Chronic Lymphocytic Leukemia: Prognostic Factors in the Era of Novel Drugs
Abstract
:Simple Summary
Abstract
1. Introduction
2. BTK Inhibitors (Covalent and Non-Covalent)
2.1. IGHV Mutational Status
Trial | Setting | Treatment | Age Median | No. of Patients | U-CLL N (%) | PFS % M-CLL/U-CLL | OS % M-CLL/U-CLL | Ref. |
---|---|---|---|---|---|---|---|---|
RESONATE-2 | TN | Ibr | 73 | 136 | 58 (43) | At 7 y 68/58 | NR | Barr et al. [33] |
Clb | 72 | 133 | 60 (45) | At 7 y 17/2 | NA | |||
ECOG ACRIN E1912 | TN | Ibr + R | 58 | 354 | 210 (75) | At 5 y 83/75; | At 5 y 97/95 | Shanafelt et al. [22] |
FCR | 57 | 175 | 71/115 (61.7) | At 5 y 68/33 | At 5 y 92/84 | |||
Alliance A041202 | TN | Ibr | 71 | 182 | 77/122 (65) | At 2 y 84/79 | NA | Woyach et al. [34] |
Ibr + R | 71 | 182 | 70/115 (61) | AT 2 y 87/71 | NA | |||
BR | 70 | 183 | 71/123 (58) | At 2 y 77/56 | NA | |||
FLAIR | TN | Ibr + R | 63 | 386 | 194 (50) | At 3 y 91.6/87.8 | NA | Hillmen et al. [35] |
FCR | 62 | 385 | 194 (50) | At 3 y 90.5/74.2 | NA | |||
iLLUMINATE | TN | Ibr + Obi | 70 | 113 | 66/107 (62) | At 4 y 89/67 | NA | Moreno et al. [36] |
Clb + Obi | 72 | 116 | 57/107 (53) | Median NA/15.2 m | NA | |||
ELEVATE-TN | TN | Aca + Obi | 70 | 179 | 103(57.5) | At 4 y 89/86 | NA | Sharman et al. [37,38] |
Aca | 70 | 179 | 119 (66.5) | At 4 y 81/77 | NA | |||
Clb + Obi | 71 | 177 | 116 (65.5) | At 4 y 62/4 | NA | |||
SEQUOIA | TN | Zan | 70 | 241 | 125/234 (53.4) | At 2 y 83.4/88 | NA | Tam et al. [39] |
BR | 70 | 238 | 121/131 (52.4) | At 2 y 77.2/62.8 | NA | |||
RESONATE | R/R | Ibr | 67 | 195 | 98/134 (73) | Median 48.4/49.7 m | NA | Munir et al. [42] |
Ofa | 67 | 196 | 84/133 (63) | NA | NA | |||
ELEVATE R/R | R/R | Aca | 66 | 268 | 220 (82.1) | At 40.9 m 70.4/40.9 | NA | Byrd et al. [43] |
Ibr | 65 | 265 | 237 (89.4) | At 40.9 m 53.6/48.1 | NA | |||
ALPINE | R/R | Zan | 67 | 327 | 239 (73.1) | At 2 y 76/72 | NA | Brown et al. [44] |
Ibr | 68 | 325 | 239 (73.5) | At 2 y: 74/60 | NA | |||
BRUIN | R/R | Pirto | 67 | 317 | 168 (84) | Median 19.4 m | At 24 m 73.2 | Mato et al. [41,42] |
2.2. TP53 Abnormalities
2.3. Cytogenetics
2.4. Scoring Systems
3. BCL-2 Inhibitor (Venetoclax ± Anti CD20 Monoclonal Antibodies)
3.1. IGHV Mutational Status
Trial | Setting | Treatment | Age Median | No. of Patients | No. of Pts with U-CLL (%) | PFS M-CLL/U-CLL | OS% M-CLL/U-CLL | Ref. |
---|---|---|---|---|---|---|---|---|
CLL14 | TN | Ven + Obi | 72 | 216 | 121 (60.5) | Median: NR/57.3 m | At 5 y 86.6/80.5 | Al-Sawaf et al. [62,63] |
Clb + Obi | 71 | 216 | 123 (59.1) | Median 54.5/26.9 m | At 5 y 87/70.8 | |||
MURANO | R/R | Ven + R | 64.5 | 194 | 123 (68.3) | Median NR/52.2 m | At 5 y 92.3/80.7 | Seymour et al. [61] |
BR | 66 | 195 | 123 (68.3) | Median 24.2/15.7 m | At 5 y 66.7/61.4 | |||
M12-175, M13-365, M13-982, M14-032 | R/R | Ven +/− R | 66 | 436 | 176 (76) | NA | NA | Roberts et al. [59] |
VENICE-1 | R/R | Ven | 68 | 258 | 111 (43) | Median 31.8/28.3 m | NA | Kater et al. [60] |
3.2. TP53 Abnormalities
3.3. Cytogenetics
3.4. Scoring Systems
4. Combinations of BTK and BCL2 Inhibitors
4.1. IGHV Mutational Status
4.2. TP53 Abnormalities
4.3. Cytogenetics
4.4. Scoring Systems
5. Future Directions: Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Surveillance, Epidemiology, and End Results Program Leukemia-Chronic Lymphocytic Leukemia (CLL). Available online: https://seer.cancer.gov/statfacts/html/clyl.html (accessed on 8 October 2022).
- Rai, K.R.; Sawitsky, A.; Cronkite, E.P.; Chanana, A.D.; Levy, R.N.; Pasternack, B.S. Clinical staging of chronic lymphocytic leukemia. Blood 1975, 46, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Binet, J.L.; Auquier, A.; Dighiero, G.; Chastang, C.; Piguet, H.; Goasguen, J.; Vaugier, G.; Potron, G.; Colona, P.; Oberling, F.; et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981, 48, 198–206. [Google Scholar] [CrossRef]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999, 94, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; O’Brien, S.; Wierda, W.; Kantarjian, H.; Wen, S.; Do, K.A.; Thomas, D.A.; Cortes, J.; Lerner, S.; Keating, M.J. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood 2008, 112, 975–980. [Google Scholar] [CrossRef]
- Fischer, K.; Cramer, P.; Busch, R.; Böttcher, S.; Bahlo, J.; Schubert, J.; Pflüger, K.H.; Schott, S.; Goede, V.; Isfort, S.; et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: A multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J. Clin. Oncol. 2012, 30, 3209–3216. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Stilgenbauer, S.; James, M.R.; Benner, A.; Weilguni, T.; Bentz, M.; Fischer, K.; Hunstein, W.; Lichter, P. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood 1997, 89, 2516–2522. [Google Scholar] [CrossRef] [PubMed]
- González-Gascón-Y-Marín, I.; Muñoz-Novas, C.; Rodríguez-Vicente, A.E.; Quijada-Álamo, M.; Hernández-Sánchez, M.; Pérez-Carretero, C.; Ramos-Ascanio, V.; Hernández-Rivas, J.Á. From biomarkers to models in the changing landscape of chronic lymphocytic leukemia: Evolve or become extinct. Cancers 2021, 13, 1782. [Google Scholar] [CrossRef]
- Jain, P.; Trinh, L.X.; Benjamini, O.; Lerner, S.; Wang, X.; Ferrajoli, A.; Burger, J.A.; Estrov, Z.; Wierda, W.J.; Kantarjian, H.M.; et al. Deletion 11q abnormality in patients with chronic lymphocytic leukemia (CLL) may not have poor clinical outcomes and bulky disease (clinical and radiological) at presentation—Clinical characteristics of (n = 172) previously untreated patients with CLL and del11q cytogenetic abnormality. Blood 2012, 120, 2890. [Google Scholar] [CrossRef]
- Baliakas, P.; Jeromin, S.; Iskas, M.; Puiggros, A.; Plevova, K.; Nguyen-Khac, F.; Davis, Z.; Rigolin, G.M.; Visentin, A.; Xochelli, A.; et al. Cytogenetic complexity in chronic lymphocytic leukemia: Definitions, associations, and clinical impact. Blood 2019, 133, 1205–1216. [Google Scholar] [CrossRef]
- Kittai, A.S.; Miller, C.; Goldstein, D.; Huang, Y.; Abruzzo, L.V.; Beckwith, K.; Bhat, S.A.; Bond, D.A.; Grever, M.R.; Heerema, N.A.; et al. The impact of increasing karyotypic complexity and evolution on survival in patients with CLL treated with ibrutinib. Blood 2021, 138, 2372–2382. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Rasi, S.; Spina, V.; Bruscaggin, A.; Monti, S.; Ciardullo, C.; Deambrogi, C.; Khiabanian, H.; Serra, R.; Bertoni, F.; et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013, 121, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, A.M.; Chen-Liang, T.H.; Przychodzen, B.; Hamedi, C.; Muñoz-Ballester, J.; Dienes, B.; García-Malo, M.D.; Antón, A.I.; de Arriba, F.; Teruel-Montoya, R.; et al. Prognostic signature and clonality pattern of recurrently mutated genes in inactive chronic lymphocytic leukemia. Blood Cancer J. 2015, 5, e342. [Google Scholar] [CrossRef] [PubMed]
- Sagatys, E.M.; Zhang, L. Clinical and laboratory prognostic indicators in chronic lymphocytic leukemia. Cancer Control 2012, 19, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Bulian, P.; Shanafelt, T.D.; Fegan, C.; Zucchetto, A.; Cro, L.; Nückel, H.; Baldini, L.; Kurtova, A.V.; Ferrajoli, A.; Burger, J.A.; et al. CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia. J. Clin. Oncol. 2014, 32, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Brachtl, G.; Piñón Hofbauer, J.; Greil, R.; Hartmann, T.N. The pathogenic relevance of the prognostic markers CD38 and CD49d in chronic lymphocytic leukemia. Ann. Hematol. 2014, 93, 361–374. [Google Scholar] [CrossRef] [PubMed]
- International CLL-IPI Working Group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncol. 2016, 17, 779–790. [Google Scholar] [CrossRef]
- Gentile, M.; Shanafelt, T.D.; Rossi, D.; Laurenti, L.; Mauro, F.R.; Molica, S.; Cutrona, G.; Uccello, G.; Campanelli, M.; Vigna, E.; et al. Validation of the CLL-IPI and comparison with the MDACC prognostic index in newly diagnosed patients. Blood 2016, 128, 2093–2095. [Google Scholar] [CrossRef] [PubMed]
- Wiedmeier-Nutor, J.; Leis, J. Chronic Lymphocytic Leukemia: Chemotherapy Free and Other Novel Therapies Including CAR T. Curr. Treat. Options Oncol. 2022, 23, 904–919. [Google Scholar] [CrossRef]
- Langerbeins, P.; Giza, A.; Robrecht, S.; Cramer, P.; von Tresckow, J.; Al-Sawaf, O.; Fink, A.M.; Fürstenau, M.; Kutsch, N.; Simon, F.; et al. Reassessing the Chronic Lymphocytic Leukemia International Prognostic Index in the era of targeted therapies. Blood 2024. advance online publication. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Wang, X.V.; Hanson, C.A.; Paietta, E.M.; O’Brien, S.; Barrientos, J.C.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhang, C.; et al. Long-term outcomes for ibrutinib-rituximab and chemoimmunotherapy in CLL: Updated results of the E1912 Trial. Blood 2022, 140, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Hallek, M.; Fischer, K. The role of minimal residual disease in chronic lymphocytic leukemia. Clin. Adv. Hematol. Oncol. 2022, 20, 97–103. [Google Scholar] [PubMed]
- Damle, R.N.; Wasil, T.; Fais, F.; Ghiotto, F.; Valetto, A.; Allen, S.L.; Buchbinder, A.; Budman, D.; Dittmar, K.; Kolitz, J.; et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999, 94, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Packham, G.; Krysov, S.; Allen, A.; Savelyeva, N.; Steele, A.J.; Forconi, F.; Stevenson, F.K. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: Proliferation or anergy. Haematologica 2014, 99, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Foà, R.; Del Giudice, I.; Cuneo, A.; Del Poeta, G.; Ciolli, S.; Di Raimondo, F.; Lauria, F.; Cencini, E.; Rigolin, G.M.; Cortelezzi, A.; et al. Chlorambucil plus rituximab with or without maintenance rituximab as first-line treatment for elderly chronic lymphocytic leukemia patients. Am. J. Hematol. 2014, 89, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Goede, V.; Fischer, K.; Busch, R.; Engelke, A.; Eichhorst, B.; Wendtner, C.M.; Chagorova, T.; de la Serna, J.; Dilhuydy, M.-S.; Illmer, T.; et al. Obinutuzumab plus Chlorambucil in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2014, 370, 1101–1110. [Google Scholar] [CrossRef]
- Thompson, P.A.; Tam, C.S.; O’Brien, S.M.; Wierda, W.G.; Stingo, F.; Plunkett, W.; Smith, S.C.; Kantarjian, H.M.; Freireich, E.J.; Keating, M.J. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 2016, 127, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Bahlo, J.; Fink, A.M.; Goede, V.; Herling, C.D.; Cramer, P.; Langerbeins, P.; von Tresckow, J.; Engelke, A.; Maurer, C.; et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: Updated results of the CLL8 trial. Blood 2016, 127, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Eichhorst, B.; Fink, A.M.; Bahlo, J.; Busch, R.; Kovacs, G.; Maurer, C.; Lange, E.; Köppler, H.; Kiehl, M.; Sökler, M.; et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): An international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016, 17, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Langerak, A.W.; Ritgen, M.; Goede, V.; Robrecht, S.; Bahlo, J.; Fischer, K.; Steurer, M.; Trněný, M.; Mulligan, S.P.; Mey, U.J.M.; et al. Prognostic value of MRD in CLL patients with comorbidities receiving chlorambucil plus obinutuzumab or rituximab. Blood 2019, 133, 494–497. [Google Scholar] [CrossRef]
- Thorsélius, M.; Kröber, A.; Murray, F.; Thunberg, U.; Tobin, G.; Bühler, A.; Kienle, D.; Albesiano, E.; Maffei, R.; Dao-Ung, L.-P.; et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood 2006, 107, 2889–2894. [Google Scholar] [CrossRef] [PubMed]
- Barr, P.M.; Owen, C.; Robak, T.; Tedeschi, A.; Bairey, O.; Burger, J.A.; Hillmen, P.; Coutre, S.E.; Dearden, C.; Grosicki, S.; et al. Up to 8-year follow-up from RESONATE-2: First-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022, 6, 3440–3450. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Ruppert, A.S.; Heerema, N.A.; Zhao, W.; Booth, A.M.; Ding, W.; Bartlett, N.L.; Brander, D.M.; Barr, P.M.; Rogers, K.A.; et al. Long-term results of Alliance A041202 show continued advantage of Ibrutinib-based regimens compared with bendamustine plus rituximab (BR) chemoimmunotherapy. Blood 2021, 138 (Suppl. S1), 639. [Google Scholar] [CrossRef]
- Hillmen, P.; Pitchford, A.; Bloor, A.; Broom, A.; Young, M.; Kennedy, B.; Walewska, R.; Furtado, M.; Preston, G.; Neilson, J.R.; et al. Ibrutinib and rituximab versus fludarabine, cyclophosphamide, and rituximab for patients with previously untreated chronic lymphocytic leukaemia (FLAIR): Interim analysis of a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.; Greil, R.; Demirkan, F.; Tedeschi, A.; Anz, B.; Larratt, L.; Simkovic, M.; Novak, J.; Strugov, V.; Gill, D.; et al. First-Line Treatment of Chronic Lymphocytic Leukemia with Ibrutinib plus Obinutuzumab versus Chlorambucil plus Obinutuzumab: Final Analysis of the Randomized, Phase 3 ILLUMINATE Trial. Haematologica 2022, 107, 2108–2120. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Acalabrutinib with or without Obinutuzumab versus Chlorambucil and Obinutuzumab for treatment-naive chronic lymphocytic leukaemia (ELEVATE-TN): A Randomised, Controlled, Phase 3 Trial. Lancet 2020, 395, 1278–1291. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve chronic lymphocytic leukemia. Leukemia 2022, 36, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Brown, J.R.; Kahl, B.S.; Ghia, P.; Giannopoulos, K.; Jurczak, W.; Šimkovič, M.; Shadman, M.; Österborg, A.; Laurenti, L.; et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): A randomised, controlled, phase 3 trial. Lancet Oncol. 2022, 23, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Raponi, S.; Ilari, C.; Della Starza, I.; Cappelli, L.V.; Cafforio, L.; Piciocchi, A.; Arena, V.; Mariglia, P.; Mauro, F.R.; Gentile, M.; et al. Redefining the prognostic likelihood of chronic lymphocytic leukaemia patients with borderline percentage of immunoglobulin variable heavy chain region mutations. Br. J. Haematol. 2020, 189, 853–859. [Google Scholar] [CrossRef]
- Mato, A.R.; Shah, N.N.; Jurczak, W.; Cheah, C.Y.; Pagel, J.M.; Woyach, J.A.; Fakhri, B.; Eyre, T.A.; Lamanna, N.; Patel, M.R.; et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): A phase 1/2 study. Lancet 2021, 397, 892–901. [Google Scholar] [CrossRef]
- Mato, A.R.; Wojach, J.A.; Brown, J.R.; Ghia, P.; Patel, K.; Eyre, T.A.; Munir, T.; Lech-Maranda, E.; Lamanna, N.; Tam, C.S.; et al. Pirtobrutinib after a covalent BTK inhibitor in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 389, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Allan, J.N.; Shanafelt, T.; Wiestner, A.; Moreno, C.; O’Brien, S.M.; Li, J.; Krigsfeld, G.; Dean, J.P.; Ahn, I. Long-term efficacy of first-line ibrutinib treatment for chronic lymphocytic leukaemia in patients with TP53 aberrations: A pooled analysis from four clinical trials. Br. J. Haematol. 2022, 196, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Ahn, I.E.; Tian, X.; Wiestner, A. Ibrutinib for Chronic Lymphocytic Leukemia with TP53 Alterations. N. Engl. J. Med. 2020, 383, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Munir, T.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Barr, P.M.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am. J. Hematol. 2019, 94, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Yenerel, M.N.; Illés, A.; Kay, N.; et al. Acalabrutinib versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kazmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, S.C.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Eng. J. Med. 2023, 388, 319–332. [Google Scholar] [CrossRef]
- Rigolin, G.M.; Olimpieri, P.P.; Summa, V.; Celant, S.; Scarfò, L.; Tognolo, L.; Ballardini, M.P.; Urso, A.; Sessa, M.; Gambara, S.; et al. Outcomes in Patients with Chronic Lymphocytic Leukemia and TP53 Aberration Who Received First Line Ibrutinib: A Nationwide Registry Study from the Italian Medicines Agency. Blood Cancer J. 2023, 13, 99. [Google Scholar] [CrossRef]
- Rigolin, G.M.; Cibien, F.; Martinelli, S.; Formigaro, L.; Rizzotto, L.; Tammiso, E.; Saccenti, E.; Bardi, A.; Cavazzini, F.; Ciccone, M.; et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia with “normal” FISH: Correlations with clinicobiologic parameters. Blood 2012, 119, 2310–2313. [Google Scholar] [CrossRef]
- Thompson, P.A.; O’Brien, S.M.; Wierda, W.G.; Ferrajoli, A.; Stingo, F.; Smith, S.C.; Burger, J.A.; Estrov, Z.; Jain, N.; Kantarjian, H.M.; et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer 2015, 121, 3612–3621. [Google Scholar] [CrossRef]
- Rigolin, G.M.; Del Giudice, I.; Bardi, A.; Melandri, A.; García-Jacobo, R.E.; Cura, F.; Raponi, S.; Ilari, C.; Cafforio, L.; Piciocchi, A.; et al. Complex Karyotype in Unfit Patients with CLL Treated with Ibrutinib and Rituximab: The GIMEMA LLC1114 Phase 2 Study. Blood 2021, 138, 2727–2730. [Google Scholar] [CrossRef]
- Byrd, J.C.; Woyach, J.A.; Furman, R.R.; Martin, P.; O’Brien, S.; Brown, J.R.; Stephens, D.M.; Barrientos, J.C.; Devereux, S.; Hillmen, P.; et al. Acalabrutinib in treatment-naive chronic lymphocytic leukemia. Blood 2021, 137, 3327–3338. [Google Scholar] [CrossRef] [PubMed]
- Ahn, I.E.; Tian, X.; Ipe, D.; Cheng, M.; Albitar, M.; Tsao, L.C.; Zhang, L.; Ma, W.; Herman, S.E.M.; Gaglione, E.M.; et al. Prediction of outcome in patients with chronic lymphocytic leukemia treated with ibrutinib: Development and validation of a four-factor prognostic model. J. Clin. Oncol. 2021, 39, 576–585. [Google Scholar] [CrossRef]
- Morabito, F.; Tripepi, G.; Del Poeta, G.; Mauro, F.R.; Reda, G.; Sportoletti, P.; Laurenti, L.; Coscia, M.; Herishanu, Y.; Varettoni, M.; et al. Assessment of the 4-factor score: Retrospective analysis of 586 CLL patients receiving ibrutinib. A campus CLL study. Am. J. Hematol. 2021, 96, E168–E171. [Google Scholar] [CrossRef] [PubMed]
- Gentile, M.; Morabito, F.; Del Poeta, G.; Mauro, F.R.; Reda, G.; Sportoletti, P.; Laurenti, L.; Coscia, M.; Herishanu, Y.; Recchia, A.G.; et al. Survival risk score for real-life relapsed/refractory chronic lymphocytic leukemia patients receiving ibrutinib. A campus CLL study. Leukemia 2021, 35, 235–238. [Google Scholar] [CrossRef]
- Gentile, M.; Martino, E.A.; Visentin, A.; Coscia, M.; Reda, G.; Sportoletti, P.; Mauro, F.R.; Laurenti, L.; Varettoni, M.; Murru, R.; et al. Validation of a survival-risk score (SRS) in relapsed/refractory CLL patients treated with idelalisib-rituximab. Blood Cancer J. 2020, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Soumerai, J.D.; Ni, A.; Darif, M.; Londhe, A.; Xing, G.; Mun, Y.; Kay, N.E.; Shanafelt, T.D.; Rabe, K.G.; Byrd, J.C.; et al. Prognostic risk score for patients with relapsed or refractory chronic lymphocytic leukaemia treated with targeted therapies or chemoimmunotherapy: A retrospective, pooled cohort study with external validations. Lancet Haematol. 2019, 6, e366–e374. [Google Scholar] [CrossRef] [PubMed]
- Molica, S.; Giannarelli, D.; Visentin, A.; Reda, G.; Sportoletti, P.; Frustaci, A.M.; Chiarenza, A.; Ciolli, S.; Vitale, C.; Laurenti, L.; et al. Prediction of outcomes in chronic lymphocytic leukemia patients treated with ibrutinib: Validation of current prognostic models and development of a simplified three-factor model. Am. J. Hematol. 2022, 97, E176–E180. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.W.; Ma, S.; Kipps, T.J.; Coutre, S.E.; Davids, M.S.; Eichhorst, B.; Hallek, M.; Byrd, J.C.; Humphrey, K.; Zhou, L.; et al. Efficacy of Venetoclax in Relapsed Chronic Lymphocytic Leukemia Is Influenced by Disease and Response Variables. Blood 2019, 134, 111–122. [Google Scholar] [CrossRef]
- Kater, A.P.; Arslan, Ö.; Demirkan, F.; Herishanu, Y.; Ferhanoglu, B.; ìDiaz, M.G.; Leber, B.; Montillo, M.; Panayiotidis, P.; Rossi, D.; et al. Activity of Venetoclax in Patients with Relapsed or Refractory Chronic Lymphocytic Leukaemia: Analysis of the VENICE-1 Multicentre, Open-Label, Single-Arm, Phase 3b Trial. Lancet Oncol. 2024, 25, 463–473. [Google Scholar] [CrossRef]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.F.; D’Rozario, J.; Owen, C.J.; Assouline, S.; Lamanna, N.; Robak, T.; de la Serna, J.; Jaeger, U.; et al. Enduring Undetectable MRD and Updated Outcomes in Relapsed/Refractory CLL after Fixed-Duration Venetoclax-Rituximab. Blood 2022, 140, 839–850. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Tandon, M.; Sinha, A.; Fink, A.M.; Robrecht, S.; Samoylova, O.; Liberati, A.M.; Pinilla-Ibarz, J.; Opat, S.; et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): Follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Zhang, C.; Jin, H.Y.; Robrecht, S.; Choi, Y.; Balasubramanian, S.; Kotak, A.; Chang, Y.M.; Fink, A.M.; Tausch, E.; et al. Transcriptomic Profiles and 5-Year Results from the Randomized CLL14 Study of Venetoclax plus Obinutuzumab versus Chlorambucil plus Obinutuzumab in Chronic Lymphocytic Leukemia. Nat. Commun. 2023, 14, 2147. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Zhang, C.; Lu, T.; Liao, M.Z.; Panchal, A.; Robrecht, S.; Ching, T.; Tandon, M.; Fink, A.-M.; Tausch, E.; et al. Minimal Residual Disease Dynamics after Venetoclax-Obinutuzumab Treatment: Extended Off-Treatment Follow-up from the Randomized CLL14 Study. J. Clin. Oncol. 2021, 39, 4049–4060. [Google Scholar] [CrossRef]
- Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.-M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; et al. Venetoclax and Obinutuzumab in patients with CLL and coexisting conditions. N. Engl. J. Med. 2019, 380, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Kater, A.P.; Wu, J.Q.; Kipps, T.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Robak, T.; de la Serna, J.; et al. Venetoclax plus rituximab in relapsed chronic lymphocytic leukemia: 4-year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III study. J. Clin. Oncol. 2020, 38, 4042–4054. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Lilienweiss, E.; Bahlo, J.; Robrecht, S.; Fink, A.M.; Patz, M.; Tandon, M.; Jiang, Y.; Schary, W.; Ritgen, M.; et al. High efficacy of venetoclax plus obinutuzumab in patients with complex karyotype and chronic lymphocytic leukemia. Blood 2020, 135, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Wang, S.; Franzen, C.A.; Venkataraman, G.; McClure, R.; Li, L.; Wu, W.; Niu, N.; Sukhanova, M.; Pei, J.; et al. Ibrutinib and Venetoclax Target Distinct Subpopulations of CLL Cells: Implication for Resid-ual Disease Eradication. Blood Cancer J. 2021, 11, 39. [Google Scholar] [CrossRef]
- Allan, J.N.; Flinn, I.W.; Siddiqi, T.; Ghia, P.; Tam, C.S.; Kipps, T.J.; Barr, P.M.; Elinder Camburn, A.; Tedeschi, A.; Badoux, X.C.; et al. Outcomes in Patients with High-Risk Features after Fixed-Duration Ibrutinib plus Venetoclax: Phase II CAPTIVATE Study in First-Line Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2023, 29, 2593–2601. [Google Scholar] [CrossRef] [PubMed]
- Wierda, W.G.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Opat, S.; Tedeschi, A.; Badoux, X.C.; Kuss, B.J.; Jackson, S.; Moreno, C.; et al. Ibrutinib plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results from the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J. Clin. Oncol. 2021, 39, 3853–3865. [Google Scholar] [CrossRef]
- Niemann, C.U.; Munir, T.; Moreno, C.; Owen, C.; Follows, G.A.; Benjamini, O.; Janssens, A.; Levin, M.D.; Robak, T.; Simkovic, M.; et al. Fixed-duration ibrutinib-venetoclax versus chlorambucil-obinutuzumab in previously untreated chronic lymphocytic leukaemia (GLOW): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2003, 24, 1423–1433. [Google Scholar] [CrossRef]
- Munir, T.; Cairns, D.A.; Bloor, A.; Allsup, D.; Cwynarski, K.; Pettitt, A.; Paneesha, S.; Fox, C.P.; Eyre, T.A.; Forconi, F.; et al. Chronic Lymphocytic Leukemia Therapy Guided by Measurable Residual Disease. N. Engl. J. Med. 2023. advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Eichhorst, B.; Niemann, C.U.; Kater, A.P.; Fürstenau, M.; von Tresckow, J.; Zhang, C.; Robrecht, S.; Gregor, M.; Juliusson, G.; Thornton, P.; et al. First-Line Venetoclax Combinations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Fürstenau, M.; Thus, Y.J.; Robrecht, S.; Mellink, C.H.M.; van der Kevie-Kersemaekers, A.F.; Dubois, J.; von Tresckow, J.; Patz, M.; Gregor, M.; Thornton, P.; et al. High karyotypic complexity is an independent prognostic factor in patients with CLL treated with venetoclax combinations. Blood 2023, 142, 446–459. [Google Scholar] [CrossRef] [PubMed]
- Rigolin, G.M.; Saccenti, E.; Guardalben, E.; Cavallari, M.; Formigaro, L.; Zagatti, B.; Visentin, A.; Mauro, F.R.; Lista, E.; Bassi, C.; et al. In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br. J. Haematol. 2018, 181, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Ujjani, C. Dual-targeted regimens for the frontline treatment of CLL. Hematol. Am. Soc. Hematol. Educ. Program 2023, 2023, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.M.; Lopez, C.A.; Barrientos, J.C. MRD-directed therapy in CLL: Ready for prime time? Hematol. Am. Soc. Hematol. Educ. Program 2023, 2023, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Appendix 4 to the Guideline on the Evaluation of Anticancer Medicinal Products in Man—Condition Specific Guidance—Scientific Guideline|European Medicines Agency. Available online: https://www.ema.europa.eu/en/appendix-4-guideline-evaluation-anticancer-medicinal-products-man-condition-specific-guidance-scientific-guideline (accessed on 21 July 2024).
- Woyach, J.A.; Jones, D.; Jurczak, W.; Robak, T.; Illes, A.; Kater, A.P.; Ghia, P.; Byrd, J.C.; Seymour, J.F.; Long, S.; et al. Mutational profile of previously treated chronic lymphocytic leukemia patients progressing on acalabrutinib or ibrutinib. Blood 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Utro, F.; Wang, Q.; Cha, J.; Vihinen, M.; Martindale, S.; Zhou, Y.; Ren, Y.; Tyekucheva, S.; Kim, A.S.; et al. Pirtobrutinib targets BTK C481S in ibrutinib-resistant CLL but second-site BTK mutations lead to resistance. Blood Adv. 2023, 7, 1929–1943. [Google Scholar] [CrossRef] [PubMed]
- Tausch, E.; Close, W.; Dolnik, A.; Bloehdorn, J.; Chyla, B.; Bullinger, L.; Döhner, H.; Mertens, D.; Stilgenbauer, S. Venetoclax Resistance and Acquired BCL2 Mutations in Chronic Lymphocytic Leukemia. Haematologica 2019, 104, e434–e437. [Google Scholar] [CrossRef]
- Khalsa, J.K.; Cha, J.; Utro, F.; Naeem, A.; Murali, I.; Kuang, Y.; Vasquez, K.A.; Li, L.; Tyekucheva, S.; Fernandes, S.M.; et al. Genetic Events Associated with Venetoclax Resistance in CLL Identified by Whole-Exome Sequencing of Patient Samples. Blood 2023, 142, 421–433. [Google Scholar] [CrossRef]
- Jain, N.; Croner, L.J.; Allan, J.N.; Siddiqi, T.; Tedeschi, A.; Badoux, X.C.; Eckert, K.; Cheung, L.W.K.; Mukherjee, A.; Dean, J.P.; et al. Absence of BTK, BCL2, and PLCG2 Mutations in Chronic Lymphocytic Leukemia Relapsing after First-Line Treatment with Fixed-Duration Ibrutinib plus Venetoclax. Clin. Cancer Res. 2024, 30, 498–505. [Google Scholar] [CrossRef] [PubMed]
Trial | Setting | Treatment | No. of Pts | Median Age | No. of Pts with TP53 Abnorms/Total Cases (%) | PFS% | OS% | Ref. |
---|---|---|---|---|---|---|---|---|
Alliance A041202 | TN | Ibr | 182 | 71 | 15/168 (9) | At 2 y NE | NA | Woyach et al. [34] |
Ibr + R | 182 | 71 | 20/168 (12) | At 2 y NE | NA | |||
BR | 183 | 70 | 16/174 (9) | At 2 y 7m | NA | |||
FLAIR | TN | Ibr + R | 386 | 63 | 2 (1) | NA | NA | Hillmen et al. [35] |
FCR | 385 | 62 | 1 (<1) | NA | NA | |||
iLLUMINATE | TN | Ibr + Obi | 113 | 70 | 13/112 (12) | NE | NA | Moreno et al. [36] |
Clb + Obi | 116 | 72 | 16/110 (15) | Median 18 m | NA | |||
ELEVATE-TN | TN | Aca + Obi | 179 | 70 | 21 (11.7) | At 1 y 95 | NA | Sharman et al. [37,38] |
Aca | 179 | 70 | 19 (10.6) | NA | NA | |||
Clb + Obi | 177 | 71 | 21 (11.9) | At 1 y 19 | NA | |||
NCT01500733 | TN | Ibr | 34 | 63 | 34 | At 6 y 61 | At 6 y 79 | Ahn et al. [44] |
SEQUOIA | TN cohort C | Zan | 111 | 70 | 111/111 (100) | At 2 y 88.9 | At 2 y 93.6 | Tam et al. [39] |
RESONATE | R/R | Ibr | 195 | 67 | 79/154 (51) | 18 m 66 | NA | Munir et al. [45] |
Ofa | 196 | 67 | 68/149 (46) | 18 m 0 | NA | |||
ELEVATE R/R | R/R | Aca | 268 | 66 | 100 (37.3) | NA | NA | Byrd et al. [46] |
Ibr | 265 | 65 | 112 (42.3) | NA | NA | |||
ALPINE | R/R | Zan | 327 | 67 | 30 (9.2) | At 2 y 72.6 | NR | Brown et al. [47] |
Ibr | 325 | 68 | 25 (7.7) | At 2 y: 54.6 | NR | |||
BRUIN | R/R | Pirto | 317 | 67 | 87/222 (39.2) | Median 16.9 m | NA | Mato et al. [41,42] |
Ref. | Score System | CLL Therapy | No. of Patients | Status of Disease | Variables | Categories (Points) | OS Category |
---|---|---|---|---|---|---|---|
Soumerai et al. [57] | BALL score | Ibrutinib Idelalisib Venetoclax | 727 897 389 | R/R |
|
| 2y OS 89.7% 79.5% 55.8% 82.6% 61.8% 49.5% 95.1% 84.6% 82.2% |
Gentile et al. [55] | SRSI | Ibrutinib | 541 | R/R |
|
| 2y-OS 95.3% 81% 60.6% |
Gentile et al. [56] | SRSi | R-idelalisib | 142 | R/R |
|
| 2y-OS 88.6% 69.6% 54.3% |
Ahn et al. [53] | 4-factor prognostic model | Ibrutinib | 720 | R/R |
|
| 3y-OS 93% 83% 63% |
Morabito et al. [54] | 4-factor prognostic model | Ibrutinib | 586 | R/R |
|
| 3y-OS 89.7% 77.8% 60.3% |
Molica et al. [58] | CLL-3 model | Ibrutinib | 338 | R/R |
|
| 3-y OS 91% 84% 65% |
Trial | Setting | Treatment | Age Median | No. of Pts | No. of Pts with TP53 D (%) | PFS% TP53-ND/D | OS% TP53-ND/D | Ref. |
---|---|---|---|---|---|---|---|---|
CLL14 | TN | Ven + Obi | 72 | 216 | 25 (12) | At 5 y 65.8/40.6 | At 5 y 85.7/60 | Al-Sawaf et al. [62,63] |
Clb + Obi | 71 | 216 | 24 (11) | At 5 y 29.3/15.6 | At 5 y 54.2/80.7 | |||
MURANO | R/R | Ven + R | 64.5 | 194 | 53 (27) | At 5 y 42.5/27.3 | At 5 y 88.7/70.2 | Seymour et al. [61] |
BR | 66 | 195 | 55 (28) | Median 19.6/13.4 m | At 5 y 61.8/60.7 | |||
M12-175, M13-365, M13-982, M14-032 | R/R | Ven +/− R | 66 | 436 | 243 (71) | NA | NA | Roberts et al. [59] |
VENICE-1 | R/R | Ven | 68 | 258 | * 35 (14) | * Median 30.5/19.4 m | NA | Kater et al. [60] |
Trial | Setting | Treatment | No. of Patients | Age Median | U-CLL N (%) | PFS% M-CLL/U-CLL | OS% M-CLL/U-CLL | Ref. |
---|---|---|---|---|---|---|---|---|
CAPTIVATE | TN | Ibr-Ven | 195 | 60 | 119 (61) | At 3 y 92/88 | At 3 y 100/98 | Allan et al. [69] |
GLOW | TN | Ibr-Ven | 106 | 71 | 67 (63.2) | At 42 m 90.0/69.8 | NA | Niemann et al. [71] |
Clb-Obi | 105 | 71 | 57 (54.3) | At 42 m 43.1/15.0 | NA | |||
FLAIR | TN | Ibr-Ven | 260 | 62 | 123 (47.3) | At 3 y 94.3/98.3 | At 3 y: 94.3/98.3 | Munir et al. [72] |
FCR | 263 | 62 | 138 (52.5) | At 3 y 88.6/71.2 | At 3 y; 88.6/71.2 | |||
CLL13 | TN | Ibr-Ven-Obi | 231 | 60 | 123 (53.2) | At 3 y 96/86.6 | NA | Eichhorst et al. [73] |
Ven + R | 237 | 62 | 134 (56.5 | 87/76.4 | NA | |||
Ven + Obi | 229 | 62 | 130 (57) | 82.9/96.6 | NA | |||
CIT | 229 | 61 | 131 (57.2) | 89.9/65.5 | NA |
Trial | Phase | Setting | Treatment | Primary Endpoint |
---|---|---|---|---|
NCT03766763 | 2 | HR TN | Venetoclax | MRD < 0.01% in BM at 12 months |
NCT05069051 | 2 | RR | Belimumab + Rituximab-Venetoclax | MRD negativity at the end of treatment |
NCT05943496 | 1b | TN | Tafasitamab + Acalabrutinib + Obinotuzumab | MRD evaluation every 3 months up to 2 years |
NCT05197192 | 3 | HR TN | Acalabrutinib + Obinotuzumab-Venetoclax | MRD in BM and PB at the end of study |
NCT04908228 | 2 | TN | Ibrutinib + Obinotuzumab | MRD in BM at 30 days therapy initiation |
NCT03128879 | 2 | TN | Ibrutinib + Venetoclax Acalabrutinib + Venetoclax | MRD in BM after 12 cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urso, A.; Martino, E.A.; Cuneo, A.; Gentile, M.; Rigolin, G.M. Chronic Lymphocytic Leukemia: Prognostic Factors in the Era of Novel Drugs. Cancers 2024, 16, 2732. https://doi.org/10.3390/cancers16152732
Urso A, Martino EA, Cuneo A, Gentile M, Rigolin GM. Chronic Lymphocytic Leukemia: Prognostic Factors in the Era of Novel Drugs. Cancers. 2024; 16(15):2732. https://doi.org/10.3390/cancers16152732
Chicago/Turabian StyleUrso, Antonio, Enrica Antonia Martino, Antonio Cuneo, Massimo Gentile, and Gian Matteo Rigolin. 2024. "Chronic Lymphocytic Leukemia: Prognostic Factors in the Era of Novel Drugs" Cancers 16, no. 15: 2732. https://doi.org/10.3390/cancers16152732
APA StyleUrso, A., Martino, E. A., Cuneo, A., Gentile, M., & Rigolin, G. M. (2024). Chronic Lymphocytic Leukemia: Prognostic Factors in the Era of Novel Drugs. Cancers, 16(15), 2732. https://doi.org/10.3390/cancers16152732