Expression Analysis of Circulating microRNAs in Saliva and Plasma for the Identification of Clinically Relevant Biomarkers for Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients’ Cohort and Sample Collection
2.2. RNA Extraction and miRNA Expression Analysis
2.3. Statistical Analysis
3. Results
3.1. Clinical–Pathologic Characteristics of the Patients‘Cohort
3.2. miRNA Expression Analysis
3.3. Associations between miRNA Expression and Clinical–Pathologic Characteristics of OSCC Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Markopoulos, A.K. Current aspects on oral squamous cell carcinoma. Open Dent. J. 2012, 6, 126–130. [Google Scholar] [CrossRef]
- Cristaldi, M.; Mauceri, R.; Di Fede, O.; Giuliana, G.; Campisi, G.; Panzarella, V. Salivary Biomarkers for Oral Squamous Cell Carcinoma Diagnosis and Follow-Up: Current Status and Perspectives. Front. Physiol. 2019, 10, 1476. [Google Scholar] [CrossRef] [PubMed]
- Nocini, R.; Lippi, G.; Mattiuzzi, C. The worldwide burden of smoking-related oral cancer deaths. Clin. Exp. Dent. Res. 2020, 6, 161–164. [Google Scholar] [CrossRef]
- Kumar, M.; Nanavati, R.; Modi, T.G.; Dobariya, C. Oral cancer: Etiology and risk factors: A review. J. Cancer Res. Ther. 2016, 12, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.M.; Meira, I.A.; Soares, M.S.; Bonan, P.R.; Mélo, C.B.; Piagge, C.S. Delay in diagnosis of oral cancer: A systematic review. Med. Oral Patol. Oral Cir. Bucal. 2021, 26, e815–e824. [Google Scholar] [CrossRef]
- Chamoli, A.; Gosavi, A.S.; Shirwadkar, U.P.; Wangdale, K.V.; Behera, S.K.; Kurrey, N.K.; Kalia, K.; Mandoli, A. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncol. 2021, 121, 105451. [Google Scholar] [CrossRef]
- Yete, S.; D’Souza, W.; Saranath, D. High-Risk Human Papillomavirus in Oral Cancer: Clinical Implications. Oncology 2018, 94, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Beynon, R.A.; Lang, S.; Schimansky, S.; Penfold, C.M.; Waylen, A.; Thomas, S.J.; Pawlita, M.; Waterboer, T.; Martin, R.M.; May, M.; et al. Tobacco smoking and alcohol drinking at diagnosis of head and neck cancer and all-cause mortality: Results from head and neck 5000, a prospective observational cohort of people with head and neck cancer. Int. J. Cancer 2018, 143, 1114–1127. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Johnson, N.W.; van der Waal, I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J. Oral Pathol. Med. 2007, 36, 575–580. [Google Scholar] [CrossRef]
- Ranganathan, K.; Kavitha, L. Oral epithelial dysplasia: Classifications and clinical relevance in risk assessment of oral potentially malignant disorders. J. Oral Maxillofac. Pathol. 2019, 23, 19–27. [Google Scholar] [CrossRef]
- Vail, M.; Robinson, S.; Condon, H. Recognition of oral potentially malignant disorders and transformation to oral cancer. J. Am. Acad. Physician Assist. 2020, 33, 14–18. [Google Scholar] [CrossRef]
- Kumari, P.; Debta, P.; Dixit, A. Oral Potentially Malignant Disorders: Etiology, Pathogenesis, and Transformation into Oral Cancer. Front. Pharmacol. 2022, 13, 825266. [Google Scholar] [CrossRef]
- Walsh, T.; Liu, J.L.; Brocklehurst, P.; Glenny, A.M.; Lingen, M.; Kerr, A.R.; Ogden, G.; Warnakulasuriya, S.; Scully, C. Clinical assessment to screen for the detection of oral cavity cancer and potentially malignant disorders in apparently healthy adults. Cochrane Database Syst. Rev. 2013, 2013, CD010173. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.; Guru, O.; Warnakulasuriya, S.; Balasubramaniam, R.; Frydrych, A.; Kujan, O. Adjunctive aids for the detection of oral squamous cell carcinoma and oral potentially malignant disorders: A systematic review of systematic reviews. Jpn. Dent. Sci. Rev. 2024, 60, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.J.; Zhang, X.Q.; Liu, Q.; Zhang, J.; Zhou, G. Nanotechnology: A promising method for oral cancer detection and diagnosis. J. Nanobiotechnol. 2018, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, S.; Datta, S.; Ray, J.G.; Chaudhuri, K.; Chatterjee, R. Liquid biopsy: miRNA as a potential biomarker in oral cancer. Cancer Epidemiol. 2019, 58, 137–145. [Google Scholar] [CrossRef]
- Palaia, G.; Pippi, R.; Rocchetti, F.; Caputo, M.; Macali, F.; Mohsen, A.; Del Vecchio, A.; Tenore, G.; Romeo, U. Liquid biopsy in the assessment of microRNAs in oral squamous cell carcinoma: A systematic review. J. Clin. Exp. Dent. 2022, 14, e875–e884. [Google Scholar] [CrossRef]
- De Sá Junior, P.L.; Câmara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The roles of ROS in cancer heterogeneity and therapy. Oxid. Med. Cell. Longev. 2017, 2017, 2467940. [Google Scholar] [CrossRef]
- Sudan, S.K.; Deshmukh, S.K.; Poosarla, T.; Holliday, N.P.; Dyess, D.L.; Singh, A.P.; Singh, S. Resistin: An inflammatory cytokine with multi-faceted roles in cancer. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188419. [Google Scholar]
- Feller, G.; Khammissa, R.A.G.; Ballyram, R.; Beetge, M.M.; Lemmer, J.; Feller, L. Tumour Genetic Heterogeneity in Relation to Oral Squamous Cell Carcinoma and Anti-Cancer Treatment. Int. J. Environ. Res. Public Health 2023, 20, 2392. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; García Hernández, J.L.; García, A.C.; Córdova Martínez, A.; Mielgo-Ayuso, J.; Cruz-Hernández, J.J. Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer’s Biomarkers. Diagnostics 2020, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Yete, S.; Saranath, D. MicroRNAs in oral cancer: Biomarkers with clinical potential. Oral Oncol. 2020, 110, 105002. [Google Scholar] [CrossRef] [PubMed]
- Batool, S.M.; Yekula, A.; Khanna, P.; Hsia, T.; Gamblin, A.S.; Ekanayake, E.; Escobedo, A.K.; You, D.G.; Castro, C.M.; Im, H.; et al. The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring. Cell Rep. Med. 2023, 4, 101198. [Google Scholar] [CrossRef]
- Hanna, G.J.; Lau, C.J.; Mahmood, U.; Supplee, J.G.; Mogili, A.R.; Haddad, R.I.; Jänne, P.A.; Paweletz, C.P. Salivary HPV DNA informs locoregional disease status in advanced HPV-associated oropharyngeal cancer. Oral Oncol. 2019, 95, 120–126. [Google Scholar] [CrossRef]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body fluids—The mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.; Watson, H.L.; Bailey, S.; Murray, M.J.; Coleman, N. A Robust Protocol to Quantify Circulating Cancer Biomarker MicroRNAs. Methods Mol. Biol. 2017, 1580, 265–279. [Google Scholar]
- Mazumder, S.; Basu, B.; Ray, J.G.; Chatterjee, R. MiRNAs as non-invasive biomarkers in the serum of Oral Squamous Cell Carcinoma (OSCC) and Oral Potentially Malignant Disorder (OPMD) patients. Arch. Oral Biol. 2023, 147, 105627. [Google Scholar] [CrossRef]
- Liu, C.J.; Kao, S.Y.; Tu, H.F.; Tsai, M.M.; Chang, K.W.; Lin, S.C. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis. 2010, 16, 360–364. [Google Scholar] [CrossRef]
- Al Rawi, N.; Elmabrouk, N.; Abu Kou, R.; Mkadmi, S.; Rizvi, Z.; Hamdoon, Z. The role of differentially expressed salivary microRNA in oral squamous cell carcinoma. A systematic review. Arch. Oral Biol. 2021, 125, 105108. [Google Scholar] [CrossRef]
- Zahran, F.; Ghalwash, D.; Shaker, O.; Al-Johani, K.; Scully, C. Salivary microRNAs in oral cancer. Oral Dis. 2015, 21, 739–747. [Google Scholar] [CrossRef]
- Bolandparva, F.; Hashemi Nasab, M.S.; Mohamadnia, A.; Garajei, A.; Farhadi Nasab, A.; Bahrami, N. Early Diagnosis of Oral Squamous Cell Carcinoma (OSCC) by miR-138 and miR-424-5p Expression as a Cancer Marker. Asian Pac. J. Cancer Prev. 2021, 22, 2185–2189. [Google Scholar] [CrossRef]
- Patel, A.; Patel, P.; Mandlik, D.; Patel, K.; Malaviya, P.; Johar, K.; Swamy, K.B.S.; Patel, S.; Tanavde, V. A novel 3-miRNA network regulates tumour progression in oral squamous cell carcinoma. Biomark. Res. 2023, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Scholtz, B.; Horváth, J.; Tar, I.; Kiss, C.; Márton, I.J. Salivary miR-31-5p, miR-345-3p, and miR-424-3p Are Reliable Biomarkers in Patients with Oral Squamous Cell Carcinoma. Pathogens 2022, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, K.B.; Nagraj, S.K.; Arora, S. miRNA for the assessment of lymph node metastasis in patients with oral squamous cell carcinoma: Systematic review and metanalysis. J. Oral Pathol. Med. 2021, 50, 345–352. [Google Scholar] [CrossRef]
- Ha, T.Y. MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease. Immune Netw. 2011, 11, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, X.; Zhou, Y.; Acharya, A.; Savkovic, V.; Xu, C.; Wu, N.; Deng, Y.; Hu, X.; Li, H.; et al. Shared genetic and epigenetic mechanisms between chronic periodontitis and oral squamous cell carcinoma. Oral Oncol. 2018, 86, 216–224. [Google Scholar] [CrossRef]
- Varela-Lema, L.; Ruano-Ravina, A.; Juiz Crespo, M.A.; Barros-Dios, J.M. Tobacco consumption and oral and pharyngeal cancer in a Spanish male population. Cancer Lett. 2010, 288, 28–35. [Google Scholar] [CrossRef]
- Gislon, L.C.; Curado, M.P.; López, R.V.M.; de Oliveira, J.C.; Vasconcelos de Podestá, J.R.; Ventorin von Zeidler, S.; Brennan, P.; Kowalski, L.P. Risk factors associated with head and neck cancer in former smokers: A Brazilian multicentric study. Cancer Epidemiol. 2022, 78, 102143. [Google Scholar] [CrossRef]
- Pentenero, M.; Navone, R.; Motta, F.; Marino, R.; Gassino, L.; Broccoletti, R.; Gandolfo, S. Clinical features of microinvasive stage I oral carcinoma. Oral Dis. 2011, 17, 298–303. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, C.; Wang, Y.; Zhou, R.; Wu, D.; Tan, J.; Zhu, K. Efficacy and safety of topical clobetasol propionate in comparison with alternative treatments in oral lichen planus: An updated systematic review and meta-analysis. Front. Med. 2024, 11, 1391754. [Google Scholar] [CrossRef]
- Favia, G.; Capodiferro, S.; Limongelli, L.; Tempesta, A.; Maiorano, E. Malignant transformation of oral proliferative verrucous leukoplakia: A series of 48 patients with suggestions for management. Int. J. Oral Maxillofac. Surg. 2021, 50, 14–20. [Google Scholar] [CrossRef]
- Ren, Z.H.; Wu, K.; Yang, R.; Liu, Z.Q.; Cao, W. Differential expression of matrix metalloproteinases and miRNAs in the metastasis of oral squamous cell carcinoma. BMC Oral Health 2020, 20, 24. [Google Scholar] [CrossRef]
- Rübben, A.; Araujo, A. Cancer heterogeneity: Converting a limitation into a source of biologic information. J. Transl. Med. 2017, 15, 190. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef]
- Crowley, E.; Di Nicolantonio, F.; Loupakis, F.; Bardelli, A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 2013, 10, 472–484. [Google Scholar] [CrossRef]
- Lousada-Fernandez, F.; Rapado-Gonzalez, O.; Lopez-Cedrun, J.L.; Lopez-Lopez, R.; Muinelo-Romay, L.; Suarez-Cunqueiro, M.M. Liquid Biopsy in Oral Cancer. Int. J. Mol. Sci. 2018, 19, 1704. [Google Scholar] [CrossRef]
- Gigliotti, J.; Madathil, S.; Makhoul, N. Delays in oral cavity cancer. Int. J. Oral Maxillofac. Surg. 2019, 48, 1131–1137. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, R.; Li, Z.; Li, J. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget 2017, 8, 55632–55645. [Google Scholar] [CrossRef]
- Connal, S.; Cameron, J.M.; Sala, A.; Brennan, P.M.; Palmer, D.S.; Palmer, J.D.; Perlow, H.; Baker, M.J. Liquid biopsies: The future of cancer early detection. J. Transl. Med. 2023, 21, 118. [Google Scholar] [CrossRef]
- Kumari, P.; Syed, S.A.; Wahid, M.; Qureshi, M.A.; Kumar, R. Expression of miR-31 in saliva-liquid biopsy in patients with oral squamous cell carcinoma. J. Taibah Univ. Med. Sci. 2021, 16, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Di Stasio, D.; Romano, A.; Boschetti, C.E.; Montella, M.; Mosca, L.; Lucchese, A. Salivary miRNAs Expression in Potentially Malignant Disorders of the Oral Mucosa and Oral Squamous Cell Carcinoma: A Pilot Study on miR-21, miR-27b, and miR-181b. Cancers 2022, 15, 291. [Google Scholar] [CrossRef] [PubMed]
- Piao, Y.; Jung, S.N.; Lim, M.A.; Oh, C.; Jin, Y.L.; Kim, H.J.; Nguyen, Q.K.; Chang, J.W.; Won, H.R.; Koo, B.S. A circulating microRNA panel as a novel dynamic monitor for oral squamous cell carcinoma. Sci. Rep. 2023, 13, 2000. [Google Scholar] [CrossRef]
- Ho, P.T.B.; Clark, I.M.; Le, L.T.T. MicroRNA-Based Diagnosis and Therapy. Int. J. Mol. Sci. 2022, 23, 7167. [Google Scholar] [CrossRef]
- Benes, V.; Castoldi, M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 2010, 50, 244–249. [Google Scholar] [CrossRef]
- Galamb, O.; Barták, B.K.; Kalmár, A.; Nagy, Z.B.; Szigeti, K.A.; Tulassay, Z.; Igaz, P.; Molnár, B. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J. Gastroenterol. 2019, 25, 5026–5048. [Google Scholar] [CrossRef]
- Guibert, N.; Pradines, A.; Favre, G.; Mazieres, J. Current and future applications of liquid biopsy in nonsmall cell lung cancer from early to advanced stages. Eur. Respir. Rev. 2020, 29, 190052. [Google Scholar] [CrossRef]
- Giannopoulou, L.; Zavridou, M.; Kasimir-Bauer, S.; Lianidou, E.S. Liquid biopsy in ovarian cancer: The potential of circulating miRNAs and exosomes. Transl. Res. 2019, 205, 77–91. [Google Scholar] [CrossRef]
- Cayrefourcq, L.; Alix-Panabières, C. Clinical relevance of liquid biopsy in breast cancer: Update in 2020. Expert Rev. Mol. Diagn. 2020, 20, 913–919. [Google Scholar] [CrossRef]
- Cayrefourcq, L.; De Roeck, A.; Garcia, C.; Stoebner, P.E.; Fichel, F.; Garima, F.; Perriard, F.; Daures, J.P.; Meunier, L.; Alix-Panabières, C. S100-EPISPOT: A New Tool to Detect Viable Circulating Melanoma Cells. Cells 2019, 8, 755. [Google Scholar] [CrossRef]
- Sarode, G.; Maniyar, N.; Sarode, S.C.; Jafer, M.; Patil, S.; Awan, K.H. Epidemiologic aspects of oral cancer. Dis. Mon. 2020, 66, 100988. [Google Scholar] [CrossRef]
- Selvakumar, S.C.; Preethi, K.A.; Ross, K.; Tusubira, D.; Khan, M.W.A.; Mani, P.; Rao, T.N.; Sekar, D. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol. Cancer 2022, 21, 83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; He, Y.; Nie, M.; Cai, W. Roles of miR-138 and ISG15 in oral squamous cell carcinoma. Exp. Ther. Med. 2017, 14, 2329–2334. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Askari, A.; Hussen, B.M.; Taheri, M.; Akbari Dilmaghani, N. Role of miR-424 in the carcinogenesis. Clin. Transl. Oncol. 2024, 26, 16–38. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Hu, L.; Liu, B.; Yu, B.; Li, J.; Yan, M.; Yu, Y.; Li, C.; Su, L.; Zhu, Z.; et al. Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV. Mol. Cancer 2014, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, N.; Tang, Q.; Sheng, H.; Long, S.; Wu, W. MicroRNA-24 in Cancer: A Double Side Medal with Opposite Properties. Front. Oncol. 2020, 10, 553714. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, D.; Wu, Z.; Wang, Q.; Ma, Z.; Zhang, C. Research Progress and Prospect of Nanoplatforms for Treatment of Oral Cancer. Front. Pharmacol. 2020, 11, 616101. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xin, X.; Xu, T. Identification of Potential miRNA-mRNA Regulatory Network in the Development of Oral Cancer. Dis. Markers 2022, 2022, 9376608. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, T.; Raj, J.U. MicroRNAs in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2015, 52, 139–151. [Google Scholar] [CrossRef]
- Singh, K.P.; Maremanda, K.P.; Li, D.; Rahman, I. Exosomal microRNAs are novel circulating biomarkers in cigarette, waterpipe smokers, E-cigarette users and dual smokers. BMC Med. Genom. 2020, 13, 128. [Google Scholar] [CrossRef]
- Karabegović, I.; Abozaid, Y.; Maas, S.C.E.; Labrecque, J.; Bos, D.; De Knegt, R.J.; Ikram, M.A.; Voortman, T.; Ghanbari, M. Plasma MicroRNA Signature of Alcohol Consumption: The Rotterdam Study. J. Nutr. 2023, 152, 2677–2688. [Google Scholar] [CrossRef] [PubMed]
- Fantozzi, P.J.; Romeo, U.; Tenore, G.; Palaia, G.; Ciolfi, C.; Pierangeli, A.; Di Gioia, C.R.T.; Villa, A. Detection of human papillomavirus infection in oral mucosal diseases: A single-center study. JADA Found. Sci. 2024, 3, 100031. [Google Scholar] [CrossRef]
- Adhit, K.K.; Wanjari, A.; Menon, S.; Siddhaarth, K. Liquid Biopsy: An Evolving Paradigm for Non-invasive Disease Diagnosis and Monitoring in Medicine. Cureus 2023, 15, e50176. [Google Scholar] [CrossRef] [PubMed]
Patient | Gender | Age | Smoker | Alcohol Consumer | Personal History of Cancer | Type of Lesions | Stage * | Localization | Treatment |
---|---|---|---|---|---|---|---|---|---|
Group 1 | |||||||||
1 | M | 64 | yes | no | no | OSCC (G2) | 1 | AR | surgical resection |
2 | F | 80 | yes | no | yes | OSCC (G2) | 4 | BM | surgical resection + radiotherapy |
3 | M | 73 | no | no | no | OSCC (G2) | 3 | tongue | surgical resection + radiotherapy |
4 | M | 55 | no | no | no | OSCC (G2) | 4 | tongue | surgical resection + radiotherapy |
5 | F | 61 | yes | no | no | OSCC (G2) | 4 | tongue | surgical resection + radiotherapy |
6 | M | 68 | yes | yes | no | OSCC (G2) | 3 | FOM | surgical resection + radiotherapy |
7 | F | 78 | no | no | yes | OSCC (G2) | 1 | tongue | surgical resection |
8 | M | 52 | yes | yes | no | OSCC (G2) | 4 | tongue | surgical resection + radiotherapy |
9 | F | 81 | no | no | no | OSCC (G2) | 3 | tongue | surgical resection + radiotherapy |
10 | M | 68 | no | no | yes | OSCC (G2) | 1 | BM | surgical resection |
11 | F | 65 | no | no | no | OSCC (G2) | 1 | tongue | surgical resection |
12 | M | 75 | yes | no | no | OSCC (G2) | 4 | AR | surgical resection + radiotherapy |
13 | F | 79 | no | no | no | OSCC (G2) | 4 | tongue | surgical resection + radiotherapy |
14 | M | 84 | no | no | no | OSCC (G2) | 2 | AR | surgical resection |
Group 2 | |||||||||
1 | M | 77 | yes | no | yes | PVL with mild dysplasia | / | tongue, gingiva, hard palate, BM | laser ablation and follow-up |
2 | F | 70 | no | no | no | OLP with mild dysplasia | / | BM | topical corticosteroids |
3 | M | 65 | no | no | no | PVL with moderate dysplasia | / | hard palate and tongue | laser ablation and follow-up |
4 | F | 58 | yes | no | no | OLL with mild dysplasia | / | BM | surgical resection and removal of dental material |
5 | M | 79 | no | no | yes | OLP with mild dysplasia | / | BM and tongue | systemic corticosteroids |
6 | F | 57 | no | no | no | OLP with mild dysplasia | BM | topical corticosteroids | |
Group 3 | |||||||||
1 | M | 61 | yes | no | no | Healthy control | / | / | |
2 | F | 72 | no | no | no | Healthy control | / | / | |
3 | F | 48 | yes | no | no | Healthy control | / | / | |
4 | M | 52 | no | no | no | Healthy control | / | / | |
5 | F | 80 | no | no | no | Healthy control | / | / |
Variable | Analysis of Variance; Statistical Significance: p ≤ 0.05 | |||||||
---|---|---|---|---|---|---|---|---|
SS Effect | df Effect | MS Effect | SS Error | df Error | MS Error | F | p | |
miR-21_s | 0.491583 | 2 | 0.245791 | 13.70107 | 22 | 0.622776 | 0.394671 | 0.678578 |
miR-31_s | 0.043059 | 2 | 0.02153 | 4.02928 | 22 | 0.183149 | 0.117552 | 0.889649 |
miR-138_s * | 0.538658 | 2 | 0.269329 | 1.0629 | 22 | 0.048313 | 5.574616 | 0.011001 |
miR-145_s | 1.553145 | 2 | 0.776573 | 18.83423 | 22 | 0.856101 | 0.907104 | 0.418265 |
miR-184_s | 0.035187 | 2 | 0.017594 | 0.15721 | 22 | 0.007146 | 2.4621 | 0.108412 |
miR-424_s * | 0.046202 | 2 | 0.023101 | 0.14609 | 22 | 0.00664 | 3.478801 | 0.04867 |
Variable | Analysis of Variance; Statistical Significance: p ≤ 0.05 | |||||||
---|---|---|---|---|---|---|---|---|
SS Effect | df Effect | MS Effect | SS Error | df Error | MS Error | F | p | |
miR-21_b | 0.248505 | 2 | 0.124252 | 7.12042 | 22 | 0.323656 | 0.383903 | 0.685672 |
miR-31_b | 0.000243 | 2 | 0.000121 | 0.00799 | 22 | 0.000363 | 0.33446 | 0.719301 |
miR-138_b | 0.006047 | 2 | 0.003023 | 0.2178 | 22 | 0.0099 | 0.305389 | 0.73991 |
miR-145_b | 0.995649 | 2 | 0.497824 | 28.46033 | 22 | 1.293651 | 0.384821 | 0.685064 |
miR-184_b | 0.000011 | 2 | 0.000006 | 0.0007 | 22 | 0.000032 | 0.17839 | 0.837814 |
miR-424_b | 1.12825 | 2 | 0.564125 | 32.49662 | 22 | 1.477119 | 0.381909 | 0.686995 |
Variable | Analysis of Variance; Statistical Significance: p ≤ 0.05 | |||||||
---|---|---|---|---|---|---|---|---|
SS Effect | df Effect | MS Effect | SS Error | df Error | MS Error | F | p | |
miR-21_s | 0.775676 | 1 | 0.775676 | 3.04138 | 12 | 0.253448 | 3.060494 | 0.105722 |
miR3-1_s | 0.198984 | 1 | 0.198984 | 0.86327 | 12 | 0.07194 | 2.765992 | 0.122164 |
miR-138_s | 0.000929 | 1 | 0.000929 | 0.09657 | 12 | 0.008048 | 0.11545 | 0.739896 |
miR-145_s | 0.579964 | 1 | 0.579964 | 13.23836 | 12 | 1.103197 | 0.525712 | 0.482315 |
miR-184_s | 0.001046 | 1 | 0.001046 | 0.01674 | 12 | 0.001395 | 0.749777 | 0.403527 |
miR-424_s * | 0.006783 | 1 | 0.006783 | 0.01576 | 12 | 0.001314 | 5.163991 | 0.042251 |
miR-21_b | 0.886818 | 1 | 0.886818 | 6.22825 | 12 | 0.519021 | 1.708637 | 0.215655 |
miR-31_b | 0.000552 | 1 | 0.000552 | 0.00663 | 12 | 0.000552 | 0.999868 | 0.33708 |
miR-138_b | 0.026883 | 1 | 0.026883 | 0.1904 | 12 | 0.015867 | 1.694303 | 0.217469 |
miR-145_b | 3.674721 | 1 | 3.674721 | 24.78074 | 12 | 2.065061 | 1.779473 | 0.206979 |
miR-184_b | 0.00008 | 1 | 0.00008 | 0.00061 | 12 | 0.000051 | 1.579332 | 0.232769 |
miR-424_b | 4.285125 | 1 | 4.285125 | 28.205 | 12 | 2.350416 | 1.823134 | 0.201857 |
Variable | Analysis of Variance; Statistical Significance: p ≤ 0.05 | |||||||
---|---|---|---|---|---|---|---|---|
SS Effect | df Effect | MS Effect | SS Error | df Error | MS Error | F | p | |
miR-21_s | 0.002989 | 1 | 0.002989 | 0.619293 | 12 | 0.051608 | 0.057913 | 0.813888 |
miR-31_s | 0.00564 | 1 | 0.00564 | 0.266388 | 12 | 0.022199 | 0.254057 | 0.623359 |
miR-138_s | 0.000683 | 1 | 0.000683 | 0.039585 | 12 | 0.003299 | 0.206913 | 0.657317 |
miR-145_s * | 0.312089 | 1 | 0.312089 | 0.529068 | 12 | 0.044089 | 7.078613 | 0.02077 |
miR-184_s | 0.000106 | 1 | 0.000106 | 0.00786 | 12 | 0.000655 | 0.161932 | 0.69446 |
miR-424_s | 0.001124 | 1 | 0.001124 | 0.008707 | 12 | 0.000726 | 1.548489 | 0.237115 |
miR-21_b | 0.014053 | 1 | 0.014053 | 0.632323 | 12 | 0.052694 | 0.266694 | 0.614942 |
miR-31_b | 0.000092 | 1 | 0.000092 | 0.003164 | 12 | 0.000264 | 0.348916 | 0.565687 |
miR-138_b | 0.001348 | 1 | 0.001348 | 0.073555 | 12 | 0.00613 | 0.219903 | 0.647519 |
miR-145_b | 0.020575 | 1 | 0.020575 | 0.83404 | 12 | 0.069503 | 0.296022 | 0.596352 |
miR-184_b | 0.000006 | 1 | 0.000006 | 0.000318 | 12 | 0.000027 | 0.229319 | 0.640637 |
miR-424_b | 0.016404 | 1 | 0.016404 | 0.852331 | 12 | 0.071028 | 0.230951 | 0.639462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocchetti, F.; Tenore, G.; Macali, F.; Vicidomini, T.; Podda, G.M.; Fantozzi, P.J.; Silvestri, V.; Porzio, V.; Valentini, V.; Ottini, L.; et al. Expression Analysis of Circulating microRNAs in Saliva and Plasma for the Identification of Clinically Relevant Biomarkers for Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. Cancers 2024, 16, 2990. https://doi.org/10.3390/cancers16172990
Rocchetti F, Tenore G, Macali F, Vicidomini T, Podda GM, Fantozzi PJ, Silvestri V, Porzio V, Valentini V, Ottini L, et al. Expression Analysis of Circulating microRNAs in Saliva and Plasma for the Identification of Clinically Relevant Biomarkers for Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. Cancers. 2024; 16(17):2990. https://doi.org/10.3390/cancers16172990
Chicago/Turabian StyleRocchetti, Federica, Gianluca Tenore, Federica Macali, Teresa Vicidomini, Gian Marco Podda, Paolo Junior Fantozzi, Valentina Silvestri, Virginia Porzio, Virginia Valentini, Laura Ottini, and et al. 2024. "Expression Analysis of Circulating microRNAs in Saliva and Plasma for the Identification of Clinically Relevant Biomarkers for Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders" Cancers 16, no. 17: 2990. https://doi.org/10.3390/cancers16172990
APA StyleRocchetti, F., Tenore, G., Macali, F., Vicidomini, T., Podda, G. M., Fantozzi, P. J., Silvestri, V., Porzio, V., Valentini, V., Ottini, L., Richetta, A. G., Valentini, V., Della Monaca, M., Grenga, C., Polimeni, A., & Romeo, U. (2024). Expression Analysis of Circulating microRNAs in Saliva and Plasma for the Identification of Clinically Relevant Biomarkers for Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. Cancers, 16(17), 2990. https://doi.org/10.3390/cancers16172990