Predictors of Clavien–Dindo Grade III–IV or Grade V Complications after Metastatic Spinal Tumor Surgery: An Analysis of Sociodemographic, Socioeconomic, Clinical, Oncologic, and Operative Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patients
2.3. Variables
2.4. Primary and Secondary Study Endpoints
2.5. Statistical Analysis
3. Results
3.1. Patients’ Baseline Data
3.2. Univariable Analysis of Factors Associated with Clavien–Dindo Grade III–IV Complications and Grade V Complications
3.3. Multivariable Analysis of Factors Associated with Clavien–Dindo Grade III–IV Complications and Grade V Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luksanapruksa, P.; Buchowski, J.M.; Zebala, L.P.; Kepler, C.K.; Singhatanadgige, W.; Bumpass, D.B. Perioperative Complications of Spinal Metastases Surgery. Clin. Spine Surg. 2017, 30, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Boaro, A.; Wells, M.; Chi, J.; Lu, Y.; Smith, T.R.; Groff, M.W.; Zaidi, H. A National Surgical Quality Improvement Program Analysis of Postoperative Major and Minor Complications in Patients with Spinal Metastatic Disease. World Neurosurg. 2020, 140, e203–e211. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Hartley, B.R.; McLaughlin, L.; Reiner, A.S.; Laufer, I.; Bilsky, M.H.; Barzilai, O. Surgery for Metastatic Spinal Disease in Octogenarians and Above: Analysis of 78 Patients. Glob. Spine J. 2023, 13, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Lee, C.-S.; Chung, S.-S. Surgical Results of Metastatic Spinal Cord Compression (MSCC) from Non-Small Cell Lung Cancer (NSCLC): Analysis of Functional Outcome, Survival Time, and Complication. Spine J. 2016, 16, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Sarkiss, C.A.; Hersh, E.H.; Ladner, T.R.; Lee, N.; Kothari, P.; Lakomkin, N.; Caridi, J.M. Risk Factors for Thirty-Day Morbidity and Mortality in Extradural Lumbar Spine Tumor Resection. World Neurosurg. 2018, 114, e1101–e1106. [Google Scholar] [CrossRef] [PubMed]
- Paulino Pereira, N.R.; Ogink, P.T.; Groot, O.Q.; Ferrone, M.L.; Hornicek, F.J.; van Dijk, C.N.; Bramer, J.A.M.; Schwab, J.H. Complications and Reoperations after Surgery for 647 Patients with Spine Metastatic Disease. Spine J. 2019, 19, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Szczerba, P. Complications after Surgical Treatment of Spinal Metastases. Ortop. Traumatol. Rehabil. 2019, 21, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T.; Shah, A.A.; Bono, C.M.; Oh, K.S.; Saylor, P.J.; Schoenfeld, A.J.; Shin, J.H.; Harris, M.B.; et al. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019, 85, E83–E91. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Le, H.V.; Marjoua, Y.; Leonard, D.A.; Belmont, P.J.; Bono, C.M.; Harris, M.B. Assessing the Utility of a Clinical Prediction Score Regarding 30-Day Morbidity and Mortality Following Metastatic Spinal Surgery: The New England Spinal Metastasis Score (NESMS). Spine J. 2016, 16, 482–490. [Google Scholar] [CrossRef] [PubMed]
- De la Garza Ramos, R.; Goodwin, C.R.; Jain, A.; Abu-Bonsrah, N.; Fisher, C.G.; Bettegowda, C.; Sciubba, D.M. Development of a Metastatic Spinal Tumor Frailty Index (MSTFI) Using a Nationwide Database and Its Association with Inpatient Morbidity, Mortality, and Length of Stay After Spine Surgery. World Neurosurg. 2016, 95, 548–555.e4. [Google Scholar] [CrossRef] [PubMed]
- Rigney, G.H.; Massaad, E.; Kiapour, A.; Razak, S.S.; Duvall, J.B.; Burrows, A.; Khalid, S.I.; De La Garza Ramos, R.; Tobert, D.G.; Williamson, T.; et al. Implication of Nutritional Status for Adverse Outcomes after Surgery for Metastatic Spine Tumors. J. Neurosurg. Spine 2023, 39, 557–567. [Google Scholar] [CrossRef] [PubMed]
- De la Garza Ramos, R.; Choi, J.H.; Naidu, I.; Benton, J.A.; Echt, M.; Yanamadala, V.; Passias, P.G.; Shin, J.H.; Altschul, D.J.; Goodwin, C.R.; et al. Racial Disparities in Perioperative Morbidity Following Oncological Spine Surgery. Glob. Spine J. 2023, 13, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Hung, B.; Pennington, Z.; Hersh, A.M.; Schilling, A.; Ehresman, J.; Patel, J.; Antar, A.; Porras, J.L.; Elsamadicy, A.A.; Sciubba, D.M. Impact of Race on Nonroutine Discharge, Length of Stay, and Postoperative Complications after Surgery for Spinal Metastases. J. Neurosurg. Spine 2021, 36, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Nizam, W.; Yeo, H.L.; Obeng-Gyasi, S.; Brock, M.V.; Johnston, F.M. Disparities in Surgical Oncology: Management of Advanced Cancer. Ann. Surg. Oncol. 2021, 28, 8056–8073. [Google Scholar] [CrossRef] [PubMed]
- Akinyemiju, T.; Meng, Q.; Vin-Raviv, N. Race/Ethnicity and Socio-Economic Differences in Colorectal Cancer Surgery Outcomes: Analysis of the Nationwide Inpatient Sample. BMC Cancer 2016, 16, 715. [Google Scholar] [CrossRef] [PubMed]
- Chikovsky, L.; Kutuk, T.; Rubens, M.; Balda, A.N.; Appel, H.; Chuong, M.D.; Kaiser, A.; Hall, M.D.; Contreras, J.; Mehta, M.P.; et al. Racial Disparities in Clinical Presentation, Surgical Procedures, and Hospital Outcomes among Patients with Hepatocellular Carcinoma in the United States. Cancer Epidemiol. 2023, 82, 102317. [Google Scholar] [CrossRef] [PubMed]
- Mets, E.J.; Chouairi, F.K.; Gabrick, K.S.; Avraham, T.; Alperovich, M. Persistent Disparities in Breast Cancer Surgical Outcomes among Hispanic and African American Patients. Eur. J. Surg. Oncol. 2019, 45, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Azap, R.A.; Paredes, A.Z.; Diaz, A.; Hyer, J.M.; Pawlik, T.M. The Association of Neighborhood Social Vulnerability with Surgical Textbook Outcomes among Patients Undergoing Hepatopancreatic Surgery. Surgery 2020, 168, 868–875. [Google Scholar] [CrossRef] [PubMed]
- De la Garza Ramos, R.; Benton, J.A.; Gelfand, Y.; Echt, M.; Flores Rodriguez, J.V.; Yanamadala, V.; Yassari, R. Racial Disparities in Clinical Presentation, Type of Intervention, and in-Hospital Outcomes of Patients with Metastatic Spine Disease: An Analysis of 145,809 Admissions in the United States. Cancer Epidemiol. 2020, 68, 101792. [Google Scholar] [CrossRef] [PubMed]
- Dasenbrock, H.H.; Wolinsky, J.-P.; Sciubba, D.M.; Witham, T.F.; Gokaslan, Z.L.; Bydon, A. The Impact of Insurance Status on Outcomes after Surgery for Spinal Metastases. Cancer 2012, 118, 4833–4841. [Google Scholar] [CrossRef] [PubMed]
- Musharbash, F.N.; Khalifeh, J.M.; Raad, M.; Puvanesarajah, V.; Lee, S.H.; Neuman, B.J.; Kebaish, K.M. Predicting 30-Day Mortality after Surgery for Metastatic Disease of the Spine: The H2-FAILS Score. Eur. Spine J. 2023, 32, 2513–2520. [Google Scholar] [CrossRef] [PubMed]
- Ryvlin, J.; Kim, S.W.; Hamad, M.K.; Fourman, M.S.; Eleswarapu, A.; Murthy, S.G.; Gelfand, Y.; De la Garza Ramos, R.; Yassari, R. The Prognostic Role of Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Systemic Immune-Inflammation Index on Short- and Long-Term Outcome Following Surgery for Spinal Metastases. J. Neurosurg. Spine 2024, 40, 475–484. [Google Scholar] [CrossRef] [PubMed]
- De la Garza Ramos, R.; Javed, K.; Ryvlin, J.; Gelfand, Y.; Murthy, S.; Yassari, R. Are There Racial or Socioeconomic Disparities in Ambulatory Outcome or Survival After Oncologic Spine Surgery for Metastatic Cancer? Results From a Medically Underserved Center. Clin. Orthop. 2023, 481, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Hess, K.; Bishop, A.J.; Pan, H.Y.; Christensen, E.N.; Yang, J.N.; Tannir, N.; Amini, B.; Tatsui, C.; Rhines, L.; et al. Creation of a Prognostic Index for Spine Metastasis to Stratify Survival in Patients Treated With Spinal Stereotactic Radiosurgery: Secondary Analysis of Mature Prospective Trials. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Leithner, A.; Radl, R.; Gruber, G.; Hochegger, M.; Leithner, K.; Welkerling, H.; Rehak, P.; Windhager, R. Predictive Value of Seven Preoperative Prognostic Scoring Systems for Spinal Metastases. Eur. Spine J. 2008, 17, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, C.R.; Schoenfeld, A.J.; Abu-Bonsrah, N.A.; Garzon-Muvdi, T.; Sankey, E.W.; Harris, M.B.; Sciubba, D.M. Reliability of a Spinal Metastasis Prognostic Score to Model 1-Year Survival. Spine J. 2016, 16, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- De la Garza Ramos, R.; Ryvlin, J.; Hamad, M.K.; Fourman, M.S.; Eleswarapu, A.; Gelfand, Y.; Murthy, S.G.; Shin, J.H.; Yassari, R. The Prognostic Nutritional Index (PNI) Is Independently Associated with 90-Day and 12-Month Mortality after Metastatic Spinal Tumor Surgery. Eur. Spine J. 2023, 32, 4328–4334. [Google Scholar] [CrossRef] [PubMed]
- De la Garza Ramos, R.; Ryvlin, J.; Hamad, M.K.; Fourman, M.S.; Gelfand, Y.; Murthy, S.G.; Shin, J.H.; Yassari, R. Predictive Value of Six Nutrition Biomarkers in Oncological Spine Surgery: A Performance Assessment for Prediction of Mortality and Wound Infection. J. Neurosurg. Spine 2023, 39, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Dambrós, B.F.; Kobus, R.A.; da Rosa, R.; Pereira, L.J.; Hinnig, P.d.F.; Di Pietro, P.F.; Kunradi Vieira, F.G. The Effect of Oral Dietary Interventions on Nutritional Status and Treatment Tolerance in Patients with Hematologic Neoplasms Receiving Chemotherapy: A Systematic Review. Nutr. Rev. 2023, nuad161. [Google Scholar] [CrossRef]
- Knight, S.R.; Qureshi, A.U.; Drake, T.M.; Lapitan, M.C.M.; Maimbo, M.; Yenli, E.; Tabiri, S.; Ghosh, D.; Kingsley, P.A.; Sundar, S.; et al. The Impact of Preoperative Oral Nutrition Supplementation on Outcomes in Patients Undergoing Gastrointestinal Surgery for Cancer in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Sci. Rep. 2022, 12, 12456. [Google Scholar] [CrossRef]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and Response Criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Doyle, D.J.; Hendrix, J.M.; Garmon, E.H. American Society of Anesthesiologists Classification. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Frankel, H.L.; Hancock, D.O.; Hyslop, G.; Melzak, J.; Michaelis, L.S.; Ungar, G.H.; Vernon, J.D.; Walsh, J.J. The Value of Postural Reduction in the Initial Management of Closed Injuries of the Spine with Paraplegia and Tetraplegia. I. Paraplegia 1969, 7, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.G.; DiPaola, C.P.; Ryken, T.C.; Bilsky, M.H.; Shaffrey, C.I.; Berven, S.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; Chou, D.; et al. A Novel Classification System for Spinal Instability in Neoplastic Disease: An Evidence-Based Approach and Expert Consensus from the Spine Oncology Study Group. Spine 2010, 35, E1221–E1229. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Age in years, median (IQR) | 63 (54 to 70) |
Male, % (n) | 61.8 (102) |
Race, % (n) | |
White | 17.6 (29) |
Black | 44.9 (74) |
Hispanic/Latino | 29.7 (49) |
Other | 7.8 (13) |
Primary language, % (n) | |
English | 78.8 (130) |
Non-English | 21.2 (35) |
Primary insurance, % (n) | |
Medicare | 38.2 (63) |
Medicaid | 36.4 (60) |
Private | 21.2 (35) |
Year of surgery | |
2012–2017 | 49.7 (82) |
2018–2023 | 50.3 (83) |
Social Vulnerability Index, median (IQR) | 89.8 (72.6 to 98.0) |
SVI subthemes, median (IQR) | |
Socioeconomic status | 80.4 (56.8 to 93.9) |
Household composition and disability | 70.1 (44.9 to 86.4) |
Minority status and language | 91.5 (85.0 to 97.6) |
Housing type and transportation | 87.6 (73.7 to 95.9) |
ECOG performance status, % (n) | |
0 | 5.6 (9) |
1 | 36.4 (60) |
2 | 30.3 (50) |
3 | 23.6 (39) |
4 | 4.2 (7) |
BMI in kg/m2, mean ± SD | 26.6 ± 5.6 |
ASA Class, median (IQR) | 3 (3 to 3) |
Frankel Grade, % (n) | |
Frankel D–E | 78.9 (130) |
Frankel A–C | 21.1 (35) |
Primary cancer, % (n) | |
Breast | 15.2 (25) |
Lung | 15.8 (26) |
Prostate | 20.0 (33) |
Colorectal | 4.9 (8) |
Kidney | 4.9 (8) |
Hematologic | 20.0 (33) |
Other | 17.8 (29) |
Modified Bauer score, median (IQR) | 2 (1 to 3) |
Prognostic Nutritional Index, mean ± SD | 42.5 ± 7.7 |
De novo cancer diagnosis, % (n) | 37.0 (61) |
SINS, median (IQR) | 11 (8 to 13) |
Emergency procedure, % (n) | 26.0 (43) |
Internal fixation | 88.5 (146) |
Open procedure | 73.3 (121) |
Number of instrumented levels, median (IQR) | 4 (4 to 6) |
Transpedicular decompression | 55.8 (92) |
Parameter | Clavien–Dindo Grade III–IV Complication | Odds Ratio with 95% CI | Clavien–Dindo Grade V Complication | Odds Ratio with 9% CI |
---|---|---|---|---|
Increasing Age | 0.9 (0.9 to 1.1) p = 0.52 | 1.0 (0.9 to 1.1) p = 0.21 | ||
Male vs. Female | 27% vs. 25% | 1.1 (0.5 to 2.2) p = 0.88 | 9% vs. 8% | 1.1 (0.4 to 3.5) p = 0.84 |
White vs. Not-White | 28% vs. 26% | 1.1 (0.5 to 2.7) p = 0.84 | 10% vs. 8% | 1.3 (0.3 to 5.0) p = 0.69 |
Black vs. Not-Black | 27% vs. 25% | 1.1 (0.5 to 2.2) p = 0.80 | 5% vs. 11% | 0.5 (0.2 to 1.5) p = 0.21 |
Hispanic/Latino vs. Not Hispanic/Latino | 20% vs. 29% | 0.6 (0.3 to 1.4) p = 0.29 | 8% vs. 9% | 0.9 (0.3 to 2.2) p = 0.92 |
Other race vs. Not Other race | 38% vs. 25% | 1.9 (0.6 to 6.1) p = 0.30 | 23% vs. 7% | 3.9 (0.9 to 16.1) p = 0.07 * |
Non-English primary language vs. English primary language | 17% vs. 28% | 0.5 (0.2 to 1.4) p = 0.18 | 9% vs. 8% | 1.0 (0.3 to 3.9) p = 0.98 |
Medicare insurance vs. no | 24% vs. 27% | 0.8 (0.4 to 1.7) p = 0.61 | 8% vs. 9% | 0.9 (0.3 to 2.8) p = 0.84 |
Medicaid Insurance vs. no | 25% vs. 27% | 0.9 (0.4 to 1.9) p = 0.82 | 10% vs. 8% | 1.3 (0.4 to 4.1) p = 0.60 |
Private insurance vs. no | 29% vs. 25% | 1.2 (0.5 to 2.7) p = 0.70 | 6% vs. 9% | 0.6 (0.1 to 2.8) p = 0.51 |
Year of surgery 2012–2017 vs. 2018–2023 | 28% vs. 24% | 1.2 (0.6 to 2.4) p = 0.627 | 6% vs. 11% | 0.7 (0.4 to 1.3) p = 0.31 |
Increasing SVI | 0.8 (0.2 to 3.9) p = 0.80 | 1.1 (0.1 to 13.3) p = 0.96 | ||
Increasing socioeconomic status vulnerability | 0.9 (0.3 to 3.5) p = 0.93 | 1.6 (0.2 to 13.8) p = 0.69 | ||
Increasing household composition and disability vulnerability | 1.1 (0.3 to 4.3) p = 0.92 | 5.0 (0.4 to 58.4) p = 0.20 | ||
Increasing minority status and language vulnerability | 0.6 (0.1 to 5.1) p = 0.64 | 0.5 (0.1 to 12.6) p = 0.69 | ||
Increasing housing type and transportation vulnerability | 0.9 (0.2 to 5.4) p = 0.92 | 0.9 (0.1 to 14.9) p = 0.95 | ||
Increasing ECOG performance status | 1.8 (1.2 to 2.6) p = 0.01 * | 2.3 (1.3 to 4.2) p = 0.01 * | ||
Increasing BMI | 1.0 (0.9 to 1.1) p = 0.95 | 0.8 (0.7 to 0.9) p = 0.01 * | ||
Increasing ASA Class | 1.4 (0.8 to 2.5) p = 0.31 | 2.2 (0.9 to 5.7) p = 0.09 * | ||
Frankel Grade A–C vs. D–E | 51% vs. 19% | 4.4 (2.0 to 9.8) p < 0.001 * | 17% vs. 6% | 3.2 (1.1 to 9.8) p = 0.05 * |
Breast cancer vs. no breast cancer | 16% vs. 28% | 0.5 (0.2 to 1.5) p = 0.22 | 4% vs. 9% | 0.4 (0.1 to 3.3) p = 0.40 |
Lung cancer vs. no lung cancer | 42% vs. 23% | 2.5 (1.1 to 5.9) p = 0.04 | 31% vs. 4% | 9.9 (3.1 to 31.7) p < 0.001 * |
Prostate cancer vs. no prostate cancer | 18% vs. 28% | 0.6 (0.2 to 1.5) p = 0.25 | 0% vs. 11% | Omitted |
Colorectal cancer vs. no colorectal cancer | 25% vs. 26% | 0.9 (0.2 to 4.9) p = 0.94 | 13% vs. 8% | 1.6 (0.2 to 13.9) p = 0.68 |
Kidney cancer vs. no kidney cancer | 38% vs. 25% | 1.8 (0.4 to 7.7) p = 0.46 | 13% vs. 8% | 1.6 (0.2 to 13.9) p = 0.68 |
Hematologic cancer vs. no hematologic cancer | 21% vs. 27% | 0.7 (0.3 to 1.8) p = 0.48 | 6% vs. 9% | 0.6 (0.2 to 3.0) p = 0.58 |
Other cancer vs. no other cancer | 34% vs. 24% | 1.6 (0.7 to 3.9) p = 0.26 | 4% vs. 10% | 0.3 (0.1 to 2.7) p = 0.31 |
Increasing modified Bauer score | 0.5 (0.3 to 0.8) p = 0.001 * | 0.3 (0.2 to 0.6) p < 0.001 * | ||
Increasing PNI | 0.9 (0.8 to 0.9) p = 0.005 * | 0.9 (0.8 to 0.9) p = 0.02 * | ||
De novo cancer diagnosis vs. no | 26% vs. 26% | 1.0 (0.5 to 2.1) p = 0.97 | 10% vs. 8% | 1.3 (0.4 to 3.9) p = 0.63 |
Increasing SINS | 0.9 (0.8 to 0.9) p = 0.02 * | 1.0 (0.8 to 1.2) p = 0.97 | ||
Emergency procedure vs. no | 40% vs. 21% | 2.4 (1.1 to 5.1) p = 0.02 * | 12% vs. 7% | 1.7 (0.5 to 5.2) p = 0.39 |
Internal fixation vs. no | 25% vs. 37% | 0.6 (0.2 to 1.5) p = 0.26 | 9% vs. 21% | 0.3 (0.1 to 0.9) p = 0.05 * |
Open procedure vs. no | 29% vs. 18% | 1.8 (0.8 to 4.3) p = 0.17 | 9% vs. 7% | 1.4 (0.4 to 5.2) p = 0.64 |
Increasing number of instrumented levels | 1.0 (0.8 to 1.3) p = 0.72 | 0.8 (0.5 to 1.2) p = 0.25 | ||
Transpedicular decompression vs. no | 22% vs. 32% | 0.6 (0.3 to 1.2) p = 0.16 | 5% vs. 12% | 0.4 (0.1 to 1.3) p = 0.12 |
Clavien–Dindo Grave III–IV Complications | |||
---|---|---|---|
Parameter | OR | 95% CI | p Value |
ECOG performance status | 1.2 | 0.8 to 2.0 | 0.37 |
Frankel Grade A–C | 6.2 | 2.4 to 15.5 | <0.001 * |
Lung | 0.8 | 0.2 to 2.8 | 0.76 |
Modified Bauer score | 0.6 | 0.4 to 0.9 | 0.01 * |
Prognostic Nutritional Index | 0.9 | 0.8 to 0.9 | 0.01 * |
SINS | 0.9 | 0.8 to 1.0 | 0.08 |
Emergency procedure | 2.2 | 0.8 to 6.5 | 0.15 |
Clavien–Dindo Grave V Complications | |||
Parameter | OR | 95% CI | p Value |
Other race | 6.4 | 0.7 to 57.8 | 0.10 |
ECOG performance status | 1.2 | 0.8 to 2.0 | 0.37 |
BMI | 0.9 | 0.7 to 1.0 | 0.15 |
ASA Class | 1.6 | 0.4 to 5.8 | 0.48 |
Frankel Grade A–C | 3.5 | 0.6 to 20.5 | 0.17 |
Lung | 5.2 | 1.1 to 24.5 | 0.04 * |
Modified Bauer score | 0.4 | 0.2 to 0.9 | 0.03 * |
Prognostic Nutritional Index | 0.9 | 0.8 to 0.9 | 0.04 * |
Internal fixation | 0.1 | 0.1 to 0.4 | 0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Garza Ramos, R.; Ryvlin, J.; Bangash, A.H.; Hamad, M.K.; Fourman, M.S.; Shin, J.H.; Gelfand, Y.; Murthy, S.; Yassari, R. Predictors of Clavien–Dindo Grade III–IV or Grade V Complications after Metastatic Spinal Tumor Surgery: An Analysis of Sociodemographic, Socioeconomic, Clinical, Oncologic, and Operative Parameters. Cancers 2024, 16, 2741. https://doi.org/10.3390/cancers16152741
De la Garza Ramos R, Ryvlin J, Bangash AH, Hamad MK, Fourman MS, Shin JH, Gelfand Y, Murthy S, Yassari R. Predictors of Clavien–Dindo Grade III–IV or Grade V Complications after Metastatic Spinal Tumor Surgery: An Analysis of Sociodemographic, Socioeconomic, Clinical, Oncologic, and Operative Parameters. Cancers. 2024; 16(15):2741. https://doi.org/10.3390/cancers16152741
Chicago/Turabian StyleDe la Garza Ramos, Rafael, Jessica Ryvlin, Ali Haider Bangash, Mousa K. Hamad, Mitchell S. Fourman, John H. Shin, Yaroslav Gelfand, Saikiran Murthy, and Reza Yassari. 2024. "Predictors of Clavien–Dindo Grade III–IV or Grade V Complications after Metastatic Spinal Tumor Surgery: An Analysis of Sociodemographic, Socioeconomic, Clinical, Oncologic, and Operative Parameters" Cancers 16, no. 15: 2741. https://doi.org/10.3390/cancers16152741
APA StyleDe la Garza Ramos, R., Ryvlin, J., Bangash, A. H., Hamad, M. K., Fourman, M. S., Shin, J. H., Gelfand, Y., Murthy, S., & Yassari, R. (2024). Predictors of Clavien–Dindo Grade III–IV or Grade V Complications after Metastatic Spinal Tumor Surgery: An Analysis of Sociodemographic, Socioeconomic, Clinical, Oncologic, and Operative Parameters. Cancers, 16(15), 2741. https://doi.org/10.3390/cancers16152741