Salivary Interleukin-13 and Transforming Growth Factor Beta as Potential Biomarkers of Cancer Cachexia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Sampling
2.2. Sample Processing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and Classification of Cancer Cachexia: An International Consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Meza-Valderrama, D.; Marco, E.; Dávalos-Yerovi, V.; Muns, M.D.; Tejero-Sánchez, M.; Duarte, E.; Sánchez-Rodríguez, D. Sarcopenia, Malnutrition, and Cachexia: Adapting Definitions and Terminology of Nutritional Disorders in Older People with Cancer. Nutrients 2021, 13, 761. [Google Scholar] [CrossRef] [PubMed]
- Farkas, J.; von Haehling, S.; Kalantar-Zadeh, K.; Morley, J.E.; Anker, S.D.; Lainscak, M. Cachexia as a Major Public Health Problem: Frequent, Costly, and Deadly. J. Cachexia Sarcopenia Muscle 2013, 4, 173–178. [Google Scholar] [CrossRef]
- Baracos, V.E.; Martin, L.; Korc, M.; Guttridge, D.C.; Fearon, K.C.H. Cancer-Associated Cachexia. Nat. Rev. Dis. Primers 2018, 4, 17105. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, T.; Sari, I.N.; Wijaya, Y.T.; Julianto, N.M.; Muhammad, J.A.; Lee, H.; Chae, J.H.; Kwon, H.Y. Cancer Cachexia: Molecular Mechanisms and Treatment Strategies. J. Hematol. Oncol. 2023, 16, 54. [Google Scholar] [CrossRef] [PubMed]
- Loumaye, A.; Thissen, J.P. Biomarkers of Cancer Cachexia. Clin. Biochem. 2017, 50, 1281–1288. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, K.; Jose, I.; Hoogenraad, N.J.; Osellame, L.D. Biomarkers for Cancer Cachexia: A Mini Review. Int. J. Mol. Sci. 2021, 22, 4501. [Google Scholar] [CrossRef]
- Pawlak, J.B.; Blobe, G.C. TGF-β Superfamily Co-receptors in Cancer. Dev. Dyn. 2022, 251, 117–143. [Google Scholar] [CrossRef]
- Waning, D.L.; Mohammad, K.S.; Reiken, S.; Xie, W.; Andersson, D.C.; John, S.; Chiechi, A.; Wright, L.E.; Umanskaya, A.; Niewolna, M.; et al. Excess TGF-β Mediates Muscle Weakness Associated with Bone Metastases in Mice. Nat. Med. 2015, 21, 1262–1271. [Google Scholar] [CrossRef]
- Colak, S.; ten Dijke, P. Targeting TGF-β Signaling in Cancer. Trends Cancer. 2017, 3, 56–71. [Google Scholar] [CrossRef]
- Larson, C.; Oronsky, B.; Carter, C.A.; Oronsky, A.; Knox, S.J.; Sher, D.; Reid, T.R. TGF-Beta: A Master Immune Regulator. Expert Opin. Ther. Targets 2020, 24, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Ye, S.; Liu, H.; Zhao, Y.; Mao, Y.; Zhang, W. HMGA2 Promotes Cancer Metastasis by Regulating Epithelial—Mesenchymal Transition. Front. Oncol. 2024, 14. [Google Scholar] [CrossRef]
- Angioni, R.; Sánchez-Rodríguez, R.; Viola, A.; Molon, B. TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers 2021, 13, 401. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, N.H.; Stanya, K.J.; Hyde, A.L.; Chalom, M.M.; Alexander, R.K.; Liou, Y.-H.; Starost, K.A.; Gangl, M.R.; Jacobi, D.; Liu, S.; et al. Interleukin-13 Drives Metabolic Conditioning of Muscle to Endurance Exercise. Science 2020, 368. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Song, X.; Traub, B.; Luxenhofer, M.; Kornmann, M. Involvement of IL-4, IL-13 and Their Receptors in Pancreatic Cancer. Int. J. Mol. Sci. 2021, 22, 2998. [Google Scholar] [CrossRef]
- Little, A.C.; Pathanjeli, P.; Wu, Z.; Bao, L.; Goo, L.E.; Yates, J.A.; Oliver, C.R.; Soellner, M.B.; Merajver, S.D. IL-4/IL-13 Stimulated Macrophages Enhance Breast Cancer Invasion Via Rho-GTPase Regulation of Synergistic VEGF/CCL-18 Signaling. Front. Oncol. 2019, 9, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Strasser, F.; Gonella, S.; Solheim, T.S.; Madeddu, C.; Ravasco, P.; Buonaccorso, L.; de van der Schueren, M.A.E.; Baldwin, C.; Chasen, M.; et al. Cancer Cachexia in Adult Patients: ESMO Clinical Practice Guidelines. ESMO Open 2021, 6, 100092. [Google Scholar] [CrossRef]
- Bozzetti, F.; Mariani, L. Defining and Classifying Cancer Cachexia: A Proposal by the SCRINIO Working Group. JPEN J. Parenter. Enter. Nutr. 2009, 33, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Caillet, P.; Liuu, E.; Raynaud Simon, A.; Bonnefoy, M.; Guerin, O.; Berrut, G.; Lesourd, B.; Jeandel, C.; Ferry, M.; Rolland, Y.; et al. Association between Cachexia, Chemotherapy and Outcomes in Older Cancer Patients: A Systematic Review. Clin. Nutr. 2017, 36, 1473–1482. [Google Scholar] [CrossRef]
- Mariean, C.R.; Tiucă, O.M.; Mariean, A.; Cotoi, O.S. Cancer Cachexia: New Insights and Future Directions. Cancers 2023, 15, 5590. [Google Scholar] [CrossRef]
- Nonaka, T.; Wong, D.T.W. Saliva Diagnostics. Annu. Rev. Anal. Chem. 2022, 15, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kaczor-Urbanowicz, K.E.; Wong, D.T.W. Salivary Biomarkers in Cancer Detection. Med. Oncol. 2017, 34, 7. [Google Scholar] [CrossRef]
- Polz-Dacewicz, M.; Strycharz-Dudziak, M.; Dworzański, J.; Stec, A.; Kocot, J. Salivary and Serum IL-10, TNF-α, TGF-β, VEGF Levels in Oropharyngeal Squamous Cell Carcinoma and Correlation with HPV and EBV Infections. Infect. Agents Cancer 2016, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Parkin, G.M.; Kim, S.; Mikhail, A.; Malhas, R.; McMillan, L.; Hollearn, M.; Granger, D.A.; Mapstone, M.; Yassa, M.A.; Thomas, E.A. Associations between Saliva and Plasma Cytokines in Cognitively Normal, Older Adults. Aging Clin. Exp. Res. 2022, 35, 117–126. [Google Scholar] [CrossRef]
- Ábrigo, J.; Campos, F.; Simon, F.; Riedel, C.; Cabrera, D.; Vilos, C.; Cabello-Verrugio, C. TGF-β Requires the Activation of Canonical and Non-Canonical Signalling Pathways to Induce Skeletal Muscle Atrophy. Biol. Chem. 2018, 399, 253–264. [Google Scholar] [CrossRef]
- Alves, M.J.; Figuerêdo, R.G.; Azevedo, F.F.; Cavallaro, D.A.; Neto, N.I.P.; Lima, J.D.C.; Matos-Neto, E.; Radloff, K.; Riccardi, D.M.; Camargo, R.G.; et al. Adipose Tissue Fibrosis in Human Cancer Cachexia: The Role of TGFβ Pathway. BMC Cancer 2017, 17, 190. [Google Scholar] [CrossRef]
- Aqrawi, L.A.; Chen, X.; Hynne, H.; Amdal, C.; Reppe, S.; Aass, H.C.D.; Rykke, M.; Hove, L.H.; Young, A.; Herlofson, B.B.; et al. Cytokines Explored in Saliva and Tears from Radiated Cancer Patients Correlate with Clinical Manifestations, Influencing Important Immunoregulatory Cellular Pathways. Cells 2020, 9, 2050. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Parveen, S.; Shree, P.; Ahmed, T.; Ali, S.; Kaur, M.; Sircar, K.; Sybil, D.; Chandra, A. Salivary Transforming Growth Factor Beta in Oral Submucous Fibrosis: A Diagnostic and Predictive Marker. J. Cancer Res. Ther. 2024, 20, 275–280. [Google Scholar] [CrossRef]
- Siqueira, W.L.; Dawes, C. The Salivary Proteome: Challenges and Perspectives. Proteomics Clin. Appl. 2011, 5, 575–579. [Google Scholar] [CrossRef]
- Aziz, S.; Ahmed, S.S.; Ali, A.; Khan, F.A.; Zulfiqar, G.; Iqbal, J.; Khan, A.A.; Shoaib, M. Salivary Immunosuppressive Cytokines IL-10 and IL-13 Are Significantly Elevated in Oral Squamous Cell Carcinoma Patients. Cancer Investig. 2015, 33, 318–328. [Google Scholar] [CrossRef]
- Czajka-Francuz, P.; Francuz, T.; Cisoń-Jurek, S.; Czajka, A.; Fajkis, M.; Szymczak, B.; Kozaczka, M.; Malinowski, K.P.; Zasada, W.; Wojnar, J.; et al. Serum Cytokine Profile as a Potential Prognostic Tool in Colorectal Cancer Patients—One Center Study. Rep. Pract. Oncol. Radiother. 2020, 25, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Lipshitz, M.; Visser, J.; Anderson, R.; Nel, D.G.; Smit, T.; Steel, H.C.; Rapoport, B. Emerging Markers of Cancer Cachexia and Their Relationship to Sarcopenia. J. Cancer Res. Clin. Oncol. 2023, 149, 17511–17527. [Google Scholar] [CrossRef] [PubMed]
- Dev, R. Measuring Cachexia—Diagnostic Criteria. Ann. Palliat. Med. 2019, 8, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Maccio, A.; Sanna, E.; Neri, M.; Oppi, S.; Madeddu, C. Cachexia as Evidence of the Mechanisms of Resistance and Tolerance during the Evolution of Cancer Disease. Int. J. Mol. Sci. 2021, 22, 2890. [Google Scholar] [CrossRef]
Cachexia | ||||||
---|---|---|---|---|---|---|
N = 78 | NC, N = 46 | C, N = 32 | p | |||
Gender | F | N | 34 | 20 | 14 | 0.231 |
% | 44 | 59 | 41 | |||
M | N | 44 | 26 | 18 | ||
% | 56 | 59 | 41 | |||
Age (y) | median | 52 | 60 | 60 | 0.170 | |
range | 48–62 | 21–78 | 37–74 | |||
BMI (kg/m2) | median | 23.4 | 26.6 | 17.74 | <0.001 | |
range | 15.5–40.4 | 20–40.4 | 15.4–19.8 | |||
CRP (mg/mL) | median | 6.7 | 7.6 | 3.2 | 0.100 | |
range | 0.5–112 | 1–112 | 0.5–64.7 | |||
AST (U/L) | median | 25 | 25 | 28.5 | 0.783 | |
(RV 11–38 U/L) | range | 8–115 | 9–115 | 8–83 | ||
ALT (U/L) | median | 18 | 19 | 17 | 0.683 | |
(RV 12–48 U/L) | range | 6–146 | 6–146 | 6–86 | ||
Albumin (g/L) | median | 37.2 | 38.2 | 37.1 | 0.041 | |
(RV 40.6–51.4 g/L) | range | 22.3–47.8 | 28.3–47.8 | 22.3–43.1 | ||
Total protein (g/L) | median | 69.5 | 71 | 68 | 0.226 | |
(RV 66–81 g/L) | range | 52–91 | 54–91 | 52–77 | ||
IL-13 (pg/mL) | median | 37.4 | 35.4 | 38.5 | 0.159 | |
(serum) | range | 13.6–56.7 | 13.6–56.7 | 18.8–54.3 | ||
IL-13 (pg/mL) | median | 75.4 | 64.2 | 99.9 | <0.001 | |
(saliva) | range | 37.8–183.3 | 37.8–136.4 | 52.1–183.3 | ||
TGF-β (pg/mL) | Median | 97.6 | 73.5 | 168.3 | <0.001 | |
(serum) | Range | 22.1–224.5 | 22.1–196.3 | 28.3–224.5 | ||
TGF-β (pg/mL) | Median | 114 | 97.4 | 216.6 | <0.001 | |
(saliva) | range | 27.3–283.5 | 27.3–176.5 | 66.3–283.5 |
IL-13 (Serum) | IL-13 (Saliva) | TGF-β (Serum) | TGF-β (Saliva) | |||||
---|---|---|---|---|---|---|---|---|
NC | C | NC | C | NC | C | NC | C | |
Gender | 0.734 | 0.516 | 0.643 | 0.551 | 0.510 | 0.713 | 0.100 | 0.137 |
Age | 0.680 | 0.354 | 0.117 | 0.855 | 0.662 | 0.669 | 0.721 | 0.358 |
BMI | 0.009 | 0.076 | 0.008 | 0.061 | 0.010 | 0.045 | 0.125 | 0.045 |
CRP | 0.741 | 0.546 | 0.208 | 0.647 | 0.370 | 0.360 | 0.482 | 0.453 |
AST | 0.560 | 0.894 | 0.566 | 0.120 | 0.424 | 0.480 | 0.373 | 0.371 |
ALT | 0.718 | 0.810 | 0.140 | 0.086 | 0.651 | 0.895 | 0.721 | 0.358 |
Albumin | 0.404 | 0.622 | 0.068 | 0.287 | 0.149 | 0.297 | 0.489 | 0.672 |
Total protein | 0.617 | 0.196 | 0.771 | 0.607 | 0.411 | 0.468 | 0.100 | 0.137 |
Variables | B | SE | β | p |
---|---|---|---|---|
Constant | 1.62 | |||
Gender | 0.129 | 0.073 | 0.107 | 0.085 |
Age | −0.003 | 0.003 | −0.151 | 0.311 |
BMI | −0.023 | 0.009 | −0.370 | 0.010 |
CRP | −0.002 | 0.001 | −0.193 | 0.197 |
AST | 0.001 | 0.001 | 0.075 | 0.611 |
ALT | −0.002 | 0.001 | −0.190 | 0.199 |
Albumin | −0.012 | 0.005 | −0.322 | 0.027 |
Total protein | 0.003 | 0.005 | 0.081 | 0.556 |
IL-13 (serum) | −0.045 | 0.071 | −0.093 | 0.528 |
IL-13 (saliva) | 0.173 | 0.082 | 0.295 | 0.020 |
TGF-β (serum) | −0.226 | 0.141 | −0.231 | 0.113 |
TGF-β (saliva) | 0.591 | 0.154 | 0.491 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belev, B.; Vičić, I.; Sedlić, F.; Prtorić, M.; Soče, M.; Prejac, J.; Potočki, S.; Silovski, T.; Herceg, D.; Kulić, A. Salivary Interleukin-13 and Transforming Growth Factor Beta as Potential Biomarkers of Cancer Cachexia. Cancers 2024, 16, 3035. https://doi.org/10.3390/cancers16173035
Belev B, Vičić I, Sedlić F, Prtorić M, Soče M, Prejac J, Potočki S, Silovski T, Herceg D, Kulić A. Salivary Interleukin-13 and Transforming Growth Factor Beta as Potential Biomarkers of Cancer Cachexia. Cancers. 2024; 16(17):3035. https://doi.org/10.3390/cancers16173035
Chicago/Turabian StyleBelev, Borislav, Ivan Vičić, Filip Sedlić, Matko Prtorić, Majana Soče, Juraj Prejac, Slavica Potočki, Tajana Silovski, Davorin Herceg, and Ana Kulić. 2024. "Salivary Interleukin-13 and Transforming Growth Factor Beta as Potential Biomarkers of Cancer Cachexia" Cancers 16, no. 17: 3035. https://doi.org/10.3390/cancers16173035
APA StyleBelev, B., Vičić, I., Sedlić, F., Prtorić, M., Soče, M., Prejac, J., Potočki, S., Silovski, T., Herceg, D., & Kulić, A. (2024). Salivary Interleukin-13 and Transforming Growth Factor Beta as Potential Biomarkers of Cancer Cachexia. Cancers, 16(17), 3035. https://doi.org/10.3390/cancers16173035