzakova, S.; Mardieva, S.; Muksimova, S.; Ahmad, S.; Whangbo, T. Enhancing the Super-Resolution of Medical Images: Introducing the Deep Residual Feature Distillation Channel Attention Network for Optimized Performance and Efficiency. Bioengineering 2023, 10, 1332. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic Accuracy of Deep Learning in Medical Imaging: A Systematic Review and Meta-Analysis. NPJ Digit. Med. 2021, 4, 65. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, M.; Wang, S.; Li, X.; Sun, Y. Emerging Role of Deep Learning-based Artificial Intelligence in Tumor Pathology. Cancer Commun. 2020, 40, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Jena, B.; Gupta, N.; Das, S.; Sarmah, D.; Bhattacharya, P.; Nath, T.; Paul, S.; Fouda, M.M.; Kalra, M.; et al. Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers 2022, 14, 2860. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial Intelligence in Cancer Diagnosis and Prognosis: Opportunities and Challenges. Cancer Lett. 2020, 471, 61–71. [Google Scholar] [CrossRef]
- Naik, N.; Hameed, B.M.Z.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Ibrahim, S.; Patil, V.; Smriti, K.; et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front. Surg. 2022, 9, 862322. [Google Scholar] [CrossRef]
Authors | AI Method | Interest Area | Main Modality Used | Main Objectives | Results |
---|---|---|---|---|---|
Elfarra et al. (2019) [13] | PC | Nuclear Medicine | BS | Diagnosis of metastatic tissue on BS. | The method was able to discriminate skeletal metastasis from normal tissue (accuracy = 87.58%). |
Koizumi et al. (2017) [26] | ANN | Nuclear Medicine | BS | Diagnostic performance of CAD system for BS BONENAVI in prostate cancers in the presence or absence of bone metastasis. | BONENAVI obtained sensitivity = 82% and specificity = 83% in detecting metastases. No difference was found based on CT types. |
Koizumi et al. (2020) [45] | ANN | Nuclear Medicine | BS | Effectiveness of CAD system for BS BONENAVI as diagnostic tool for bone metastasis. | ANN sensitivity = 76%. ANN values were related to BS type. |
Zhao et al. (2020) [23] | DNN | Nuclear Medicine | BS | Performance of Tc-MDP BS as diagnostic tool for of skeletal metastasis. | AUC of ROC = 0.988 for breast cancer, 0.955 for prostate cancer, 0.957 for lung cancer, and 0.971 for others. |
Lin et al. (2021) [46] | CNN | Nuclear Medicine | Thoracic SPECT | Automatically diagnosing bone metastasis in thoracic SPECT images. | Tests on SPECT bone images proved that the proposed classifiers were effective in detecting skeletal metastases with SPECT imaging (accuracy = 0.9807, precision = 0.9900, specificity = 0.9890, and AUC = 0.9933). |
Papandrianos al. (2020) [47] | CNN | Nuclear Medicine | BS | Performance of an algorithm for prostate cancers to detect bone metastasis. | The method was able to discriminate skeletal metastasis from degenerative changes or normal tissue (accuracy = 91.42%). |
Aoki et al. (2020) [48] | DL | Nuclear Medicine | BS | Utility of DL-based algorithm for prostate cancers to determine the presence of skeletal metastases. | No significant differences were shown between the per-patient detection rates performed by the specialists and the software. |
Acar et al. (2019) [32] | DT, SVM, KNN, discriminant analysis, ensemble classifier | Nuclear Medicine | 68Ga-PSMA PET/CT | Recognizing the lesions obtained by 68Ga-PSMA PET/CT as metastases in presence of known skeletal metastases. | The weighted KNN model obtained the best accuracy. This algorithm successfully distinguished sclerotic from metastatic lesions with AUC = 0.76. |
Cheng et al. (2021) [49] | CNN, DL | Nuclear Medicine | BS | Early diagnosis of skeletal metastasis. | For detecting and classifying skeletal metastasis in the chest of prostate patients on a lesion basis, the average sensitivity was 0.72, and the average precision was 0.90. For classifying skeletal metastasis on a patient basis, the average sensitivity was 0.94, and the average specificity was 0.92. |
Chiu et al. (2009) [50] | ANN | Nuclear Medicine | Tc-99m MDP whole-body BS | ANN model as tool in bone metastasis for predicting in prostate cancers. | AUC under the ROC curve showed the highest simultaneous sensitivity (87.5%) and specificity (83.3%). |
Liao et al. (2023) [51] | (Fast and faster) region-based CNN with RPN | Nuclear Medicine | 99mTC-labeled bisphosphonates | Increasing the effectiveness of detecting skeletal metastasis detection on bone scans. | Optimal DSC = 0.6640, differing by 0.04 relative to optimal DSC of physicians (0.7040). |
Lin et al. (2022) [30] | RPN | Nuclear Medicine | 99mTc-MDP SPECT | Developing a deep image segmentation model that automatically identifies and delineates lesions of skeletal metastasis in bone scan images. | The proposed algorithm achieved good results for automatic segmentation of metastatic lesions, with a DSC score of 0.692. |
Groot et al. (2020) [24] | NLP | Nuclear Medicine | BS | NLP algorithm to distinguish single metastasis from ≥2 metastases in BS of patients who underwent surgical treatment. | With a threshold of 0.90, NLP model accurately detected multiple skeletal metastases in 117 out of 124 cases (sensitivity = 0.94) and produced three false positives (specificity = 0.82). |
Ntakolia et al. (2020) [52] | CNN | Nuclear Medicine | BS | Evaluating the performance of the CNN in bone metastasis detection. | Higher performance in detecting skeletal metastasis of the proposed method compared to the actual methods. |
Inaki et al. (2019) [53] | ANN | Nuclear Medicine | BS | Effectiveness of ANN-based quantitative BS in the diagnosis in breast cancers. | Extent of disease, BSI, SUVmax, TLG, MTV, and serum tumor markers were significantly higher in patients with skeletal metastases compared to those with no metastases. In multivariate Cox proportional hazard model, BSI and SUVmax represented prognostic factors for patients without visceral metastases. |
Kikushima et al. (2015) [54] | ANN | Nuclear Medicine | BS | Evaluating the accuracy of CAD system for BS BONENAVI version 2, in patients with suspected skeletal metastasis. | BN2-Sp and BN2-Sen showed similar effectiveness to BN2-B in identifying patients with skeletal metastases. Overall, 65.4% of patients presented concordance for “bone metastases” or “no bone metastases”, while 34.6% presented a mismatch. |
Koizumi et al. (2015) [25] | ANN | Nuclear Medicine | BS | Evaluating the diagnostic performance of the BONEVAVI version 2 in presence or absence of skeletal metastasis. | ANN sensitivity was 85% for all cancers, 86% for prostate, 88% for lung, 82% for breast, and 86% for others. ANN specificity was 82% for normal bone scans, 81% for consecutive patients with several days of no bone metastasis, and 54% for abnormalities at bone scans without bone metastasis. |
Lin et al. (2020) [29] | DL | Nuclear Medicine | Thoracic bone SPECT | Automatic delineation of hotspots boundaries in skeletal SPECT images based on DL segmentation models. | The segmentation models were able to identify and segment hotspots of metastases in bone SEPCT images, reaching accuracy = 0.9920 and precision = 0.7721. |
Lin et al. (2022) [31] | DL | Nuclear Medicine | SPECT | Automatic identification and localization of hotspots in bone scans with lung cancer metastatic lesions. | Tests on clinical data of retrospective bone scans presented similar performance with precision = 0.7911. A comparative analysis demonstrated that automatic detection of multiple lung cancer metastatic lesions is feasible. |
Liu et al. (2021) [55] | CNN | Nuclear Medicine | Whole-body BS | CNN-based detection of suspect skeletal metastases from whole-body BS | The proposed network obtained the highest accuracy (81.23%) in the detection of suspected skeletal lesions. The CNN model’s lesion-based mean sensitivity was 81.30%, and mean specificity was 81.14%. |
Liu et al. (2022) [56] | DL | Nuclear Medicine | BS | DL-based automatic analysis of bone metastasis on BS. | The classification model showed sensitivity = 92.59%, specificity = 85.51%, and accuracy = 88.62% in testing set. A positive correlation was reported between BSI and ALP level. |
Papandrianos et al. (2020) [27] | CNN | Nuclear Medicine | BS | Evaluating the performance of CNN as diagnostic tool for skeletal metastases in prostate cancers. | The method demonstrated high precision in distinguishing skeletal metastases from degenerative modifications or normal tissue, with accuracy = 91.61%. |
Pi et al. (2020) [57] | CNN | Nuclear Medicine | BS | Determining the absence or presence of bone metastasis. | High accuracy was demonstrated for the diagnosis with BS scans. |
Papandrianos et al. (2020) [28] | CNN | Nuclear Medicine | BS | Evaluating CNN models that classifies BS scans, distinguishing between with or without prostate cancer metastasis. | The proposed CNN-based method was better than popular nuclear medicine CNN approaches in diagnosis of skeletal metastasis from prostate cancer. |
Higashiyama et al. (2021) [58] | CNN | Nuclear Medicine | BS | Effectiveness of BSI calculated by CNNapis in prostate cancers skeletal metastasis. | Diagnosis of bone metastasis on BS was confirmed with CNNapis. A positive correlation was found between PSA and BSIm and ALP and BSI. |
Yu et al. (2021) [59] | IFV | Nuclear Medicine | Tc-99m MDP whole-body BS | Self-developing IFV tool in prediction of suspected skeletal lesions in whole-body BS. | IFV model obtained sensitivity = 93% for prostate cancer, 91% for breast cancer, and 83% for lung cancer, showing better accuracy than BONEVAVI. |
Thio et al. (2019) [16] | SORG, RF, SVM, neural network, penalized LR | Clinical Research | Assessing 90-day and 1-year survivals of patients undergoing surgery for extremity bone metastasis. | There was no significant difference in discrimination between the 5 models. Low levels of albumin and rapid growth of the primary tumor were associated with poorer 90-day and 1-year survival. | |
Zhou et al. (2023) [34] | LR, RF, GBM, DT | Clinical Research | Identifying lung adenocarcinoma. skeletal metastases. | The algorithm did not show improvement in AUC for any single ML algorithm both in training and in test group. | |
Anderson et al. (2022) [60] | GBM modeling | Clinical Research | Estimating overall survival after SREs treatment in men with prostate cancer bone disease metastases. | Young age at metastasis diagnosis, proximal PSA < 10ng/mL, and slow-rising APV were associated with higher survival. | |
Liu et al. (2020) [61] | DT, RF, MLP, LR, NBC, XGB | Clinical Research | Predicting skeletal metastases in thyroid cancer of new diagnosis. | RF model showed higher predictive accuracy compared to other models. | |
Liu et al. (2021) [62] | DT, RF, MLP, LR, NBC, XGB | Clinical Research | Predicting prostate cancers bone metastasis. | XGB model presented the highest predictive accuracy of the 6 models. | |
Xu et al. (2022) [14] | LR, RF, DT, GBM, XGB, NBC | Clinical Research | Estimating the risk of renal cell carcinomas skeletal metastases. | XGB model reported the highest prediction accuracy among the risk prediction models. | |
de Groot et al. (2022) [33] | SORG, RM, SVM, neural network, penalized LR | Clinical Research | Predicting the 90-day and 1-year mortality of patients who undergo surgery for skeletal metastasis | The AUC was 0.78 for 90-day survival and 0.75 for 1-year survival. | |
Xiong et al. (2022) [63] | LR, gradient boosting tree model, DT, RF | Clinical Research | Assessing the risk of early mortality in patients with skeletal metastasis from breast cancer. | GBM had the highest AUC (0.829), followed by RF and LR. | |
Li et al. (2023) [64] | LR, DT, RF, GBM, NBC, XGB | Clinical Research | Predicting non-small-cell lung cancers skeletal metastases. | Of the six models, the ML model built by the XGB algorithm performed best in internal and external data setting validation. | |
Cui et al. (2022) [65] | RF, GBM, DT, XGB | Clinical Research | Predicting 3-month survival of bone metastasis patients with unknown primary tumor. | The RF algorithm obtained the highest AUC value (0.796) and the second-highest precision (0.876) and accuracy (0.778). | |
Chen et al. (2023) [35] | DT | Clinical Research | Predicting outcomes for CSS and OS in patients with SCLC bone metastasis. | Patients with SCLC with bone metastasis had a reduced MST compared to those without bone metastasis, with significant Kaplan–Meier analysis (p < 0.05). | |
Li et al. (2022) [66] | LR, RF, SVM, DT, XGB | Clinical Research | Predicting probability of developing bone metastasis in colorectal cancer patients. | SVM algorithm with kernel function showed the best performance. The most important predictors of skeletal metastasis were extraosseous metastases, size, and CEA. | |
Ji et al. (2022) [67] | LR, NBC, DT, XGB, MLP, RF, SVM, KNN | Clinical Research | Evaluating risks and prognosis of skeletal metastases from kidney cancer. | The prognosis model achieved an AUC of 0.8269 in internal and 0.9123 in external validation cohort. | |
Cui et al. (2022) [68] | LR, XGB, RF, neural network, GBM, DT | Clinical Research | Estimating 3-month survival of patients with skeletal metastasis from lung cancer. | The GBM model outperformed all the other models, followed by XGB and LR. Important predictors in the population were chemotherapy, followed by liver metastases, radiation, and brain metastases. | |
Paulino Pereira et al. (2016) [37] | Boosting algorithm | Clinical Research | Estimating mortality in patients with spine metastasis who underwent surgery. | The boosting algorithm showed the highest survival prediction on training datasets. | |
Le et al. (2023) [36] | XGB, LR, RF, NBC | Clinical Research | Predicting the OS of patients presenting bone metastasis from clear cell renal cell carcinoma. | Compared to the other three models, XGB model had the highest accuracy, specificity, and F1 score in the prediction of the 1-year OS. | |
Jacobson et al. (2022) [69] | XGB | Clinical Research | Identifying patients with skeletal metastases from solid tumor with increased risk of SREs after Denosumab interruption. | The model identified significant factors for the prediction of higher SREs risk after Denosumab interruption as previous SREs, short treatment with Denosumab, young age at skeletal metastases, and prostate cancer. | |
Tajima et al. (2022) [39] | DL-based reconstruction method | Radiology | Whole-body MRI | Assessing a time reduction for image acquisition for DWIBS by denoising with reconstruction based on DL in prostate cancer patients. | NEX2 acquisition time was 2.8 times shorter than NEX8. No significant differences were found between dDLR-NEX2 and NEX8 in qualitative analysis. |
Fan et al. (2021) [70] | Chan–Vese algorithm and AdaBoost algorithm | Radiology | MRI | Assessing the early detection on imaging of spine metastasis from lung cancer. | Jaccard coefficient and Dice index of Chan–Vese algorithm were better than region-growing algorithm and OTSU. |
Noguchi et al. (2022) [38] | DL | Radiology | CT | Developing and evaluating an algorithm based on DL for automatic detection of skeletal metastasis on CT. | The DL-based algorithm reported sensitivity = 89.8% for the validation dataset and 82.7% for the test dataset. |
Han et al. (2022) [71] | CNN | Radiology | CT | Evaluating the performance of DL in classifying bone scans of prostate cancers. | The ROC curves showed excellent performance of diagnosis for the AUC. |
Huo et al. (2023) [72] | Deep CNN | Radiology | CT | Developing and assessing a deep CNN model for automatic CT assessment of lung cancer skeletal metastases. | The deep CNN model showed detection sensitivity = 0.894 and segmentation dice coefficient = 0.856. |
Hong et al. (2021) [73] | RF | Radiology | CT | Evaluating the CT radiomics-based ML model performance in diagnosis and differentiation of bone islands from osteoblastic skeletal metastasis. | Mean AUC = 0.89 for the RF model; mean AUC = 0.96 for the trained RF model. |
Hoshiai et al. (2022) [74] | DL | Radiology | CT | Assessing clinical performance of CT temporal subtraction with DL in improving the detection of spinal metastases. | Temporal subtraction CT was efficient in the detection of skeletal metastases. |
Koike et al. (2023) [75] | DL | Radiology | CT | Detecting and classifying lytic spine metastases on CT scans. | AI-aided CAD system was able to recognize lytic vertebral metastases on CT scans. |
Jakubicek et al. (2019) [41] | CNN | Radiology | CT | Vertebral detection on 3D CT scans of spinal metastasis and spinal cord compression. | The mean rate of correctly detected vertebral level was 87.1%. |
Jin et al. (2023) [76] | ANN, RF, DT, SVM | Radiology | Pelvic multiparameter MRI | Building a GLCM-based score prediction model for skeletal metastases. | DWI DL-based model showed high accuracy in the automatic segmentation of pelvic bone, allowing the radiomics model to identify metastasis in the pelvis and evaluating pelvic bone turnover of colorectal cancer patients. |
Masoudi et al. (2021) [77] | DL | Radiology | CT | Formulating an efficient DL-based classification method for CT scan characterization of skeletal metastasis from prostate cancer. | Accuracy = 92.2% in distinction of benign vs. malignant skeletal lesions based on texture, volume, and morphology of the lesions. |
Wang et al. (2023) [40] | CNN | Radiology | MRI | Diagnosing and predicting spinal metastasis. | Accuracy of 96.45% in prediction of spine metastasis. |
Shao et al. (2020) [42] | CNN | Molecular Biology | LF SERS | Screening of skeletal metastasis from prostate cancer. | CNN model showed for skeletal metastasis detection: training accuracy = 99.51%, testing accuracy = 81.70%, testing sensitivity = 80.63%, and testing specificity = 82.82%. |
Albaradei et al. (2021) [43] | SVM, RF, DNN | Molecular Biology | Bone metastasis-related genes from gene expression datasets in GEO | Predicting bone metastases development. | DNN model showed the highest prediction accuracy (AUC = 92.11%) utilizing the top 34 ranked genes. |
Hsu et al. (2022) [17] | RF, generalized linear, SVM, naive Bayesian models | Molecular Biology | Eotaxin and cytokines IL-6, IL-13, and IP-10 | Providing guidelines for clinicians to determine an appropriate treatment plan for bone metastases. | The combination of clinical characteristics and levels of eotaxin or cytokines IL-6, IL-13, and IP-10 was the most effective predictive learning model (accuracy = 85.2%, sensitivity = 88.6%, and AUC = 0.95). |
Park et al. (2018) [44] | CBN | Molecular Biology | Breast cancer genes expressed during bone metastasis and in osteoblasts from the GEO | Obtaining a network of gene interactions involved in bone metastasis and osteoblast activity in breast cancer. | 33 related and involved genes (as levels of HEBP1, UBIAD1, TSPO, BTNL8, ZFP36L2, and PSAT1) in the onset of breast cancer bone metastasis were identified. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papalia, G.F.; Brigato, P.; Sisca, L.; Maltese, G.; Faiella, E.; Santucci, D.; Pantano, F.; Vincenzi, B.; Tonini, G.; Papalia, R.; et al. Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review. Cancers 2024, 16, 2700. https://doi.org/10.3390/cancers16152700
Papalia GF, Brigato P, Sisca L, Maltese G, Faiella E, Santucci D, Pantano F, Vincenzi B, Tonini G, Papalia R, et al. Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review. Cancers. 2024; 16(15):2700. https://doi.org/10.3390/cancers16152700
Chicago/Turabian StylePapalia, Giuseppe Francesco, Paolo Brigato, Luisana Sisca, Girolamo Maltese, Eliodoro Faiella, Domiziana Santucci, Francesco Pantano, Bruno Vincenzi, Giuseppe Tonini, Rocco Papalia, and et al. 2024. "Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review" Cancers 16, no. 15: 2700. https://doi.org/10.3390/cancers16152700
APA StylePapalia, G. F., Brigato, P., Sisca, L., Maltese, G., Faiella, E., Santucci, D., Pantano, F., Vincenzi, B., Tonini, G., Papalia, R., & Denaro, V. (2024). Artificial Intelligence in Detection, Management, and Prognosis of Bone Metastasis: A Systematic Review. Cancers, 16(15), 2700. https://doi.org/10.3390/cancers16152700