Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Technical Aspects
2.1. AI, ML, and DL
2.2. Radiomics
3. Materials and Methods
3.1. Literature Search Strategy
3.2. Study Screening and Selection Criteria
3.3. Data Extraction and Reporting
- Details of the research article: authors, publication date, journal name;
- Primary clinical application: detection, classification, segmentation, treatment, or prognosis prediction;
- Study specifics: study type, patient characteristics or imaging modalities, body parts scanned, and specific bone areas segmented for analysis (e.g., internal or external datasets);
- Machine learning methodologies utilized: radiomics, artificial neural networks, convolutional neural networks, etc.
4. Results
4.1. Search Results
4.2. Performance Assessment
- Sensitivity (Recall) and Specificity: sensitivity (recall) measures the proportion of true positives (spinal tumors correctly identified by the AI system) out of all actual positives (all spinal tumors present in the CT images) [57]. Specificity, on the other hand, quantifies the ability of the AI system to correctly identify true negatives (normal spinal conditions) out of all actual negatives (all non-pathological conditions). These metrics are essential to assessing how well AI algorithms detect both positive and negative cases in spinal oncology;
- Accuracy and Precision: accuracy indicates the overall correctness of the AI system’s predictions, measuring the ratio of correctly predicted cases (both true positives and true negatives) to the total number of cases evaluated. Precision, meanwhile, focuses on the AI system’s ability to accurately identify positive cases among all predicted positive instances, minimizing false positives. These metrics provide a comprehensive view of the AI algorithm’s reliability and correctness in clinical diagnosis;
- Area Under the Curve (AUC): AUC evaluates the performance of AI models in binary classification tasks [58,59], such as distinguishing between diseased and healthy spinal conditions based on CT imaging features. A high AUC value indicates that the AI model effectively ranks diseased cases higher than healthy ones, demonstrating its discriminatory power in spinal oncology diagnostics;
- Figure of Merit (FOM) and F1-score [60]: Figure of Merit encompasses a range of metrics including sensitivity, specificity, accuracy, and precision, tailored to the specific diagnostic challenges presented by spinal tumors. F1-score, a harmonic mean of precision and recall, balances the trade-off between these metrics and is particularly useful in scenarios where there is an imbalance between positive and negative cases in the dataset [61]. A model with a high F1 score indicates both good precision and recall, reflecting a robust model;
- The kappa statistic [62], often denoted as κ, is a measure used to assess the level of agreement between two or more raters or classifiers beyond what would be expected by chance alone. It is particularly useful in the context of classification tasks, where it evaluates how well the AI system’s predictions align with the true classifications compared to random chance [63]. Kappa values range from −1 to 1. A kappa value of 1 indicates perfect agreement between the raters, 0 indicates agreement no better than chance, and negative values suggest worse-than-chance agreement. High kappa values indicate that the AI system’s predictions are consistently aligned with expert assessments or ground truth, which is vital for the system’s clinical applicability and trustworthiness.
Authors | AI Method | Publication Year | Main Objectives | Journal | Main Task | Sample Size (No. of CTs/Patients) | Performance of AI Model |
---|---|---|---|---|---|---|---|
Tatjana W. et al. [64] | SVM classifier | 2012 | Using supervised learning methods to detect sclerotic bone metastases in CT imaging. | SPIE Medical Imaging | Detection | 22 | Sensitivity: 71.2–87.0% |
Hammon M. et al. [65] | CADe (RF classifier) | 2013 | Automated detection of osteolytic and osteoblastic spine metastases on CT. | European Radiology | Detection | 134 | Sensitivity 83.0% (lytic), 88.0% (blastic) |
Burns J. et al. [66] | CADe (SVM classifier) | 2013 | Automated detection of sclerotic metastases in the thoracolumbar spine on CT | Radiology | Detection | 59 | Sensitivity 79.0–90.0% |
Roth. H. et al. [67] | CNN (DropConnect) | 2014 | Using Deep CNN methods to detect sclerotic spinal metastases on CT imaging. | Recent Advances in Computational Methods and Clinical Applications for Spine Imaging | Detection | 59 | Sensitivity: 79.0%; AUC 0.834 |
Masoudi S et al. [68] | ResNet-50 with DC-GAN augmentation | 2020 | Detect and classify bone lesions in CT images of prostate cancer patients. | Journal of Clinical Oncology | Detection and Classification (Benign vs. malignant) | 56 | Sensitivity: 81.0%; accuracy 89.0% |
Fan X et al. [69] | AlexNet | 2021 | Using Deep Learning Methods to Identify Spinal Metas in Lung Cancer using CT Images. | Hindawi | Detection | 36 | Sensitivity: 66.0–81.4% |
Noguchi S. et al. [70] | 2D U-Net, 3D U-Net, and ResNet | 2022 | Deep learning to improve radiologists’ performance in spinal metastases detection on CT | European Radiology | Detection | 732 | Sensitivity: 82.4–89.6%; improved radiologist’s sensitivity by 15.3%; reduced mean interpretation time by 83 s (p < 0.05). |
Hoshiai S. et al. [71] | DL Model | 2022 | Detecting vertebral bone metastases on CT | European Journal of Radiology | Detection | 130 | FOM from 0.848 to 0.876 (radiologist) and from 0.752 to 0.799 (resident), (p < 0.05 for both) |
Musa A. et al. [72] | PyRadiomics | 2022 | Detecting prostate cancer bone/spinal metastases invisible in CT | Current Medical Imaging | Detection | 53 | Accuracy 85.0%; sensitivity 78.0–91.0%; specificity: 88.0–93.0% |
Gilberg L. et al. [73] | DLA (U-Net) | 2023 | Deep learning to improve Radiologist’s detection of spinal malignancies in CT imaging. | Applied Sciences | Detection | 32 | Sensitivity: 75.0%; improved radiologist’s sensitivity by 20.8% |
Huo T. et al. [74] | 3D U-Net (DCNN) | 2023 | Deep learning to improve radiologists’ performance in lung cancer spinal metastases detection on CT | Frontiers in Oncology | Detection | 126 | Sensitivity: 89.4%; improved radiologist’s sensitivity by 22.2% and accuracy of 26.2% |
Koike Y. et al. [75] | YOLOv5m and InceptionV3 | 2023 | AI-aided lytic spinal bone metastasis detection on CT scans | International Journal of Computer Assisted Radiology and Surgery | Detection | 2125 | Accuracy 87.2%; precision 94.8%; recall: 74.1%; F1-score 74.1%; AUC 0.940 |
Motohasi M. et al. [7] | U-Net (DeepLabv3+) | 2024 | Using Deep Learning Algorithm to Detect Spinal Metastases on CT Images. | Spine | Detection | 435 | Sensitivity: 75.0–78.0%; precision: 36.0–68.0%; F1 score: 0.48–0.72 |
Chmelik J. et al. [76] | CNN | 2018 | Segmentation and classification of metastatic spinal lesions in 3D CT data | Medical Image Analysis | Classification (Benign vs. malignant) | 31 | AUC 0.780–0.800; sensitivity: 71.0–74.0%; specificity: 82.0–88.0% |
Li Y. et al. [77] | ResNet50 | 2021 | Differentiate benign and malignant vertebral fracture on CT using deep learning | European Radiology | Classification (Benign vs. malignant) | 433 | Sensitivity: 95.0%; specificity: 80.0%; accuracy: 88.0% |
Masoudi S. et al. [78] | 2D ResNet-50, ResNeXt-50, 3D ResNet-18, 3D ResNet-50 | 2021 | Differentiate benign versus malignant spinal lesions on CT. | IEEE Access | Classification (Benign vs. malignant) | 114 | Accuracy: 79.4–92.2%; F1-Score: 0.755–0.923 |
Hallinan J. et al. [79] | R-CNN (ResNet50) | 2022 | Deep learning algorithm for grading cord compression secondary to spinal metastasis/epidural disease on CT | Cancers | Classification (Stage/Grade) | 444 | kappas (κ: 0.873–0.911); AUC: 0.953–0.971; sensitivity: 92.6–98.0%; specificity: 94.8–99.8% |
Naseri H. et al. [80] | PyRadiomics | 2022 | Radiomics-based machine learning models to distinguish between metastatic and healthy bone. | Scientific Report | Classification (Benign vs. malignant) | 170 | AUC 0.640–0.950 |
Park, T. et al. [81] | U-Net (CNN) | 2022 | Automated segmentation of the fractured vertebrae on CT and using radiomics to predict benign versus malignant. | Nature | Classification (Benign vs. malignant) | 158 | Dice similarity coefficient: 0.930–0.940; AUC 0.800–0.930 |
Wang, Q. et al. [82] | Research Portal V1.1 | 2022 | Using Machine learning techniques to predict RANKL expression of Spinal GCTB. | Cancers | Classification (Predict biomarkers) | 107 | AUC: 0.658–0.880 sensitivity: 65.7–97.9%; specificity: 23.3–71.9%; accuracy: 64.6–80.2% |
Wang, Q. et al. [83] | PyRadiomics | 2022 | Clinical and CT-Based Radiomics based techniques to predict p53 and VEGF expression in Spinal GCBT. | Frontiers in Oncology | Classification (Predict biomarkers) | 80 | AUC 0.790–0.880 |
Hallinan J. et al. [84] | R-CNN (ResNet50) | 2023 | Deep learning method to diagnose epidural spinal cord compression using thoracolumbar CT. | European Spine Journal | Classification (Stage/Grade) | 223 | kappa (κ = 0.879); sensitivity: 91.8%; specificity: 92.0%; AUC: 0.919 |
Hallinan J. et al. [85] | R-CNN (ResNeXt50) | 2023 | Assess for metastatic spinal cord compression (mainly epidural extension) on CT imaging with external validation | Frontiers in Oncology | Classification (Stage/Grade) | 420 | Almost-perfect inter-rater agreement (κ = 0.813); sensitivity: 94.0% |
Duan S. et al. [86] | Inception_V3 | 2023 | Differentiating benign and malignant vertebral compression fracture on spinal CT imaging. | European Journal of Radiology | Classification (Benign vs. malignant) | 280 | AUC: 0.890–0.990; accuracy: 88.0–99.0% |
Gui C. et al. [87] | PyRadiomics | 2021 | Radiomic modeling to predict risk of vertebral compression fracture after SBRT for spinal metastases | Journal of Neurosurgery | Prognosis (Predicting complications) | 74 | Sensitivity: 84.4%; specificity 80.0%, AUC 0.844–0.878 of 0.844, specificity of 0.800 |
Wang, Q. et al. [88] | PyRadiomics | 2021 | Using Radiomics-based technique to predict recurrence in spinal GCBT from pre-operative CT imaging. | Journal of Bone Oncology | Prognosis (Predict treatment outcome) | 62 | Accuracy: 89.0%; AUC 0.780 (predicting recurrence) |
Massaad E. et al. [89] | CNN (Densenet and U-Net) | 2022 | Using machine learning methods to derive body composition analysis to predict complications in spine tumor surgery. | Journal of Neurosurgery Spine | Prognosis (Predict treatment outcome) | 484 | Body composition analysis using machine learning help predict risk for inferior outcomes. |
Seou Y. et al. [90] | PyRadiomics | 2023 | Radiomics-based prediction of vertebral compression fracture prior to spinal SBRT from planning CT. | European Spine Journal | Prognosis (Predicting complications) | 85 | Accuracy: 78.8–82.9%; precision: 60.0–62.5%; F1 score: 0.573–0.650 |
Delrieu L. et al. [91] | U-Net | 2024 | Automated body composition analysis using L3 as reference on CT scans to predict treatment outcome in cancer patients. | Frontiers in Nuclear Medicine | Prognosis (Treatment Outcome) | 352 | DICE similarity coefficient: 0.850–0.940 |
Khalid S. et al. [92] | DL Model | 2024 | Detection of sarcopenic obesity and association with adverse outcomes in patients undergoing surgical treatment for spinal metastases | Journal of Neurosurgery Spine | Prognosis (Predicting complications) | 62 | DL detected sarcopenia patients increased odds of non-home discharge, readmission, and postoperative mortality. |
Sebastiaan et al. [93] | DeepMedic | 2022 | Clinical Utility of CNN for treatment planning in spinal metastases. | Physics and Imaging in Radiation Oncology | Treatment Planning | 782 | DSC 96.7% HD: 3.6 mm. Acceptable: 77.0% |
Netherton T. et al. [94] | CNN (X-Net) | 2022 | Automating Treatment Planning for Spinal Radiation Therapy using CT Imaging | International Journal of Oncology, Biology and Physics | Treatment Planning | 220 | Dice-similarity coefficient: 0.850 (cervical), 0.903 (thoracic), 93.7 (lumbar); AUC: 0.820; end-to-end treatment planning time <8 min |
Hernandez S. et al. [95] | nn-UNet | 2023 | Automating Treatment Planning for Paediatric Craniospinal Radiation Therapy using CT. | Paediatric Blood Cancer | Treatment Planning | 143 | Dice similarity coefficient: 0.650–0.980; end-to-end treatment planning time: 3.5 ± 0.4 min |
4.3. Applications
4.3.1. Detection of Spinal Lesions
4.3.2. Classification of Spinal Lesions
4.3.3. Prognosis and Predicting Complications
4.3.4. Treatment Planning
5. Discussion
5.1. Interpretation and Implications of Findings
5.2. Integration into Clinical Practice
5.3. Other Potential Applications
5.3.1. Improving Image Quality
5.3.2. Predicting Primary Malignancy from Spinal Metastases
5.3.3. Quantifying Tumor Burden to Predict Treatment Response
5.4. Study Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mundy, G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2002, 2, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Witham, T.F.; Khavkin, Y.A.; Gallia, G.L.; Wolinsky, J.P.; Gokaslan, Z.L. Surgery insight: Current management of epidural spinal cord compression from metastatic spine disease. Nat. Clin. Pract. Neurol. 2006, 2, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 2001, 27, 165–176. [Google Scholar] [CrossRef]
- Cecchini, M.G.; Wetterwald, A.; van der Pluijm, G.; Thalmann, G.N. Molecular and Biological Mechanisms of Bone Metastasis. EAU Update Ser. 2005, 3, 214–226. [Google Scholar] [CrossRef]
- Cuccurullo, V.; Cascini, G.L.; Tamburrini, O.; Rotondo, A.; Mansi, L. Bone metastases radiopharmaceuticals: An overview. Curr. Radiopharm. 2013, 6, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.H.; Tsai, Y.Y.; Hoffe, S.E. Overview of diagnosis and management of metastatic disease to bone. Cancer Control 2012, 19, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, M.; Funauchi, Y.; Adachi, T.; Fujioka, T.; Otaka, N.; Kamiko, Y.; Okada, T.; Tateishi, U.; Okawa, A.; Yoshii, T.; et al. A New Deep Learning Algorithm for Detecting Spinal Metastases on Computed Tomography Images. Spine 2024, 49, 390–397. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, J.; Duan, Z.; Liao, Z.; Wang, S.; Liu, W. Artificial Intelligence in Spinal Imaging: Current Status and Future Directions. Int. J. Environ. Res. Public Health 2022, 19, 11708. [Google Scholar] [CrossRef]
- Martín-Noguerol, T.; Oñate Miranda, M.; Amrhein, T.J.; Paulano-Godino, F.; Xiberta, P.; Vilanova, J.C.; Luna, A. The role of Artificial intelligence in the assessment of the spine and spinal cord. Eur. J. Radiol. 2023, 161, 110726. [Google Scholar] [CrossRef]
- Kim, G.U.; Chang, M.C.; Kim, T.U.; Lee, G.W. Diagnostic Modality in Spine Disease: A Review. Asian Spine J. 2020, 14, 910–920. [Google Scholar] [CrossRef]
- Ariyaratne, S.; Jenko, N.; Iyengar, K.P.; James, S.; Mehta, J.; Botchu, R. Primary Osseous Malignancies of the Spine. Diagnostics 2023, 13, 1801. [Google Scholar] [CrossRef] [PubMed]
- Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J. Am. Coll. Radiol. 2018, 15, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Oren, O.; Gersh, B.J.; Bhatt, D.L. Artificial intelligence in medical imaging: Switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit. Health 2020, 2, e486–e488. [Google Scholar] [CrossRef]
- Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. Radiographics 2017, 37, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Summers, R.M. Machine learning and radiology. Med. Image Anal. 2012, 16, 933–951. [Google Scholar] [CrossRef]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef]
- Cheng, P.M.; Montagnon, E.; Yamashita, R.; Pan, I.; Cadrin-Chênevert, A.; Romero, F.P.; Chartrand, G.; Kadoury, S.; Tang, A. Deep Learning: An Update for Radiologists. RadioGraphics 2021, 41, 1427–1445. [Google Scholar] [CrossRef]
- Zaharchuk, G.; Gong, E.; Wintermark, M.; Rubin, D.; Langlotz, C.P. Deep Learning in Neuroradiology. Am. J. Neuroradiol. 2018, 39, 1776–1784. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Jussupow, E.; Spohrer, K.; Heinzl, A. Radiologists’ Usage of Diagnostic AI Systems. Bus. Inf. Syst. Eng. 2022, 64, 293–309. [Google Scholar] [CrossRef]
- Kaka, H.; Zhang, E.; Khan, N. Artificial intelligence and deep learning in neuroradiology: Exploring the new frontier. Can. Assoc. Radiol. J. 2021, 72, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Daugaard Jørgensen, M.; Antulov, R.; Hess, S.; Lysdahlgaard, S. Convolutional neural network performance compared to radiologists in detecting intracranial hemorrhage from brain computed tomography: A systematic review and meta-analysis. Eur. J. Radiol. 2022, 146, 110073. [Google Scholar] [CrossRef]
- Mutasa, S.; Sun, S.; Ha, R. Understanding artificial intelligence based radiology studies: CNN architecture. Clin. Imaging 2021, 80, 72–76. [Google Scholar] [CrossRef]
- Manakitsa, N.; Maraslidis, G.S.; Moysis, L.; Fragulis, G.F. A Review of Machine Learning and Deep Learning for Object Detection, Semantic Segmentation, and Human Action Recognition in Machine and Robotic Vision. Technologies 2024, 12, 15. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—”How-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Shur, J.D.; Doran, S.J.; Kumar, S.; ap Dafydd, D.; Downey, K.; O’Connor, J.P.B.; Papanikolaou, N.; Messiou, C.; Koh, D.-M.; Orton, M.R. Radiomics in Oncology: A Practical Guide. RadioGraphics 2021, 41, 1717–1732. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.J. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol. 2016, 2, 1636–1642. [Google Scholar] [CrossRef]
- Rogers, W.; Thulasi Seetha, S.; Refaee, T.A.G.; Lieverse, R.I.Y.; Granzier, R.W.Y.; Ibrahim, A.; Keek, S.A.; Sanduleanu, S.; Primakov, S.P.; Beuque, M.P.L.; et al. Radiomics: From qualitative to quantitative imaging. Br. J. Radiol. 2020, 93, 20190948. [Google Scholar] [CrossRef]
- Cobo, M.; Menéndez Fernández-Miranda, P.; Bastarrika, G.; Lloret Iglesias, L. Enhancing radiomics and Deep Learning systems through the standardization of medical imaging workflows. Sci. Data 2023, 10, 732. [Google Scholar] [CrossRef]
- Avery, E.; Sanelli, P.C.; Aboian, M.; Payabvash, S. Radiomics: A Primer on Processing Workflow and Analysis. Semin. Ultrasound CT MR 2022, 43, 142–146. [Google Scholar] [CrossRef]
- Sharma, N.; Aggarwal, L.M. Automated medical image segmentation techniques. J. Med. Phys. 2010, 35, 3–14. [Google Scholar] [CrossRef]
- Rana, M.; Bhushan, M. Machine learning and deep learning approach for medical image analysis: Diagnosis to detection. Multimed. Tools Appl. 2023, 82, 26731–26769. [Google Scholar] [CrossRef] [PubMed]
- Valladares, A.; Beyer, T.; Rausch, I. Physical imaging phantoms for simulation of tumor heterogeneity in PET, CT, and MRI: An overview of existing designs. Med. Phys. 2020, 47, 2023–2037. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.; Olstad, C.F.; Lee, C.I.; Hovda, T.; Hoff, S.R.; Martiniussen, M.A.; Mikalsen, K.; Lund-Hanssen, H.; Solli, H.S.; Silberhorn, M.; et al. Performance of an Artificial Intelligence System for Breast Cancer Detection on Screening Mammograms from BreastScreen Norway. Radiol. Artif. Intell. 2024, 6, e230375. [Google Scholar] [CrossRef]
- Khawaja, A.; Bartholmai, B.J.; Rajagopalan, S.; Karwoski, R.A.; Varghese, C.; Maldonado, F.; Peikert, T. Do we need to see to believe?—Radiomics for lung nodule classification and lung cancer risk stratification. J. Thorac. Dis. 2020, 12, 3303–3316. [Google Scholar] [CrossRef] [PubMed]
- Astaraki, M.; Yang, G.; Zakko, Y.; Toma-Dasu, I.; Smedby, Ö.; Wang, C. A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images. Front. Oncol. 2021, 11, 737368. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Z.; Meng, L.; Yang, J.; Liu, Y.; Zhang, Y.; Peng, H.; Li, J.; Xiao, G.; Zhang, Z.; et al. Handcrafted and Deep Learning-Based Radiomic Models Can Distinguish GBM from Brain Metastasis. J. Oncol. 2021, 2021, 5518717. [Google Scholar] [CrossRef]
- Salmanpour, M.R.; Rezaeijo, S.M.; Hosseinzadeh, M.; Rahmim, A. Deep versus Handcrafted Tensor Radiomics Features: Prediction of Survival in Head and Neck Cancer Using Machine Learning and Fusion Techniques. Diagnostics 2023, 13, 1696. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Li, M.; Aparasu, R.R. Application of machine learning in predicting survival outcomes involving real-world data: A scoping review. BMC Med. Res. Methodol. 2023, 23, 268. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Mo, M.; Wang, Z.; Zhou, C.; Shen, J.; Yuan, J.; He, Y.; Zheng, Y. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study. JMIR Med. Inform. 2022, 10, e33440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sejdić, E. Radiological images and machine learning: Trends, perspectives, and prospects. Comput. Biol. Med. 2019, 108, 354–370. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Puttagunta, M.; Ravi, S. Medical image analysis based on deep learning approach. Multimed. Tools Appl. 2021, 80, 24365–24398. [Google Scholar] [CrossRef]
- Arbet, J.; Brokamp, C.; Meinzen-Derr, J.; Trinkley, K.E.; Spratt, H.M. Lessons and tips for designing a machine learning study using EHR data. J. Clin. Transl. Sci. 2020, 5, e21. [Google Scholar] [CrossRef]
- Zhang, A.; Xing, L.; Zou, J.; Wu, J.C. Shifting machine learning for healthcare from development to deployment and from models to data. Nat. Biomed. Eng. 2022, 6, 1330–1345. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019, 9, 1303–1322. [Google Scholar] [CrossRef]
- Limkin, E.J.; Sun, R.; Dercle, L.; Zacharaki, E.I.; Robert, C.; Reuzé, S.; Schernberg, A.; Paragios, N.; Deutsch, E.; Ferté, C. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 2017, 28, 1191–1206. [Google Scholar] [CrossRef]
- Li, S.; Zhou, B. A review of radiomics and genomics applications in cancers: The way towards precision medicine. Radiat. Oncol. 2022, 17, 217. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef] [PubMed]
- Tanguay, W.; Acar, P.; Fine, B.; Abdolell, M.; Gong, B.; Cadrin-Chênevert, A.; Chartrand-Lefebvre, C.; Chalaoui, J.; Gorgos, A.; Chin, A.S.-L.; et al. Assessment of Radiology Artificial Intelligence Software: A Validation and Evaluation Framework. Can. Assoc. Radiol. J. 2023, 74, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Huang, S.; Brooks, M.; Lee, M.J.; Asadi, H. Peering into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. Am. J. Roentgenol. 2019, 212, 38–43. [Google Scholar] [CrossRef]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Obuchowski, N.A. Receiver operating characteristic curves and their use in radiology. Radiology 2003, 229, 3–8. [Google Scholar] [CrossRef]
- Powers, D. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. Int. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Czodrowski, P. Count on kappa. J. Comput.-Aided Mol. Des. 2014, 28, 1049–1055. [Google Scholar] [CrossRef]
- Yang, F.; Zamzmi, G.; Angara, S.; Rajaraman, S.; Aquilina, A.; Xue, Z.; Jaeger, S.; Papagiannakis, E.; Antani, S.K. Assessing Inter-Annotator Agreement for Medical Image Segmentation. IEEE Access 2023, 11, 21300–21312. [Google Scholar] [CrossRef]
- Wiese, T.; Yao, J.; Burns, J.E.; Summers, R.M. Detection of sclerotic bone metastases in the spine using watershed algorithm and graph cut. In Proceedings of the SPIE Medical Imaging 2012, San Diego, CA, USA, 4–9 February 2012; SPIE: Bellingham, WA, USA, 2012; Volume 831512. [Google Scholar] [CrossRef]
- Hammon, M.; Dankerl, P.; Tsymbal, A.; Wels, M.; Kelm, M.; May, M.; Suehling, M.; Uder, M.; Cavallaro, A. Automatic detection of lytic and blastic thoracolumbar spine metastases on computed tomography. Eur. Radiol. 2013, 23, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.E.; Yao, J.; Wiese, T.S.; Muñoz, H.E.; Jones, E.C.; Summers, R.M. Automated detection of sclerotic metastases in the thoracolumbar spine at CT. Radiology 2013, 268, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Roth, H.R.; Yao, J.; Lu, L.; Stieger, J.; Burns, J.E.; Summers, R.M. Detection of Sclerotic Spine Metastases via Random Aggregation of Deep Convolutional Neural Network Classifications. In Recent Advances in Computational Methods and Clinical Applications for Spine Imaging; Yao, J., Glocker, B., Klinder, T., Li, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–12. [Google Scholar]
- Masoudi, S.; Mehralivand, S.; Harmon, S.; Walker, S.; Pinto, P.A.; Wood, B.J.; Citrin, D.E.; Karzai, F.; Gulley, J.L.; Madan, R.A.; et al. Artificial intelligence assisted bone lesion detection and classification in computed tomography scans of prostate cancer patients. J. Clin. Oncol. 2020, 38, e17567. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, X.; Zhang, Z.; Jiang, Y. Deep Learning-Based Identification of Spinal Metastasis in Lung Cancer Using Spectral CT Images. Sci. Program. 2021, 2021, 2779390. [Google Scholar] [CrossRef]
- Noguchi, S.; Nishio, M.; Sakamoto, R.; Yakami, M.; Fujimoto, K.; Emoto, Y.; Kubo, T.; Iizuka, Y.; Nakagomi, K.; Miyasa, K.; et al. Deep learning-based algorithm improved radiologists’ performance in bone metastases detection on CT. Eur. Radiol. 2022, 32, 7976–7987. [Google Scholar] [CrossRef]
- Hoshiai, S.; Hanaoka, S.; Masumoto, T.; Nomura, Y.; Mori, K.; Okamoto, Y.; Saida, T.; Ishiguro, T.; Sakai, M.; Nakajima, T. Effectiveness of temporal subtraction computed tomography images using deep learning in detecting vertebral bone metastases. Eur. J. Radiol. 2022, 154, 110445. [Google Scholar] [CrossRef]
- Musa Aguiar, P.; Zarantonello, P.; Aparisi Gómez, M.P. Differentiation between Osteoporotic and Neoplastic Vertebral Fractures: State of the Art and Future Perspectives. Curr. Med. Imaging 2022, 18, 187–207. [Google Scholar] [CrossRef]
- Gilberg, L.; Teodorescu, B.; Maerkisch, L.; Baumgart, A.; Ramaesh, R.; Ataide, E.; Koç, A. Deep Learning Enhances Radiologists’ Detection of Potential Spinal Malignancies in CT Scans. Appl. Sci. 2023, 13, 8140. [Google Scholar] [CrossRef]
- Huo, T.; Xie, Y.; Fang, Y.; Wang, Z.; Liu, P.; Duan, Y.; Zhang, J.; Wang, H.; Xue, M.; Liu, S.; et al. Deep learning-based algorithm improves radiologists’ performance in lung cancer bone metastases detection on computed tomography. Front. Oncol. 2023, 13, 1125637. [Google Scholar] [CrossRef] [PubMed]
- Koike, Y.; Yui, M.; Nakamura, S.; Yoshida, A.; Takegawa, H.; Anetai, Y.; Hirota, K.; Tanigawa, N. Artificial intelligence-aided lytic spinal bone metastasis classification on CT scans. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Chmelik, J.; Jakubicek, R.; Walek, P.; Jan, J.; Ourednicek, P.; Lambert, L.; Amadori, E.; Gavelli, G. Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med. Image Anal. 2018, 49, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Zhang, E.; Chen, Y.; Wang, Q.; Liu, K.; Yu, H.J.; Yuan, H.; Lang, N.; Su, M.Y. Differential diagnosis of benign and malignant vertebral fracture on CT using deep learning. Eur. Radiol. 2021, 31, 9612–9619. [Google Scholar] [CrossRef]
- Masoudi, S.; Mehralivand, S.; Harmon, S.A.; Lay, N.; Lindenberg, L.; Mena, E.; Pinto, P.A.; Citrin, D.E.; Gulley, J.L.; Wood, B.J.; et al. Deep Learning Based Staging of Bone Lesions From Computed Tomography Scans. IEEE Access 2021, 9, 87531–87542. [Google Scholar] [CrossRef]
- Hallinan, J.T.; Zhu, L.; Zhang, W.; Kuah, T.; Lim, D.S.; Low, X.Z.; Cheng, A.J.L.; Eide, S.E.; Ong, H.Y.; Muhamat Nor, F.E.; et al. Deep Learning Model for Grading Metastatic Epidural Spinal Cord Compression on Staging CT. Cancers 2022, 14, 3219. [Google Scholar] [CrossRef]
- Naseri, H.; Skamene, S.; Tolba, M.; Faye, M.D.; Ramia, P.; Khriguian, J.; Patrick, H.; Andrade Hernandez, A.X.; David, M.; Kildea, J. Radiomics-based machine learning models to distinguish between metastatic and healthy bone using lesion-center-based geometric regions of interest. Sci. Rep. 2022, 12, 9866. [Google Scholar] [CrossRef]
- Park, T.; Yoon, M.A.; Cho, Y.C.; Ham, S.J.; Ko, Y.; Kim, S.; Jeong, H.; Lee, J. Automated segmentation of the fractured vertebrae on CT and its applicability in a radiomics model to predict fracture malignancy. Sci. Rep. 2022, 12, 6735. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Qin, S.; Liu, X.; Liu, K.; Xin, P.; Zhao, W.; Yuan, H.; Lang, N. Prognostic Value and Quantitative CT Analysis in RANKL Expression of Spinal GCTB in the Denosumab Era: A Machine Learning Approach. Cancers 2022, 14, 5201. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Zhang, E.; Xing, X.; Chen, Y.; Nie, K.; Yuan, H.; Su, M.Y.; Lang, N. A Multiparametric Method Based on Clinical and CT-Based Radiomics to Predict the Expression of p53 and VEGF in Patients with Spinal Giant Cell Tumor of Bone. Front. Oncol. 2022, 12, 894696. [Google Scholar] [CrossRef]
- Hallinan, J.; Zhu, L.; Tan, H.W.N.; Hui, S.J.; Lim, X.; Ong, B.W.L.; Ong, H.Y.; Eide, S.E.; Cheng, A.J.L.; Ge, S.; et al. A deep learning-based technique for the diagnosis of epidural spinal cord compression on thoracolumbar CT. Eur. Spine J. 2023, 32, 3815–3824. [Google Scholar] [CrossRef]
- Hallinan, J.T.P.D.; Zhu, L.; Zhang, W.; Ge, S.; Muhamat Nor, F.E.; Ong, H.Y.; Eide, S.E.; Cheng, A.J.L.; Kuah, T.; Lim, D.S.W.; et al. Deep learning assessment compared to radiologist reporting for metastatic spinal cord compression on CT. Front. Oncol. 2023, 13, 1151073. [Google Scholar] [CrossRef]
- Duan, S.; Hua, Y.; Cao, G.; Hu, J.; Cui, W.; Zhang, D.; Xu, S.; Rong, T.; Liu, B. Differential diagnosis of benign and malignant vertebral compression fractures: Comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics. Eur. J. Radiol. 2023, 165, 110899. [Google Scholar] [CrossRef]
- Gui, C.; Chen, X.; Sheikh, K.; Mathews, L.; Lo, S.L.; Lee, J.; Khan, M.A.; Sciubba, D.M.; Redmond, K.J. Radiomic modeling to predict risk of vertebral compression fracture after stereotactic body radiation therapy for spinal metastases. J. Neurosurg. Spine 2021, 36, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Zhang, E.; Xing, X.; Chen, Y.; Su, M.Y.; Lang, N. Prediction of the early recurrence in spinal giant cell tumor of bone using radiomics of preoperative CT: Long-term outcome of 62 consecutive patients. J. Bone Oncol. 2021, 27, 100354. [Google Scholar] [CrossRef] [PubMed]
- Massaad, E.; Bridge, C.P.; Kiapour, A.; Fourman, M.S.; Duvall, J.B.; Connolly, I.D.; Hadzipasic, M.; Shankar, G.M.; Andriole, K.P.; Rosenthal, M.; et al. Evaluating frailty, mortality, and complications associated with metastatic spine tumor surgery using machine learning-derived body composition analysis. J. Neurosurg. Spine 2022, 37, 263–273. [Google Scholar] [CrossRef]
- Seol, Y.; Song, J.H.; Choi, K.H.; Lee, Y.K.; Choi, B.O.; Kang, Y.N. Predicting vertebral compression fracture prior to spinal SBRT using radiomics from planning CT. Eur. Spine J. 2023, 33, 3221–3229. [Google Scholar] [CrossRef]
- Delrieu, L.; Blanc, D.; Bouhamama, A.; Reyal, F.; Pilleul, F.; Racine, V.; Hamy, A.S.; Crochet, H.; Marchal, T.; Heudel, P.E. Automatic deep learning method for third lumbar selection and body composition evaluation on CT scans of cancer patients. Front. Nucl. Med. 2024, 3, 1292676. [Google Scholar] [CrossRef]
- Khalid, S.I.; Massaad, E.; Kiapour, A.; Bridge, C.P.; Rigney, G.; Burrows, A.; Shim, J.; de la Garza Ramos, R.; Tobert, D.G.; Schoenfeld, A.J.; et al. Machine learning-based detection of sarcopenic obesity and association with adverse outcomes in patients undergoing surgical treatment for spinal metastases. J. Neurosurg. Spine 2024, 40, 291–300. [Google Scholar] [CrossRef]
- Arends, S.R.S.; Savenije, M.H.F.; Eppinga, W.S.C.; van der Velden, J.M.; van den Berg, C.A.T.; Verhoeff, J.J.C. Clinical utility of convolutional neural networks for treatment planning in radiotherapy for spinal metastases. Phys. Imaging Radiat. Oncol. 2022, 21, 42–47. [Google Scholar] [CrossRef]
- Netherton, T.J.; Nguyen, C.; Cardenas, C.E.; Chung, C.; Klopp, A.H.; Colbert, L.E.; Rhee, D.J.; Peterson, C.B.; Howell, R.; Balter, P.; et al. An Automated Treatment Planning Framework for Spinal Radiation Therapy and Vertebral-Level Second Check. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, S.; Nguyen, C.; Parkes, J.; Burger, H.; Rhee, D.J.; Netherton, T.; Mumme, R.; Vega, J.G.; Duryea, J.; Leone, A.; et al. Automating the treatment planning process for 3D-conformal pediatric craniospinal irradiation therapy. Pediatr. Blood Cancer 2023, 70, e30164. [Google Scholar] [CrossRef]
- Mok, S.; Chu, E.C. The Importance of Early Detection of Spinal Tumors Through Magnetic Resonance Imaging in Chiropractic Practices. Cureus 2024, 16, e51440. [Google Scholar] [CrossRef] [PubMed]
- Costelloe, C.M.; Rohren, E.M.; Madewell, J.E.; Hamaoka, T.; Theriault, R.L.; Yu, T.-K.; Lewis, V.O.; Ma, J.; Stafford, R.J.; Tari, A.M.; et al. Imaging bone metastases in breast cancer: Techniques and recommendations for diagnosis. Lancet Oncol. 2009, 10, 606–614. [Google Scholar] [CrossRef]
- Curtin, M.; Piggott, R.P.; Murphy, E.P.; Munigangaiah, S.; Baker, J.F.; McCabe, J.P.; Devitt, A. Spinal Metastatic Disease: A Review of the Role of the Multidisciplinary Team. Orthop. Surg. 2017, 9, 145–151. [Google Scholar] [CrossRef]
- Tomita, K.; Kawahara, N.; Kobayashi, T.; Yoshida, A.; Murakami, H.; Akamaru, T. Surgical strategy for spinal metastases. Spine 2001, 26, 298–306. [Google Scholar] [CrossRef]
- Delank, K.S.; Wendtner, C.; Eich, H.T.; Eysel, P. The treatment of spinal metastases. Dtsch. Arztebl. Int. 2011, 108, 71–79. [Google Scholar] [CrossRef]
- Barzilai, O.; Fisher, C.G.; Bilsky, M.H. State of the Art Treatment of Spinal Metastatic Disease. Neurosurgery 2018, 82, 757–769. [Google Scholar] [CrossRef]
- Clemons, M.; Gelmon, K.A.; Pritchard, K.I.; Paterson, A.H. Bone-targeted agents and skeletal-related events in breast cancer patients with bone metastases: The state of the art. Curr. Oncol. 2012, 19, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Bilsky, M.H.; Lis, E.; Raizer, J.; Lee, H.; Boland, P. The diagnosis and treatment of metastatic spinal tumor. Oncologist 1999, 4, 459–469. [Google Scholar] [CrossRef]
- Chen, B.; Cai, L.; Zhou, F. Management of acute spinal cord compression in multiple myeloma. Crit. Rev. Oncol. Hematol. 2021, 160, 103205. [Google Scholar] [CrossRef]
- Cardobi, N.; Dal Palù, A.; Pedrini, F.; Beleù, A.; Nocini, R.; De Robertis, R.; Ruzzenente, A.; Salvia, R.; Montemezzi, S.; D’Onofrio, M. An Overview of Artificial Intelligence Applications in Liver and Pancreatic Imaging. Cancers 2021, 13, 2162. [Google Scholar] [CrossRef]
- Ong, W.; Zhu, L.; Zhang, W.; Kuah, T.; Lim, D.S.W.; Low, X.Z.; Thian, Y.L.; Teo, E.C.; Tan, J.H.; Kumar, N.; et al. Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis. Cancers 2022, 14, 4025. [Google Scholar] [CrossRef] [PubMed]
- Hallinan, J.T.P.D.; Ge, S.; Zhu, L.; Zhang, W.; Lim, Y.T.; Thian, Y.L.; Jagmohan, P.; Kuah, T.; Lim, D.S.W.; Low, X.Z.; et al. Diagnostic Accuracy of CT for Metastatic Epidural Spinal Cord Compression. Cancers 2022, 14, 4231. [Google Scholar] [CrossRef]
- O’Connor, S.D.; Yao, J.; Summers, R.M. Lytic metastases in thoracolumbar spine: Computer-aided detection at CT—Preliminary study. Radiology 2007, 242, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fang, Z.; Lang, N.; Yuan, H.; Su, M.Y.; Baldi, P. A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput. Biol. Med. 2017, 84, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Buckless, C.; Yeh, K.J.; Torriani, M. Automated detection and segmentation of sclerotic spinal lesions on body CTs using a deep convolutional neural network. Skeletal Radiol. 2022, 51, 391–399. [Google Scholar] [CrossRef]
- Yoen, H.; Jang, M.J.; Yi, A.; Moon, W.K.; Chang, J.M. Artificial Intelligence for Breast Cancer Detection on Mammography: Factors Related to Cancer Detection. Acad. Radiol. 2024, 31, P2239–P2247. [Google Scholar] [CrossRef]
- Dembrower, K.; Crippa, A.; Colón, E.; Eklund, M.; Strand, F. Artificial intelligence for breast cancer detection in screening mammography in Sweden: A prospective, population-based, paired-reader, non-inferiority study. Lancet Digit. Health 2023, 5, e703–e711. [Google Scholar] [CrossRef]
- Díaz, O.; Rodríguez-Ruíz, A.; Sechopoulos, I. Artificial Intelligence for breast cancer detection: Technology, challenges, and prospects. Eur. J. Radiol. 2024, 175, 111457. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jang, M.J.; Lee, S.H.; Kim, S.Y.; Ha, S.M.; Kwon, B.R.; Moon, W.K.; Chang, J.M. Use of Artificial Intelligence for Reducing Unnecessary Recalls at Screening Mammography: A Simulation Study. Korean J. Radiol. 2022, 23, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Kim, G.R.; Yoon, J.H.; Han, K.; Son, W.J.; Shin, H.J.; Moon, H.J. Artificial intelligence assistance for women who had spot compression view: Reducing recall rates for digital mammography. Acta Radiol. 2023, 64, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, B.; Zhang, L.; Greuter, M.J.W.; de Bock, G.H.; Zhang, H.; Xie, X. Lung Nodule Detectability of Artificial Intelligence-assisted CT Image Reading in Lung Cancer Screening. Curr. Med. Imaging. 2022, 18, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, W.; Hendrix, N.; Scholten, E.T.; Mourits, M.; Trap-de Jong, J.; Schalekamp, S.; Korst, M.; van Leuken, M.; van Ginneken, B.; Prokop, M.; et al. Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans. Commun. Med. 2023, 3, 156. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, S.; Fong, P.C.; Blokhina, M. Artificial intelligence for early diagnosis of lung cancer through incidental nodule detection in low- and middle-income countries-acceleration during the COVID-19 pandemic but here to stay. Am. J. Cancer Res. 2022, 12, 1–16. [Google Scholar] [PubMed]
- Twilt, J.J.; van Leeuwen, K.G.; Huisman, H.J.; Fütterer, J.J.; de Rooij, M. Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review. Diagnostics 2021, 11, 959. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Khandwala, Y.S.; Vesal, S.; Shao, W.; Yang, Q.; Soerensen, S.J.C.; Fan, R.E.; Ghanouni, P.; Kunder, C.A.; Brooks, J.D.; et al. A review of artificial intelligence in prostate cancer detection on imaging. Ther. Adv. Urol. 2022, 14, 17562872221128791. [Google Scholar] [CrossRef]
- Li, H.; Lee, C.H.; Chia, D.; Lin, Z.; Huang, W.; Tan, C.H. Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities. Diagnostics 2022, 12, 289. [Google Scholar] [CrossRef]
- Schalekamp, S.; van Leeuwen, K.; Calli, E.; Murphy, K.; Rutten, M.; Geurts, B.; Peters-Bax, L.; van Ginneken, B.; Prokop, M. Performance of AI to exclude normal chest radiographs to reduce radiologists’ workload. Eur. Radiol. 2024, 1–9. [Google Scholar] [CrossRef]
- Raya-Povedano, J.L.; Romero-Martín, S.; Elías-Cabot, E.; Gubern-Mérida, A.; Rodríguez-Ruiz, A.; Álvarez-Benito, M. AI-based Strategies to Reduce Workload in Breast Cancer Screening with Mammography and Tomosynthesis: A Retrospective Evaluation. Radiology 2021, 300, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Seah, J.; Brady, Z.; Ewert, K.; Law, M. Artificial intelligence in medical imaging: Implications for patient radiation safety. Br. J. Radiol. 2021, 94, 20210406. [Google Scholar] [CrossRef]
- van Leeuwen, K.G.; de Rooij, M.; Schalekamp, S.; van Ginneken, B.; Rutten, M. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr. Radiol. 2022, 52, 2087–2093. [Google Scholar] [CrossRef]
- Hu, H.T.; Wang, W.; Chen, L.D.; Ruan, S.M.; Chen, S.L.; Li, X.; Lu, M.D.; Xie, X.Y.; Kuang, M. Artificial intelligence assists identifying malignant versus benign liver lesions using contrast-enhanced ultrasound. J. Gastroenterol. Hepatol. 2021, 36, 2875–2883. [Google Scholar] [CrossRef]
- Anaya-Isaza, A.; Mera-Jiménez, L.; Verdugo-Alejo, L.; Sarasti, L. Optimizing MRI-based brain tumor classification and detection using AI: A comparative analysis of neural networks, transfer learning, data augmentation, and the cross-transformer network. Eur. J. Radiol. Open 2023, 10, 100484. [Google Scholar] [CrossRef]
- Wan, Y.L.; Wu, P.W.; Huang, P.C.; Tsay, P.K.; Pan, K.T.; Trang, N.N.; Chuang, W.Y.; Wu, C.Y.; Lo, S.B. The Use of Artificial Intelligence in the Differentiation of Malignant and Benign Lung Nodules on Computed Tomograms Proven by Surgical Pathology. Cancers 2020, 12, 2211. [Google Scholar] [CrossRef]
- Ong, W.; Zhu, L.; Tan, Y.L.; Teo, E.C.; Tan, J.H.; Kumar, N.; Vellayappan, B.A.; Ooi, B.C.; Quek, S.T.; Makmur, A.; et al. Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review. Cancers 2023, 15, 1837. [Google Scholar] [CrossRef] [PubMed]
- Filograna, L.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Manfrida, S.; Magarelli, N.; Leone, A.; Colosimo, C.; Valentini, V. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: A feasibility study. Radiol. Med. 2019, 124, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.J.; Chung, H.W.; Shin, M.J.; Lee, S.H.; Lee, M.H.; Lee, J.S.; Kim, M.J.; Lee, W.K. MRI to differentiate benign from malignant soft-tissue tumours of the extremities: A simplified systematic imaging approach using depth, size and heterogeneity of signal intensity. Br. J. Radiol. 2012, 85, e831–e836. [Google Scholar] [CrossRef]
- van Rijswijk, C.S.; Kunz, P.; Hogendoorn, P.C.; Taminiau, A.H.; Doornbos, J.; Bloem, J.L. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J. Magn. Reson. Imaging 2002, 15, 302–307. [Google Scholar] [CrossRef]
- Vande Berg, B.C.; Malghem, J.; Lecouvet, F.E.; Maldague, B. Classification and detection of bone marrow lesions with magnetic resonance imaging. Skeletal Radiol. 1998, 27, 529–545. [Google Scholar] [CrossRef]
- Davies, A.M.; Sundaram, M.; James, S.L. Imaging of Bone Tumors and Tumor-like Lesions: Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Liu, J.; Guo, W.; Zeng, P.; Geng, Y.; Liu, Y.; Ouyang, H.; Lang, N.; Yuan, H. Vertebral MRI-based radiomics model to differentiate multiple myeloma from metastases: Influence of features number on logistic regression model performance. Eur. Radiol. 2022, 32, 572–581. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, J.; Hu, S.; Dai, Y.; Zhang, Y.; Hu, C. Differentiating Between Multiple Myeloma and Metastasis Subtypes of Lumbar Vertebra Lesions Using Machine Learning-Based Radiomics. Front. Oncol. 2021, 11, 601699. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Mao, N.; Zhao, C.; Wu, J.; Chen, L.; Hong, N. A Triple-Classification Radiomics Model for the Differentiation of Primary Chordoma, Giant Cell Tumor, and Metastatic Tumor of Sacrum Based on T2-Weighted and Contrast-Enhanced T1-Weighted MRI. J. Magn. Reson. Imaging 2019, 49, 752–759. [Google Scholar] [CrossRef]
- Sciubba, D.M.; Petteys, R.J.; Dekutoski, M.B.; Fisher, C.G.; Fehlings, M.G.; Ondra, S.L.; Rhines, L.D.; Gokaslan, Z.L. Diagnosis and management of metastatic spine disease. A review. J. Neurosurg. Spine 2010, 13, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Andreula, C.; Murrone, M. Metastatic disease of the spine. Eur. Radiol. 2005, 15, 627–632. [Google Scholar] [CrossRef]
- Mauch, J.T.; Carr, C.M.; Cloft, H.; Diehn, F.E. Review of the Imaging Features of Benign Osteoporotic and Malignant Vertebral Compression Fractures. AJNR Am. J. Neuroradiol. 2018, 39, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
- Abowarda, M.H.; Abdel-Rahman, H.M.; Taha, M.M. Differentiation of acute osteoporotic from malignant vertebral compression fractures with conventional MRI and diffusion MR imaging. Egypt. J. Radiol. Nucl. Med. 2017, 48, 207–213. [Google Scholar] [CrossRef]
- Uetani, M.; Hashmi, R.; Hayashi, K. Malignant and benign compression fractures: Differentiation and diagnostic pitfalls on MRI. Clin. Radiol. 2004, 59, 124–131. [Google Scholar] [CrossRef]
- Tang, X. The role of artificial intelligence in medical imaging research. BJR Open 2020, 2, 20190031. [Google Scholar] [CrossRef]
- Laredo, J.D.; Lakhdari, K.; Bellaïche, L.; Hamze, B.; Janklewicz, P.; Tubiana, J.M. Acute vertebral collapse: CT findings in benign and malignant nontraumatic cases. Radiology 1995, 194, 41–48. [Google Scholar] [CrossRef]
- Kubota, T.; Yamada, K.; Ito, H.; Kizu, O.; Nishimura, T. High-resolution imaging of the spine using multidetector-row computed tomography: Differentiation between benign and malignant vertebral compression fractures. J. Comput. Assist. Tomogr. 2005, 29, 712–719. [Google Scholar] [CrossRef]
- Perry, J.; Chambers, A.; Laperriere, N. Systematic Review of the Diagnosis and Management of Malignant Extradural Spinal Cord Compression: The Cancer Care Ontario Practice Guidelines Initiative‘s Neuro-Oncology Disease Site Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 2028–2037. [Google Scholar] [CrossRef]
- Liu, Z.; Duan, T.; Zhang, Y.; Weng, S.; Xu, H.; Ren, Y.; Zhang, Z.; Han, X. Radiogenomics: A key component of precision cancer medicine. Br. J. Cancer 2023, 129, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Shui, L.; Ren, H.; Yang, X.; Li, J.; Chen, Z.; Yi, C.; Zhu, H.; Shui, P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front. Oncol. 2020, 10, 570465. [Google Scholar] [CrossRef] [PubMed]
- Rabasco Meneghetti, A.; Zwanenburg, A.; Linge, A.; Lohaus, F.; Grosser, M.; Baretton, G.B.; Kalinauskaite, G.; Tinhofer, I.; Guberina, M.; Stuschke, M.; et al. Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC. Sci. Rep. 2022, 12, 16755. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Manjila, S.; Sakla, N.; True, A.; Wardeh, A.H.; Beig, N.; Vaysberg, A.; Matthews, J.; Prasanna, P.; Spektor, V. Radiomics and radiogenomics in gliomas: A contemporary update. Br. J. Cancer 2021, 125, 641–657. [Google Scholar] [CrossRef]
- Ferrara, N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 2004, 25, 581–611. [Google Scholar] [CrossRef]
- Quattrini, I.; Pollino, S.; Pazzaglia, L.; Conti, A.; Novello, C.; Ferrari, C.; Pignotti, E.; Picci, P.; Benassi, M.S. Prognostic role of nuclear factor/IB and bone remodeling proteins in metastatic giant cell tumor of bone: A retrospective study. J. Orthop. Res. 2015, 33, 1205–1211. [Google Scholar] [CrossRef]
- Li, B.; Li, J.; Miao, W.; Zhao, Y.; Jiao, J.; Wu, Z.; Yang, X.; Wei, H.; Xiao, J. Prognostic Analysis of Clinical and Immunohistochemical Factors for Patients with Spinal Schwannoma. World Neurosurg. 2018, 120, e617–e627. [Google Scholar] [CrossRef]
- Ghani, S.A.; Wan Ismail, W.F.; Md Salleh, M.S.; Yahaya, S.; Syahrul Fitri, Z.M. The Values of Receptor Activator Nuclear Kappa-B Ligand Expression in Stage III Giant Cell Tumor of the Bone. Indian J. Orthop. 2018, 52, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, S.; Mavrogenis, A.F.; Kido, A.; Errani, C. Current Concepts in the Treatment of Giant Cell Tumors of Bone. Cancers 2021, 13, 3647. [Google Scholar] [CrossRef]
- Bukata, S.V.; Blay, J.Y.; Rutkowski, P.; Skubitz, K.; Henshaw, R.; Seeger, L.; Dai, T.; Jandial, D.; Chawla, S. Denosumab Treatment for Giant Cell Tumor of the Spine Including the Sacrum. Spine 2021, 46, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Darvish, L.; Bahreyni-Toossi, M.-T.; Roozbeh, N.; Azimian, H. The role of radiogenomics in the diagnosis of breast cancer: A systematic review. Egypt. J. Med. Hum. Genet. 2022, 23, 99. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, H.; Wang, H. Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach. J. Multidiscip. Healthc. 2023, 16, 1779–1791. [Google Scholar] [CrossRef]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef]
- Tan, H.; Gao, X.; Li, X.; Huang, Y.; Cao, Q.; Wan, T. Sarcopenia in Patients With Spinal Metastasis: A Systematic Review and Meta-Analysis of Retrospective Cohort Studies. Front. Oncol. 2022, 12, 864501. [Google Scholar] [CrossRef]
- Nishigori, T.; Obama, K.; Sakai, Y. Assessment of body composition and impact of sarcopenia and sarcopenic obesity in patients with gastric cancer. Transl. Gastroenterol. Hepatol. 2020, 5, 22. [Google Scholar] [CrossRef]
- Bongers, M.E.R.; Groot, O.Q.; Buckless, C.G.; Kapoor, N.D.; Twining, P.K.; Schwab, J.H.; Torriani, M.; Bredella, M.A. Body composition predictors of mortality on computed tomography in patients with spinal metastases undergoing surgical treatment. Spine J. 2022, 22, 595–604. [Google Scholar] [CrossRef]
- Xie, W.-Q.; Xiao, G.-L.; Hu, P.-W.; He, Y.-Q.; Lv, S.; Xiao, W.-F. Possible sarcopenia: Early screening and intervention-narrative review. Ann. Palliat. Med. 2020, 9, 4283–4293. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Summers, R.M.; Garrett, J.W. Automated CT-Based Body Composition Analysis: A Golden Opportunity. Korean J. Radiol. 2021, 22, 1934–1937. [Google Scholar] [CrossRef] [PubMed]
- Wall, J.; Paul, M.; Phillips, B.E. Nutritional interventions in prehabilitation for cancer surgery. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, S.; Luppino, L.T.; Pérez-Núñez, A.; Solheim, O.; García-García, S.; Velasco-Casares, M.; Karlberg, A.; Eikenes, L.; Sarabia, R.; Arrese, I.; et al. Predicting Regions of Local Recurrence in Glioblastomas Using Voxel-Based Radiomic Features of Multiparametric Postoperative MRI. Cancers 2023, 15, 1894. [Google Scholar] [CrossRef]
- Libling, W.A.; Korn, R.; Weiss, G.J. Review of the use of radiomics to assess the risk of recurrence in early-stage non-small cell lung cancer. Transl. Lung Cancer Res. 2023, 12, 1575–1589. [Google Scholar] [CrossRef]
- Dixon, D.; Sattar, H.; Moros, N.; Kesireddy, S.R.; Ahsan, H.; Lakkimsetti, M.; Fatima, M.; Doshi, D.; Sadhu, K.; Junaid Hassan, M. Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review. Cureus 2024, 16, e59954. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Li, X.; Gan, Y.; Han, S.; Rong, P.; Wang, W.; Li, W.; Zhou, L. Artificial intelligence assists precision medicine in cancer treatment. Front. Oncol. 2022, 12, 998222. [Google Scholar] [CrossRef]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef]
- Gong, X.-Q.; Liu, N.; Tao, Y.-Y.; Li, L.; Li, Z.-M.; Yang, L.; Zhang, X.-M. Radiomics models based on multisequence MRI for predicting PD-1/PD-L1 expression in hepatocellular carcinoma. Sci. Rep. 2023, 13, 7710. [Google Scholar] [CrossRef]
- Li, Q.; Han, J.; Yang, Y.; Chen, Y. PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy. Front. Immunol. 2022, 13, 1070961. [Google Scholar] [CrossRef]
- Bove, S.; Fanizzi, A.; Fadda, F.; Comes, M.C.; Catino, A.; Cirillo, A.; Cristofaro, C.; Montrone, M.; Nardone, A.; Pizzutilo, P.; et al. A CT-based transfer learning approach to predict NSCLC recurrence: The added-value of peritumoral region. PLoS ONE 2023, 18, e0285188. [Google Scholar] [CrossRef]
- Yoo, G.S.; Park, H.C.; Yu, J.I.; Lim, D.H.; Cho, W.K.; Lee, E.; Jung, S.H.; Han, Y.; Kim, E.S.; Lee, S.H.; et al. Stereotactic ablative body radiotherapy for spinal metastasis from hepatocellular carcinoma: Its oncologic outcomes and risk of vertebral compression fracture. Oncotarget 2017, 8, 72860–72871. [Google Scholar] [CrossRef] [PubMed]
- Al Taha, K.; Lauper, N.; Bauer, D.E.; Tsoupras, A.; Tessitore, E.; Biver, E.; Dominguez, D.E. Multidisciplinary and Coordinated Management of Osteoporotic Vertebral Compression Fractures: Current State of the Art. J. Clin. Med. 2024, 13, 930. [Google Scholar] [CrossRef]
- Hammoudeh, L.; Abunimer, A.M.; Lee, H.Y.; Dee, E.C.; Brennan, S.V.; Yaguang, P.; Shin, K.Y.; Chen, Y.H.; Huynh, M.A.; Spektor, A.; et al. Spinal Cord Delineation Based on Computed Tomography Myelogram Versus T2 Magnetic Resonance Imaging in Spinal Stereotactic Body Radiation Therapy. Adv. Radiat. Oncol. 2023, 8, 101158. [Google Scholar] [CrossRef] [PubMed]
- Sacino, A.N.; Chen, H.; Sahgal, A.; Bettegowda, C.; Rhines, L.D.; Maralani, P.; Redmond, K.J. Stereotactic body radiation therapy for spinal metastases: A new standard of care. Neuro-Oncology 2024, 26, S76–S87. [Google Scholar] [CrossRef]
- Kuah, T.; Vellayappan, B.; Makmur, A.; Nair, S.; Song, J.; Tan, J.H.; Kumar, N.; Quek, S.; Hallinan, J. State-of-the-Art Imaging Techniques in Metastatic Spinal Cord Compression. Cancers 2022, 14, 3289. [Google Scholar] [CrossRef] [PubMed]
- McGrath, H.; Li, P.; Dorent, R.; Bradford, R.; Saeed, S.; Bisdas, S.; Ourselin, S.; Shapey, J.; Vercauteren, T. Manual segmentation versus semi-automated segmentation for quantifying vestibular schwannoma volume on MRI. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1445–1455. [Google Scholar] [CrossRef]
- Matoska, T.; Patel, M.; Liu, H.; Beriwal, S. Review of Deep Learning Based Autosegmentation for Clinical Target Volume: Current Status and Future Directions. Adv. Radiat. Oncol. 2024, 9, 101470. [Google Scholar] [CrossRef]
- Lastrucci, A.; Wandael, Y.; Ricci, R.; Maccioni, G.; Giansanti, D. The Integration of Deep Learning in Radiotherapy: Exploring Challenges, Opportunities, and Future Directions through an Umbrella Review. Diagnostics 2024, 14, 939. [Google Scholar] [CrossRef]
- Samarasinghe, G.; Jameson, M.; Vinod, S.; Field, M.; Dowling, J.; Sowmya, A.; Holloway, L. Deep learning for segmentation in radiation therapy planning: A review. J. Med. Imaging Radiat. Oncol. 2021, 65, 578–595. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Q.; Lam, S.; Cai, J.; Yang, R. A Review on Application of Deep Learning Algorithms in External Beam Radiotherapy Automated Treatment Planning. Front. Oncol. 2020, 10, 580919. [Google Scholar] [CrossRef]
- Rigaud, B.; Anderson, B.M.; Yu, Z.H.; Gobeli, M.; Cazoulat, G.; Söderberg, J.; Samuelsson, E.; Lidberg, D.; Ward, C.; Taku, N.; et al. Automatic Segmentation Using Deep Learning to Enable Online Dose Optimization During Adaptive Radiation Therapy of Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 1096–1110. [Google Scholar] [CrossRef]
- Almberg, S.S.; Lervåg, C.; Frengen, J.; Eidem, M.; Abramova, T.M.; Nordstrand, C.S.; Alsaker, M.D.; Tøndel, H.; Raj, S.X.; Wanderås, A.D. Training, validation, and clinical implementation of a deep-learning segmentation model for radiotherapy of loco-regional breast cancer. Radiother. Oncol. 2022, 173, 62–68. [Google Scholar] [CrossRef]
- Li, J.; Anne, R. Comparison of Eclipse Smart Segmentation and MIM Atlas Segment for liver delineation for yttrium-90 selective internal radiation therapy. J. Appl. Clin. Med. Phys. 2022, 23, e13668. [Google Scholar] [CrossRef]
- Buchanan, L.; Hamdan, S.; Zhang, Y.; Chen, X.; Li, X.A. Deep learning-based prediction of deliverable adaptive plans for MR-guided adaptive radiotherapy: A feasibility study. Front. Oncol. 2023, 13, 939951. [Google Scholar] [CrossRef] [PubMed]
- Eche, T.; Schwartz, L.H.; Mokrane, F.-Z.; Dercle, L. Toward Generalizability in the Deployment of Artificial Intelligence in Radiology: Role of Computation Stress Testing to Overcome Underspecification. Radiol. Artif. Intell. 2021, 3, e210097. [Google Scholar] [CrossRef]
- Khan, B.; Fatima, H.; Qureshi, A.; Kumar, S.; Hanan, A.; Hussain, J.; Abdullah, S. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomed. Mater. Devices 2023, 1, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Petersson, L.; Larsson, I.; Nygren, J.M.; Nilsen, P.; Neher, M.; Reed, J.E.; Tyskbo, D.; Svedberg, P. Challenges to implementing artificial intelligence in healthcare: A qualitative interview study with healthcare leaders in Sweden. BMC Health Serv. Res. 2022, 22, 850. [Google Scholar] [CrossRef]
- Wubineh, B.Z.; Deriba, F.G.; Woldeyohannis, M.M. Exploring the opportunities and challenges of implementing artificial intelligence in healthcare: A systematic literature review. Urol. Oncol. Semin. Orig. Investig. 2024, 42, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, A.; Fujita, S.; Ohno, Y.; Aoki, S. Variability and Standardization of Quantitative Imaging: Monoparametric to Multiparametric Quantification, Radiomics, and Artificial Intelligence. Investig. Radiol. 2020, 55, 601–616. [Google Scholar] [CrossRef]
- Kotter, E.; Ranschaert, E. Challenges and solutions for introducing artificial intelligence (AI) in daily clinical workflow. Eur. Radiol. 2021, 31, 5–7. [Google Scholar] [CrossRef]
- Brady, A.P.; Neri, E. Artificial Intelligence in Radiology-Ethical Considerations. Diagnostics 2020, 10, 231. [Google Scholar] [CrossRef]
- Acar, E.; Leblebici, A.; Ellidokuz, B.E.; Basbinar, Y.; Kaya, G.C. Machine learning for differentiating metastatic and completely responded sclerotic bone lesion in prostate cancer: A retrospective radiomics study. Br. J. Radiol. 2019, 92, 20190286. [Google Scholar] [CrossRef] [PubMed]
- Joshi, G.; Jain, A.; Araveeti, S.R.; Adhikari, S.; Garg, H.; Bhandari, M. FDA-Approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An Updated Landscape. Electronics 2024, 13, 498. [Google Scholar] [CrossRef]
- Arabi, H.; Zaidi, H. Deep learning-based metal artefact reduction in PET/CT imaging. Eur. Radiol. 2021, 31, 6384–6396. [Google Scholar] [CrossRef]
- Guo, R.; Zou, Y.; Zhang, S.; An, J.; Zhang, G.; Du, X.; Gong, H.; Xiong, S.; Long, Y.; Ma, J. Preclinical validation of a novel deep learning-based metal artifact correction algorithm for orthopedic CT imaging. J. Appl. Clin. Med. Phys. 2023, 24, e14166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, B.; Chen, Q.; Wang, L.; Zhao, K.; Zhang, Y.; Vliegenthart, R.; Xie, X. Motion artifact removal in coronary CT angiography based on generative adversarial networks. Eur. Radiol. 2023, 33, 43–53. [Google Scholar] [CrossRef]
- Khaleghi, G.; Hosntalab, M.; Sadeghi, M.; Reiazi, R.; Mahdavi, S.R. Metal artifact reduction in computed tomography images based on developed generative adversarial neural network. Inform. Med. Unlocked 2021, 24, 100573. [Google Scholar] [CrossRef]
- Lim, S.-W.; Choi, W.-K.; Kim, S. Evaluation of the Effects of Differences in Metal Artifact Type and Location on Image Quality in Computed Tomography Scans. J. Med. Phys. 2023, 48, 80–84. [Google Scholar] [PubMed]
- Schmitt, N.; Weyland, C.S.; Wucherpfennig, L.; Herweh, C.; Bendszus, M.; Möhlenbruch, M.A.; Vollherbst, D.F. Iterative Metal Artifact Reduction (iMAR) of the Non-adhesive Liquid Embolic Agent Onyx in Computed Tomography: An Experimental Study. Clin. Neuroradiol. 2022, 32, 695–703. [Google Scholar] [CrossRef]
- Koetzier, L.R.; Mastrodicasa, D.; Szczykutowicz, T.P.; van der Werf, N.R.; Wang, A.S.; Sandfort, V.; van der Molen, A.J.; Fleischmann, D.; Willemink, M.J. Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects. Radiology 2023, 306, e221257. [Google Scholar] [CrossRef]
- Njiti, M.M.; Osman, N.D.; Mansor, M.S.; Rabaiee, N.A.; Abdul Aziz, M.Z. Potential of Metal Artifact Reduction (MAR) and Deep Learning-based Reconstruction (DLR) algorithms integration in CT Metal Artifact Correction: A review. Radiat. Phys. Chem. 2024, 218, 111541. [Google Scholar] [CrossRef]
- Selles, M.; van Osch, J.A.C.; Maas, M.; Boomsma, M.F.; Wellenberg, R.H.H. Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques. Eur. J. Radiol. 2024, 170, 111276. [Google Scholar] [CrossRef] [PubMed]
- Paholpak, P.; Sirichativapee, W.; Wisanuyotin, T.; Kosuwon, W.; Jeeravipoolvarn, P. Prevalence of known and unknown primary tumor sites in spinal metastasis patients. Open Orthop. J. 2012, 6, 440–444. [Google Scholar] [CrossRef]
- Piccioli, A.; Maccauro, G.; Spinelli, M.S.; Biagini, R.; Rossi, B. Bone metastases of unknown origin: Epidemiology and principles of management. J. Orthop. Traumatol. 2015, 16, 81–86. [Google Scholar] [CrossRef]
- Lawrenz, J.M.; Gordon, J.; George, J.; Haben, C.; Rubin, B.P.; Ilaslan, H.; Mesko, N.W.; Nystrom, L.M. Does PET/CT Aid in Detecting Primary Carcinoma in Patients with Skeletal Metastases of Unknown Primary? Clin. Orthop. Relat. Res. 2020, 478, 2451–2457. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Qin, S.; Ning, J.; Xin, P.; Wang, Q.; Chen, Y.; Zhao, W.; Zhang, E.; Lang, N. Prediction of Primary Tumor Sites in Spinal Metastases Using a ResNet-50 Convolutional Neural Network Based on MRI. Cancers 2023, 15, 2974. [Google Scholar] [CrossRef]
- Lang, N.; Zhang, Y.; Zhang, E.; Zhang, J.; Chow, D.; Chang, P.; Yu, H.J.; Yuan, H.; Su, M.Y. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn. Reson. Imaging 2019, 64, 4–12. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, J.; Lei, X.; Yu, B.; Ai, Y.; Zhang, Z.; Xie, C.; Jin, X. Differentiating Primary Tumors for Brain Metastasis with Integrated Radiomics from Multiple Imaging Modalities. Dis. Markers 2022, 2022, 5147085. [Google Scholar] [CrossRef]
- Goehler, A.; Harry Hsu, T.-M.; Lacson, R.; Gujrathi, I.; Hashemi, R.; Chlebus, G.; Szolovits, P.; Khorasani, R. Three-Dimensional Neural Network to Automatically Assess Liver Tumor Burden Change on Consecutive Liver MRIs. J. Am. Coll. Radiol. 2020, 17, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Lindgren Belal, S.; Larsson, M.; Holm, J.; Buch-Olsen, K.M.; Sörensen, J.; Bjartell, A.; Edenbrandt, L.; Trägårdh, E. Automated quantification of PET/CT skeletal tumor burden in prostate cancer using artificial intelligence: The PET index. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1510–1520. [Google Scholar] [CrossRef]
- Oprea-Lager, D.E.; Cysouw, M.C.F.; Boellaard, R.; Deroose, C.M.; de Geus-Oei, L.F.; Lopci, E.; Bidaut, L.; Herrmann, K.; Fournier, L.S.; Bäuerle, T.; et al. Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography. Front. Oncol. 2021, 11, 772530. [Google Scholar] [CrossRef]
- Moreau, N.; Rousseau, C.; Fourcade, C.; Santini, G.; Ferrer, L.; Lacombe, M.; Guillerminet, C.; Campone, M.; Colombié, M.; Rubeaux, M.; et al. Deep learning approaches for bone and bone lesion segmentation on 18FDG PET/CT imaging in the context of metastatic breast cancer. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1532–1535. [Google Scholar]
- Liu, S.; Feng, M.; Qiao, T.; Cai, H.; Xu, K.; Yu, X.; Jiang, W.; Lv, Z.; Wang, Y.; Li, D. Deep Learning for the Automatic Diagnosis and Analysis of Bone Metastasis on Bone Scintigrams. Cancer Manag. Res. 2022, 14, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.U.; Dikaios, N.; Dastgir, A.; Ali, G.; Hamid, M.; Hajjej, F. An Automated Deep Learning Approach for Spine Segmentation and Vertebrae Recognition Using Computed Tomography Images. Diagnostics 2023, 13, 2658. [Google Scholar] [CrossRef]
- Schutte, K.; Brulport, F.; Harguem-Zayani, S.; Schiratti, J.-B.; Ghermi, R.; Jehanno, P.; Jaeger, A.; Alamri, T.; Naccache, R.; Haddag-Miliani, L.; et al. An artificial intelligence model predicts the survival of solid tumour patients from imaging and clinical data. Eur. J. Cancer 2022, 174, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Gålne, A.; Enqvist, O.; Sundlöv, A.; Valind, K.; Minarik, D.; Trägårdh, E. AI-based quantification of whole-body tumour burden on somatostatin receptor PET/CT. Eur. J. Hybrid Imaging 2023, 7, 14. [Google Scholar] [CrossRef]
- Moy, S.; Irannejad, M.; Manning, S.J.; Farahani, M.; Ahmed, Y.; Gao, E.; Prabhune, R.; Lorenz, S.; Mirza, R.; Klinger, C. Patient Perspectives on the Use of Artificial Intelligence in Health Care: A Scoping Review. J. Patient Cent. Res. Rev. 2024, 11, 51–62. [Google Scholar] [CrossRef]
- Alanazi, A. Clinicians’ Views on Using Artificial Intelligence in Healthcare: Opportunities, Challenges, and Beyond. Cureus 2023, 15, e45255. [Google Scholar] [CrossRef]
- Daniyal, M.; Qureshi, M.; Marzo, R.R.; Aljuaid, M.; Shahid, D. Exploring clinical specialists’ perspectives on the future role of AI: Evaluating replacement perceptions, benefits, and drawbacks. BMC Health Serv. Res. 2024, 24, 587. [Google Scholar] [CrossRef] [PubMed]
- Khanna, N.N.; Maindarkar, M.A.; Viswanathan, V.; Fernandes, J.F.E.; Paul, S.; Bhagawati, M.; Ahluwalia, P.; Ruzsa, Z.; Sharma, A.; Kolluri, R.; et al. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare 2022, 10, 2493. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, W.; Lee, A.; Tan, W.C.; Fong, K.T.D.; Lai, D.D.; Tan, Y.L.; Low, X.Z.; Ge, S.; Makmur, A.; Ong, S.J.; et al. Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging—A Systematic Review. Cancers 2024, 16, 2988. https://doi.org/10.3390/cancers16172988
Ong W, Lee A, Tan WC, Fong KTD, Lai DD, Tan YL, Low XZ, Ge S, Makmur A, Ong SJ, et al. Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging—A Systematic Review. Cancers. 2024; 16(17):2988. https://doi.org/10.3390/cancers16172988
Chicago/Turabian StyleOng, Wilson, Aric Lee, Wei Chuan Tan, Kuan Ting Dominic Fong, Daoyong David Lai, Yi Liang Tan, Xi Zhen Low, Shuliang Ge, Andrew Makmur, Shao Jin Ong, and et al. 2024. "Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging—A Systematic Review" Cancers 16, no. 17: 2988. https://doi.org/10.3390/cancers16172988
APA StyleOng, W., Lee, A., Tan, W. C., Fong, K. T. D., Lai, D. D., Tan, Y. L., Low, X. Z., Ge, S., Makmur, A., Ong, S. J., Ting, Y. H., Tan, J. H., Kumar, N., & Hallinan, J. T. P. D. (2024). Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging—A Systematic Review. Cancers, 16(17), 2988. https://doi.org/10.3390/cancers16172988