Therapeutic Treatment Options for In-Transit Metastases from Melanoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Definition and Clinical Presentation
3. Molecular and Clinical ITM Aspects
4. Systemic Treatments for In-Transit Metastases from Melanoma
4.1. Immune Checkpoint Inhibitors
4.1.1. Ipilimumab (Anti-CTLA-4)
4.1.2. Nivolumab and Pembrolizumab (Anti PD-1)
4.1.3. Combination of Immune Checkpoint Inhibitors
4.2. Targeted Therapies
BRAF and MEK Inhibitors
4.3. Chemotherapy
4.3.1. Dacarbazine
4.3.2. Temozolomide and Fotemustine
5. Locoregional Treatments
5.1. Isolated Limb Perfusion (ILP)
5.2. Isolated Limb Infusion (ILI)
5.3. Electrochemotherapy (ECT)
5.4. Intralesional Therapies
5.4.1. Bacillus Calmette-Guérin
5.4.2. Interleukin-2
5.4.3. Granulocyte–Macrophage Colony-Stimulating Factor
5.4.4. Talimogene Laherparepvec
5.5. Laser Treatments
5.6. Radiotherapy (RT)
6. Current Guidelines and Recommendations for the Treatment of In-Transit Melanoma Metastases
6.1. National Comprehensive Cancer Network (NCCN) Guidelines
6.1.1. Adjuvant Therapy Options
- Nivolumab: The CheckMate 238 study demonstrated a significant improvement in recurrence-free survival (RFS) compared to ipilimumab, with a better safety profile. Nivolumab is considered a category 2A option for patients with satellite and in-transit metastases that have been completely excised with clear margins [96,97];
6.1.2. Targeted Therapies
6.2. European Society for Medical Oncology (ESMO) Guidelines
6.3. Associazione Italiana Di Oncologia Medica (AIOM) Guidelines 2023
- Electrochemotherapy: Used to treat inoperable lesions and skin metastases, even in locations other than the limbs;
- Radiotherapy: Can be employed to treat inoperable lesions, contributing to local disease control. Radiotherapy may be used alone or in combination with other locoregional and systemic therapies;
- HILP: Indicated for extensive limb lesions. This technique involves isolating the blood flow of the affected limb and infusing high doses of chemotherapy (melphalan) with/without TNF-alpha while the limb is heated. HILP is particularly effective for locally advanced and inoperable limb diseases.
7. Discussion
Initial Evaluation and Staging
- For patients with resectable ITM and no distant metastatic disease, surgical resection remains the first-line treatment. The goal of surgery is to achieve negative margins to reduce the risk of local recurrence. Subsequently, adjuvant systemic therapy should be considered, based on the patient’s overall condition and any comorbidities, to reduce the risk of recurrence and improve overall survival.
- For patients with ITM and metastatic disease, Primary Systemic Therapy with immune checkpoint inhibitors or targeted therapies is the recommended treatment.
- If there is a good response to therapy on distant metastases and in-transit metastases, we recommend continuing with systemic treatment and possibly integrating it with a low-impact locoregional treatment (such as ECT) if a complete response is not achieved with systemic therapy;
- If there is a good response to therapy on distant metastases and a poor response on in-transit metastases, we recommend continuing with systemic treatment and integrating with the locoregional treatment that best suits the disease characteristics and patient features. For bulky disease (or high burden) of the limbs, we propose ILP for patients with good ECOG performance status, or ILI for patients with poor ECOG. ECT is advised for nodules smaller than 3 cm or for intralesional treatments;
- In the case of poor response to therapy on distant metastases, we advise changing systemic treatment, if possible.
- 3.
- For patients with unresectable ITM and no distant metastatic disease, we propose integrating systemic therapy (if feasible) and the most appropriate locoregional treatment. For bulky disease (or high burden) of the limbs, we propose combining ILP and immunotherapy for patients with good ECOG or ILI and immunotherapy. For patients with small-sized in-transit metastases or a limited number of lesions, we propose the combination of ECT + immunotherapy or intralesional treatments + immunotherapy.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma Staging: Evidence-based Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [PubMed]
- Keung, E.Z.; Gershenwald, J.E. The Eighth Edition American Joint Committee on Cancer (AJCC) Melanoma Staging System: Implications for Melanoma Treatment and Care. Expert Rev. Anticancer Ther. 2018, 18, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Angeles, C.V.; Kang, R.; Shirai, K.; Wong, S.L. Meta-Analysis of Completion Lymph Node Dissection in Sentinel Lymph Node-Positive Melanoma. Br. J. Surg. 2019, 106, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.L.; Thompson, J.F.; Cochran, A.J.; Mozzillo, N.; Elashoff, R.; Essner, R.; Nieweg, O.E.; Roses, D.F.; Hoekstra, H.J.; Karakousis, C.P. Sentinel-Node Biopsy or Nodal Observation in Melanoma. N. Engl. J. Med. 2006, 355, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Read, R.L.; Haydu, L.; Saw, R.P.; Quinn, M.J.; Shannon, K.; Spillane, A.J.; Stretch, J.R.; Scolyer, R.A.; Thompson, J.F. In-Transit Melanoma Metastases: Incidence, Prognosis, and the Role of Lymphadenectomy. Ann. Surg. Oncol. 2015, 22, 475–481. [Google Scholar] [CrossRef]
- Nan Tie, E.; Henderson, M.A.; Gyorki, D.E. Management of In-transit Melanoma Metastases: A Review. ANZ J. Surg. 2019, 89, 647–652. [Google Scholar] [CrossRef]
- Tian, J.; Quek, C. Understanding the Tumor Microenvironment in Melanoma Patients with In-Transit Metastases and Its Impacts on Immune Checkpoint Immunotherapy Responses. Int. J. Mol. Sci. 2024, 25, 4243. [Google Scholar] [CrossRef]
- Patel, A.; Carr, M.J.; Sun, J.; Zager, J.S. In-Transit Metastatic Cutaneous Melanoma: Current Management and Future Directions. Clin. Exp. Metastasis 2022, 39, 201–211. [Google Scholar] [CrossRef]
- Nakayama, T.; Taback, B.; Turner, R.; Morton, D.L.; Hoon, D.S.B. Molecular Clonality of In-Transit Melanoma Metastasis. Am. J. Pathol. 2001, 158, 1371–1378. [Google Scholar] [CrossRef]
- Wagstaff, W.; Mwamba, R.N.; Grullon, K.; Armstrong, M.; Zhao, P.; Hendren-Santiago, B.; Qin, K.H.; Li, A.J.; Hu, D.A.; Youssef, A.; et al. Melanoma: Molecular Genetics, Metastasis, Targeted Therapies, Immunotherapies, and Therapeutic Resistance. Genes Dis. 2022, 9, 1608–1623. [Google Scholar] [CrossRef]
- Lawless, A.K.; Coker, D.J.; Lo, S.N.; Ahmed, T.; Scolyer, R.A.; Ch’ng, S.; Nieweg, O.E.; Shannon, K.; Spillane, A.; Stretch, J.R.; et al. Clinicopathological Characteristics Predicting Further Recurrence and Survival Following Resection of In-Transit Melanoma Metastases. Ann. Surg. Oncol. 2022, 29, 7019–7028. [Google Scholar] [CrossRef]
- Tarantino, G.; Zaremba, A.; Vallius, T.; Rambow, F.; Zimmer, L.; Sucker, A.; Livingstone, E.; Pelletier, R.; Makhzami, S.; Murphy, G.; et al. 1166P Multi-Modal and Longitudinal Characterization of the Tumor and Immune Microenvironment from Primary Melanoma to in-Transit and Distant Metastasis. Ann. Oncol. 2023, 34, S694. [Google Scholar] [CrossRef]
- El Moheb, M.; Kim, S.; Cao, C.; Zhang, Y.; Shafiei, M.S.; Shen, C.; Haden, K.; Dengel, L.T.; Fallahi-Sichani, M.; Tsung, A.; et al. Characterization of Driver Oncogenic Mutations of In-Transit Melanoma Metastases. JCO 2024, 42, 9586. [Google Scholar] [CrossRef]
- Dias-Santagata, D.; Su, Y.; Hoang, M.P. Immunohistochemical Detection of NRAS Q61R Mutation in Diverse Tumor Types. Am. J. Clin. Pathol. 2016, 145, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.L.; Aplin, A.E. Targeting Mutant NRAS Signaling Pathways in Melanoma. Pharmacol. Res. 2016, 107, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Randic, T.; Kozar, I.; Margue, C.; Utikal, J.; Kreis, S. NRAS Mutant Melanoma: Towards Better Therapies. Cancer Treat. Rev. 2021, 99, 102238. [Google Scholar] [CrossRef] [PubMed]
- Hotz, M.J.; O’Halloran, E.A.; Hill, M.V.; Hayden, K.; Zaladonis, A.G.; Deng, M.; Olszanski, A.J.; Reddy, S.S.; Wu, H.; Luo, B.; et al. Tumor Mutational Burden and Somatic Mutation Status to Predict Disease Recurrence in Advanced Melanoma. Melanoma Res. 2022, 32, 112–119. [Google Scholar] [CrossRef]
- Neittaanmäki, N.; Zaar, O.; Cehajic, K.S.; Nilsson, K.D.; Katsarelias, D.; Bagge, R.O.; Paoli, J.; Fletcher, J.S. ToF-SIMS Imaging Reveals Changes in Tumor Cell Lipids during Metastatic Progression of Melanoma. Pigment. Cell Melanoma Res. 2024. Epub ahead of print. [Google Scholar] [CrossRef]
- Jakub, J.W.; Weaver, A.L.; Meves, A. Association of Tumor Molecular Factors with In-transit Metastasis in Primary Cutaneous Melanoma. Int. J. Dermatol. 2022, 61, 1117–1123. [Google Scholar] [CrossRef]
- Huang, A.C.; Zappasodi, R. A Decade of Checkpoint Blockade Immunotherapy in Melanoma: Understanding the Molecular Basis for Immune Sensitivity and Resistance. Nat. Immunol. 2022, 23, 660–670. [Google Scholar] [CrossRef]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J.-F.; Testori, A.; Grob, J.-J. Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. N. Engl. J. Med. 2011, 364, 2517–2526. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; O’day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Heppt, M.V.; Eigentler, T.K.; Kähler, K.C.; Herbst, R.A.; Göppner, D.; Gambichler, T.; Ulrich, J.; Dippel, E.; Loquai, C.; Schell, B.; et al. Immune Checkpoint Blockade with Concurrent Electrochemotherapy in Advanced Melanoma: A Retrospective Multicenter Analysis. Cancer Immunol. Immunother. 2016, 65, 951–959. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Bertolli, E.; Belfort, F.A.; Munhoz, R.R. Management of In-Transit Metastases. Curr. Oncol. Rep. 2022, 24, 573–583. [Google Scholar] [CrossRef]
- Graziani, G.; Tentori, L.; Navarra, P. Ipilimumab: A Novel Immunostimulatory Monoclonal Antibody for the Treatment of Cancer. Pharmacol. Res. 2012, 65, 9–22. [Google Scholar] [CrossRef]
- Curti, B.D.; Faries, M.B. Recent Advances in the Treatment of Melanoma. N. Engl. J. Med. 2021, 384, 2229–2240. [Google Scholar] [CrossRef]
- Holmberg, C.-J.; Ny, L.; Hieken, T.J.; Block, M.S.; Carr, M.J.; Sondak, V.K.; Örtenwall, C.; Katsarelias, D.; Dimitriou, F.; Menzies, A.M.; et al. The Efficacy of Immune Checkpoint Blockade for Melanoma In-Transit with or without Nodal Metastases—A Multicenter Cohort Study. Eur. J. Cancer 2022, 169, 210–222. [Google Scholar] [CrossRef]
- Nan Tie, E.; Lai-Kwon, J.; Rtshiladze, M.A.; Na, L.; Bozzi, J.; Read, T.; Atkinson, V.; Au-Yeung, G.; Long, G.V.; McArthur, G.A.; et al. Efficacy of Immune Checkpoint Inhibitors for In-Transit Melanoma. J. Immunother. Cancer 2020, 8, e000440. [Google Scholar] [CrossRef]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse Effects of Immune-Checkpoint Inhibitors: Epidemiology, Management and Surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Wang, D.Y.; Salem, J.-E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. JAMA Oncol. 2018, 4, 1721. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Nayeni, M.; Malvankar, M. The Relationship between Immune-Related Adverse Events during Ipilimumab Monotherapy and Survival Outcomes among Melanoma Patients: A Systematic Review. J. Oncol. Pharm. Pr. 2024. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Allison, J.P. The Future of Immune Checkpoint Therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Dong, H.; Markovic, S.N. (Eds.) The Basics of Cancer Immunotherapy; Springer International Publishing: Cham, Switzerland, 2024; ISBN 978-3-031-59474-8. [Google Scholar]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in Previously Untreated Melanoma without BRAF Mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.-J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma (KEYNOTE-006): Post-Hoc 5-Year Results from an Open-Label, Multicentre, Randomised, Controlled, Phase 3 Study. Lancet Oncol. 2019, 20, 1239–1251. [Google Scholar] [CrossRef]
- Johnson, D.B.; Nebhan, C.A.; Moslehi, J.J.; Balko, J.M. Immune-Checkpoint Inhibitors: Long-Term Implications of Toxicity. Nat. Rev. Clin. Oncol. 2022, 19, 254–267. [Google Scholar] [CrossRef]
- Lebbé, C.; Meyer, N.; Mortier, L.; Marquez-Rodas, I.; Robert, C.; Rutkowski, P.; Menzies, A.M.; Eigentler, T.; Ascierto, P.A.; Smylie, M.; et al. Evaluation of Two Dosing Regimens for Nivolumab in Combination with Ipilimumab in Patients with Advanced Melanoma: Results from the Phase IIIb/IV CheckMate 511 Trial. J. Clin. Oncol. 2019, 37, 867–875. [Google Scholar] [CrossRef]
- Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Nivolumab plus Ipilimumab or Nivolumab Alone versus Ipilimumab Alone in Advanced Melanoma (CheckMate 067): 4-Year Outcomes of a Multicentre, Randomised, Phase 3 Trial. Lancet Oncol. 2018, 19, 1480–1492. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in Patients With Advanced Melanoma. J. Clin. Oncol. 2022, 40, 127–137. [Google Scholar] [CrossRef]
- Lebbe, C.; Meyer, N.; Mortier, L.; Marquez-Rodas, I.; Robert, C.; Rutkowski, P.; Butler, M.O.; Eigentler, T.; Menzies, A.M.; Smylie, M.; et al. Two Dosing Regimens of Nivolumab (NIVO) plus Ipilimumab (IPI) for Advanced (Adv) Melanoma: Three-Year Results of CheckMate 511. J. Clin. Oncol. 2021, 39, 9516. [Google Scholar] [CrossRef]
- Weber, J.; Glutsch, V.; Geissinger, E.; Haug, L.; Lock, J.F.; Schneider, F.; Kneitz, H.; Goebeler, M.; Schilling, B.; Gesierich, A. Neoadjuvant Immunotherapy with Combined Ipilimumab and Nivolumab in Patients with Melanoma with Primary or in Transit Disease. Br. J. Dermatol. 2020, 183, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; McKee, A.E.; Ning, Y.-M.; Hazarika, M.; Theoret, M.; Johnson, J.R.; Xu, Q.C.; Tang, S.; Sridhara, R.; Jiang, X.; et al. FDA Approval Summary: Vemurafenib for Treatment of Unresectable or Metastatic Melanoma with the BRAFV600E Mutation. Clin. Cancer Res. 2014, 20, 4994–5000. [Google Scholar] [CrossRef]
- Trinh, V.A.; Davis, J.E.; Anderson, J.E.; Kim, K.B. Dabrafenib Therapy for Advanced Melanoma. Ann. Pharmacother. 2014, 48, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Nazarian, R.; Shi, H.; Wang, Q.; Kong, X.; Koya, R.C.; Lee, H.; Chen, Z.; Lee, M.-K.; Attar, N.; Sazegar, H.; et al. Melanomas Acquire Resistance to B-RAF(V600E) Inhibition by RTK or N-RAS Upregulation. Nature 2010, 468, 973–977. [Google Scholar] [CrossRef]
- Welsh, S.J.; Corrie, P.G. Management of BRAF and MEK Inhibitor Toxicities in Patients with Metastatic Melanoma. Ther. Adv. Med. Oncol. 2015, 7, 122–136. [Google Scholar] [CrossRef]
- Caunt, C.J.; Sale, M.J.; Smith, P.D.; Cook, S.J. MEK1 and MEK2 Inhibitors and Cancer Therapy: The Long and Winding Road. Nat. Rev. Cancer 2015, 15, 577–592. [Google Scholar] [CrossRef]
- Caroline, R.; Boguslawa, K.; Jacob, S.; Piotr, R.; Andrzej, M.; Daniil, S.; Michael, L.; Reinhard, D.; Florent, G.; Laurent, M.; et al. Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef]
- Larkin, J.; Ascierto, P.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Maio, M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L. Combined Vemurafenib and Cobimetinib in BRAF-Mutated Melanoma. N. Engl. J. Med. 2014, 371, 1867–1876. [Google Scholar] [CrossRef]
- Robert, C.; Grob, J.J.; Stroyakovskiy, D.; Karaszewska, B.; Hauschild, A.; Levchenko, E.; Sileni, V.C.; Schachter, J.; Garbe, C.; Bondarenko, I.; et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 2019, 381, 626–636. [Google Scholar] [CrossRef]
- Pham, J.P.; Joshua, A.M.; Da Silva, I.P.; Dummer, R.; Goldinger, S.M. Chemotherapy in Cutaneous Melanoma: Is There Still a Role? Curr. Oncol. Rep. 2023, 25, 609–621. [Google Scholar] [CrossRef]
- Coskun, A.; Kayhan, H.; Senturk, F.; Esmekaya, M.A.; Canseven, A.G. The Efficacy of Electrochemotherapy with Dacarbazine on Melanoma Cells. Bioelectricity 2024, 6, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Bouchereau, S.; Chaplain, L.; Fort, M.; Beauchet, A.; Sidibé, T.; Chapalain, M.; Gonzalez-Lara, L.; Longvert, C.; Blom, A.; Saiag, P. Impact of Prior Treatment with Immune Checkpoint Inhibitors on Dacarbazine Efficacy in Metastatic Melanoma. Br. J. Cancer 2021, 125, 948–954. [Google Scholar] [CrossRef]
- Gupta, A.; Gomes, F.; Lorigan, P. The Role for Chemotherapy in the Modern Management of Melanoma. Melanoma Manag. 2017, 4, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.T.; Bartley, J.; Parsons, P.G.; Eaglesham, G.K.; Prakash, A.S. Mechanism of Action of Fotemustine, a New Chloroethylnitrosourea Anticancer Agent: Evidence for the Formation of Two DNA-Reactive Intermediates Contributing to Cytotoxicity. Biochemistry 1997, 36, 10646–10654. [Google Scholar] [CrossRef] [PubMed]
- Avril, M.F.; Aamdal, S.; Grob, J.; Hauschild, A.; Mohr, P.; Bonerandi, J.; Weichenthal, M.; Neuber, K.; Bieber, T.; Gilde, K. Fotemustine Compared with Dacarbazine in Patients with Disseminated Malignant Melanoma: A Phase III Study. J. Clin. Oncol. 2004, 22, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Jacquillat, C.; Khayat, D.; Banzet, P.; Weil, M.; Fumoleau, P.; Avril, M.; Namer, M.; Bonneterre, J.; Kerbrat, P.; Bonerandi, J. Final Report of the French Multicenter Phase II Study of the Nitrosourea Fotemustine in 153 Evaluable Patients with Disseminated Malignant Melanoma Including Patients with Cerebral Metastases. Cancer 1990, 66, 1873–1878. [Google Scholar] [CrossRef]
- Quirt, I.; Verma, S.; Petrella, T.; Bak, K.; Charette, M. Temozolomide for the Treatment of Metastatic Melanoma: A Systematic Review. Oncologist 2007, 12, 1114–1123. [Google Scholar] [CrossRef]
- Paul, M.J.; Summers, Y.; Calvert, A.H.; Rustin, G.; Brampton, M.H.; Thatcher, N.; Middleton, M.R. Effect of Temozolomide on Central Nervous System Relapse in Patients with Advanced Melanoma. Melanoma Res. 2002, 12, 175–178. [Google Scholar] [CrossRef]
- Luke, J.J.; Schwartz, G.K. Chemotherapy in the Management of Advanced Cutaneous Malignant Melanoma. Clin. Dermatol. 2013, 31, 290–297. [Google Scholar] [CrossRef]
- Rossi, C.R.; Pasquali, S.; Mocellin, S.; Vecchiato, A.; Campana, L.G.; Pilati, P.; Zanon, A.; Nitti, D. Long-Term Results of Melphalan-Based Isolated Limb Perfusion With or Without Low-Dose TNF for In-Transit Melanoma Metastases. Ann. Surg. Oncol. 2010, 17, 3000–3007. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.J.; Coker, D.J.; Been, L.; Boecxstaens, V.W.; Bonvalot, S.; De Cian, F.; De La Cruz-Merino, L.; Duarte, C.; Eggermont, A.; Farricha, V.; et al. Technical Considerations for Isolated Limb Perfusion: A Consensus Paper. Eur. J. Surg. Oncol. 2024, 50, 108050. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ramirez, D.; Cruz-Merino, L.; Ferrandiz, L.; Villegas-Portero, R.; Nieto-Garcia, A. Isolated Limb Perfusion for Malignant Melanoma: Systematic Review on Effectiveness and Safety. Oncologist 2010, 15, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Sanki, A.; Kam, P.C.; Thompson, J.F. Long-Term Results of Hyperthermic, Isolated Limb Perfusion for Melanoma: A Reflection of Tumor Biology. Ann. Surg. 2007, 245, 591–596. [Google Scholar] [CrossRef]
- Guadagni, S.; Fiorentini, G.; Clementi, M.; Palumbo, G.; Chiominto, A.; Cappelli, S.; Masedu, F.; Valenti, M. Melphalan Hypoxic Perfusion with Hemofiltration for Melanoma Locoregional Metastases in the Pelvis. J. Surg. Res. 2017, 215, 114–124. [Google Scholar] [CrossRef]
- Guadagni, S.; Fiorentini, G.; Clementi, M.; Palumbo, G.; Palumbo, P.; Chiominto, A.; Baldoni, S.; Masedu, F.; Valenti, M.; Tommaso, A.D.; et al. Does Locoregional Chemotherapy Still Matter in the Treatment of Advanced Pelvic Melanoma? Int. J. Mol. Sci. 2017, 18, 2382. [Google Scholar] [CrossRef]
- Guadagni, S.; Zoras, O.; Fiorentini, G.; Masedu, F.; Lasithiotakis, K.; Sarti, D.; Farina, A.R.; Mackay, A.R.; Clementi, M. A Prospective Study of Intraarterial Infusion Chemotherapy in Advanced Wild-Type BRAF Melanoma Patients. J. Surg. Res. 2021, 268, 737–747. [Google Scholar] [CrossRef]
- Testori, A.; Ribero, S.; Bataille, V. Diagnosis and Treatment of In-Transit Melanoma Metastases. Eur. J. Surg. Oncol. (EJSO) 2017, 43, 544–560. [Google Scholar] [CrossRef]
- Dugan, M.M.; Shannon, A.B.; DePalo, D.K.; Perez, M.C.; Zager, J.S. Intralesional and Infusional Updates for Metastatic Melanoma. Cancers 2024, 16, 1957. [Google Scholar] [CrossRef]
- Sevilla-Ortega, L.; Ferrándiz-Pulido, L.; Palazón-Carrión, N.; Álamo De La Gala, M.D.C.; De Toro-Salas, R.; Garnacho-Montero, J.; Marcos-Rodríguez, J.A.; Agudo Martínez, A.; Araji-Tiliani, O.; Calvo-Morón, M.C.; et al. Role of Isolated Limb Perfusion in the Era of Targeted Therapies and Immunotherapy in Melanoma. A Systematic Review of The Literature. Cancers 2021, 13, 5485. [Google Scholar] [CrossRef]
- Miura, J.T.; Kroon, H.M.; Beasley, G.M.; Mullen, D.; Farrow, N.E.; Mosca, P.J.; Lowe, M.C.; Farley, C.R.; Kim, Y.; Naqvi, S.M.H.; et al. Long–Term Oncologic Outcomes After Isolated Limb Infusion for Locoregionally Metastatic Melanoma: An International Multicenter Analysis. Ann. Surg. Oncol. 2019, 26, 2486–2494. [Google Scholar] [CrossRef] [PubMed]
- Gehl, J.; Sersa, G.; Matthiessen, L.W.; Muir, T.; Soden, D.; Occhini, A.; Quaglino, P.; Curatolo, P.; Campana, L.G.; Kunte, C.; et al. Updated Standard Operating Procedures for Electrochemotherapy of Cutaneous Tumours and Skin Metastases. Acta Oncol. 2018, 57, 874–882. [Google Scholar] [CrossRef]
- Zdzienicki, M.; Ziętek, M.; Krotewicz, M.; Ewert-Krzemieniewska, A.; Rutkowski, P. The Long-Term Results of Electrochemotherapy in the Treatment of Patients with Locoregionally Advanced, Unresectable Melanoma. J. Clin. Med. 2024, 13, 3705. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Ghidini, A.; Simioni, A.; Campana, L.G. Impact of Electrochemotherapy in Metastatic Cutaneous Melanoma: A Contemporary Systematic Review and Meta-Analysis. Acta Oncol. 2022, 61, 533–544. [Google Scholar] [CrossRef]
- Storm, F.; Sparks, F.; Morton, D. Treatment for Melanoma of the Lower Extremity with Intralesional Injection of Bacille Calmette Guérin and Hyperthermic Perfusion. Surg. Gynecol. Obstet. 1979, 149, 17–21. [Google Scholar]
- Tan, J.K.; Ho, V.C. Pooled Analysis of the Efficacy of Bacille Calmette-Guerin (BCG) Immunotherapy in Malignant Melanoma. Dermatol. Surg. 1993, 19, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Karakousis, C.P.; Douglass, H.O.; Yeracaris, P.M.; Holyoke, E.D. BCG Immunotherapy in Patients with Malignant Melanoma. Arch. Surg. 1976, 111, 716–718. [Google Scholar] [CrossRef] [PubMed]
- Cardillo, F.; Bonfim, M.; Da Silva Vasconcelos Sousa, P.; Mengel, J.; Ribeiro Castello-Branco, L.R.; Pinho, R.T. Bacillus Calmette–Guérin Immunotherapy for Cancer. Vaccines 2021, 9, 439. [Google Scholar] [CrossRef] [PubMed]
- Byers, B.A.; Temple-Oberle, C.F.; Hurdle, V.; McKinnon, J.G. Treatment of In-transit Melanoma with Intra-lesional Interleukin-2: A Systematic Review. J. Surg. Oncol. 2014, 110, 770–775. [Google Scholar] [CrossRef]
- Nadler, A.; Look Hong, N.J.; Alavi, N.; Abadir, W.; Wright, F.C. Lesional Therapies for In-transit Melanoma. J. Surg. Oncol. 2020, 122, 1050–1056. [Google Scholar] [CrossRef]
- Temple-Oberle, C.F.; Byers, B.A.; Hurdle, V.; Fyfe, A.; McKinnon, J.G. Intra-Lesional Interleukin-2 Therapy for in Transit Melanoma. J. Surg. Oncol. 2014, 109, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Taghi Khani, A.; Sanchez Ortiz, A.; Swaminathan, S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front. Immunol. 2022, 13, 901277. [Google Scholar] [CrossRef] [PubMed]
- Spitler, L.E.; Weber, R.W.; Allen, R.E.; Meyer, J.; Cruickshank, S.; Garbe, E.; Lin, H.-Y.; Soong, S. Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF, Sargramostim) Administered for 3 Years as Adjuvant Therapy of Stages II (T4), III, and IV Melanoma. J. Immunother. 2009, 32, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.L.; Ruby, C.E.; Hughes, T.; Slingluff, C.L. Current Status of Granulocyte–Macrophage Colony-Stimulating Factor in the Immunotherapy of Melanoma. J. ImmunoTherapy Cancer 2014, 2, 11. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, Y.H. Molecular Frontiers in Melanoma: Pathogenesis, Diagnosis, and Therapeutic Advances. Int. J. Mol. Sci. 2024, 25, 2984. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.M.; Zitelli, J.A. Locoregional Melanoma Metastases Resistant to PD-1 Inhibitor Therapy Treated with Intralesional Talimogene Laherparepvec. JAAD Case Rep. 2024, 43, 12–14. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef] [PubMed]
- Chesney, J.A.; Puzanov, I.; Collichio, F.A.; Singh, P.; Milhem, M.M.; Glaspy, J.; Hamid, O.; Ross, M.; Friedlander, P.; Garbe, C.; et al. Talimogene Laherparepvec in Combination with Ipilimumab versus Ipilimumab Alone for Advanced Melanoma: 5-Year Final Analysis of a Multicenter, Randomized, Open-Label, Phase II Trial. J. Immunother. Cancer 2023, 11, e006270. [Google Scholar] [CrossRef]
- Chesney, J.A.; Ribas, A.; Long, G.V.; Kirkwood, J.M.; Dummer, R.; Puzanov, I.; Hoeller, C.; Gajewski, T.F.; Gutzmer, R.; Rutkowski, P.; et al. Randomized, Double-Blind, Placebo-Controlled, Global Phase III Trial of Talimogene Laherparepvec Combined With Pembrolizumab for Advanced Melanoma. JCO 2023, 41, 528–540. [Google Scholar] [CrossRef]
- Strobbe, L.J.A.; Nieweg, O.E.; Kroon, B.B.R. Carbon Dioxide Laser for Cutaneous Melanoma Metastases: Indications and Limitations. Eur. J. Surg. Oncol. (EJSO) 1997, 23, 435–438. [Google Scholar] [CrossRef]
- Vrielink, O.M.; Kruijff, S.; Van Leeuwen, B.L.; Roodenburg, J.L. Application of CO 2 Laser Evaporation in Locally Advanced Melanoma. Melanoma Manag. 2019, 6, MMT14. [Google Scholar] [CrossRef]
- Algarin, Y.A.; Pulumati, A.; Jaalouk, D.; Tan, J.; Zeitouni, N.C.; Nouri, K. The Palliative Role of Lasers in the Treatment of Melanoma. Arch. Dermatol. Res. 2024, 316, 244. [Google Scholar] [CrossRef]
- Bhave, P.; Hong, A.; Lo, S.N.; Johnson, R.; Mangana, J.; Johnson, D.B.; Dulgar, O.; Eroglu, Z.; Yeoh, H.-L.; Haydon, A.; et al. Efficacy and Toxicity of Adjuvant Radiotherapy in Recurrent Melanoma after Adjuvant Immunotherapy. J. Immunother. Cancer 2023, 11, e006629. [Google Scholar] [CrossRef]
- Bliley, R.; Avant, A.; Medina, T.M.; Lanning, R.M. Radiation and Melanoma: Where Are We Now? Curr. Oncol. Rep. 2024, 26, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Del Vecchio, M.; Mandalá, M.; Gogas, H.; Arance Fernandez, A.M.; Dalle, S.; Cowey, C.L.; Schenker, M.; Grob, J.-J.; Chiarion-Sileni, V.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III/IV Melanoma: 5-Year Efficacy and Biomarker Results from CheckMate 238. Clin. Cancer Res. 2023, 29, 3352–3361. [Google Scholar] [CrossRef] [PubMed]
- Amaria, R.N.; Reddy, S.M.; Tawbi, H.A.; Davies, M.A.; Ross, M.I.; Glitza, I.C.; Cormier, J.N.; Lewis, C.; Hwu, W.-J.; Hanna, E.; et al. Neoadjuvant Immune Checkpoint Blockade in High-Risk Resectable Melanoma. Nat. Med. 2018, 24, 1649–1654. [Google Scholar] [CrossRef]
- Eggermont, A.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; Khattak, A.; Carlino, M.S. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma (EORTC 1325-MG/KEYNOTE-054): Distant Metastasis-Free Survival Results from a Double-Blind, Randomised, Controlled, Phase 3 Trial. Lancet Oncol. 2021, 22, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.P.; Othus, M.; Chen, Y.; Wright, G.P.; Yost, K.J.; Hyngstrom, J.R.; Hu-Lieskovan, S.; Lao, C.D.; Fecher, L.A.; Truong, T.-G.; et al. Neoadjuvant–Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. N. Engl. J. Med. 2023, 388, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Brase, J.C.; Garrett, J.; Campbell, C.D.; Gasal, E.; Squires, M.; Gusenleitner, D.; Santinami, M.; Atkinson, V.; Mandalà, M. Adjuvant Dabrafenib plus Trametinib versus Placebo in Patients with Resected, BRAFV600-Mutant, Stage III Melanoma (COMBI-AD): Exploratory Biomarker Analyses from a Randomised, Phase 3 Trial. Lancet Oncol. 2020, 21, 358–372. [Google Scholar] [CrossRef]
- Amaria, R.N.; Prieto, P.A.; Tetzlaff, M.T.; Reuben, A.; Andrews, M.C.; Ross, M.I.; Glitza, I.C.; Cormier, J.; Hwu, W.-J.; Tawbi, H.A.; et al. Neoadjuvant plus Adjuvant Dabrafenib and Trametinib versus Standard of Care in Patients with High-Risk, Surgically Resectable Melanoma: A Single-Centre, Open-Label, Randomised, Phase 2 Trial. Lancet Oncol. 2018, 19, 181–193. [Google Scholar] [CrossRef]
- Long, G.V.; Saw, R.P.M.; Lo, S.; Nieweg, O.E.; Shannon, K.F.; Gonzalez, M.; Guminski, A.; Lee, J.H.; Lee, H.; Ferguson, P.M.; et al. Neoadjuvant Dabrafenib Combined with Trametinib for Resectable, Stage IIIB–C, BRAFV600 Mutation-Positive Melanoma (NeoCombi): A Single-Arm, Open-Label, Single-Centre, Phase 2 Trial. Lancet Oncol. 2019, 20, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Zaremba, A.; Philip, M.; Hassel, J.C.; Glutsch, V.; Fiocco, Z.; Loquai, C.; Rafei-Shamsabadi, D.; Gutzmer, R.; Utikal, J.; Haferkamp, S.; et al. Clinical Characteristics and Therapy Response in Unresectable Melanoma Patients Stage IIIB-IIID with in-Transit and Satellite Metastases. Eur. J. Cancer 2021, 152, 139–154. [Google Scholar] [CrossRef]
- Davies, E.J.; Reijers, S.J.M.; Van Akkooi, A.C.J.; Van Houdt, W.J.; Hayes, A.J. Isolated Limb Perfusion for Locally Advanced Melanoma in the Immunotherapy Era. Eur. J. Surg. Oncol. 2022, 48, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Rastrelli, M.; Russano, F.; Cavallin, F.; Del Fiore, P.; Pacilli, C.; Di Prata, C.; Rossi, C.R.; Vecchiato, A.; Dall’Olmo, L.; Mocellin, S. Isolated Limb Perfusion and Immunotherapy in the Treatment of In-Transit Melanoma Metastases: Is It a Real Synergy? J. Pers. Med. 2024, 14, 442. [Google Scholar] [CrossRef] [PubMed]
- Campana, L.G.; Peric, B.; Mascherini, M.; Spina, R.; Kunte, C.; Kis, E.; Rozsa, P.; Quaglino, P.; Jones, R.P.; Clover, A.J.P.; et al. Combination of Pembrolizumab with Electrochemotherapy in Cutaneous Metastases from Melanoma: A Comparative Retrospective Study from the InspECT and Slovenian Cancer Registry. Cancers 2021, 13, 4289. [Google Scholar] [CrossRef] [PubMed]
- Agarwala, S.S.; Ross, M.I.; Zager, J.S.; Shirai, K.; Essner, R.; Smithers, B.M.; Atkinson, V.; Wachter, E.A. Phase 1b Study of PV-10 and Anti-PD-1 in Advanced Cutaneous Melanoma. J. Clin. Oncol. 2019, 37, 9559. [Google Scholar] [CrossRef]
- Zager, J.S.; Sarnaik, A.A.; Pilon-Thomas, S.; Beatty, M.; Han, D.; Lu, G.; Agarwala, S.S.; Ross, M.I.; Shirai, K.; Essner, R. Response for Combination of PV-10 Autolytic Immunotherapy and Immune Checkpoint Blockade in Checkpoint-Refractory Patients. J. Transl. Med. 2021, 19, 110. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989079/pdf/12967_2020_Article_2685.pdf (accessed on 29 July 2024).
- Ariyan, C.E.; Lefkowitz, R.A.; Panageas, K.; Callahan, M.K.; Misholy, O.; Bello, D.; Fisher, C.; Kotin, A.; Siegelbaum, R.; Coit, D.G. Safety and Clinical Activity of Combining Systemic Ipilimumab with Isolated Limb Infusion in Patients with In-Transit Melanoma. J. Clin. Oncol. 2014, 32, 9078. Available online: https://ascopubs.org/doi/10.1200/jco.2014.32.15_suppl.9078 (accessed on 7 August 2024). [CrossRef]
- Holmberg, C.-J.; Zijlker, L.P.; Katsarelias, D.; Huibers, A.E.; Wouters, M.W.J.M.; Schrage, Y.; Reijers, S.J.M.; Van Thienen, J.V.; Grünhagen, D.J.; Martner, A.; et al. The Effect of a Single Dose of Nivolumab Prior to Isolated Limb Perfusion for Patients with In-Transit Melanoma Metastases: An Interim Analysis of a Phase Ib/II Randomized Double-Blind Placebo-Controlled Trial (NivoILP Trial). Eur. J. Surg. Oncol. 2024, 50, 108265. [Google Scholar] [CrossRef]
- Johansson, J.; Kiffin, R.; Andersson, A.; Lindnér, P.; Naredi, P.L.; Olofsson Bagge, R.; Martner, A. Isolated Limb Perfusion with Melphalan Triggers Immune Activation in Melanoma Patients. Front. Oncol. 2018, 8, 570. [Google Scholar] [CrossRef]
- Sarnaik, A.; Crago, G.; Liu, H.; Kodumudi, K.N.; Weber, A.; McCardle, T.; Weber, J.S.; Pilon-Thomas, S. Assessment of Immune and Clinical Efficacy after Intralesional PV-10 in Injected and Uninjected Metastatic Melanoma Lesions. J. Clin. Oncol. 2014, 32, 9028. Available online: https://ascopubs.org/doi/10.1200/jco.2014.32.15_suppl.9028 (accessed on 7 August 2024). [CrossRef]
- Wachter, E.A.; Blair, S.O.; Singer, J.M.; Dees, H.C. CombinaTon of PV–10 Immuno–chemoablaTon and Systemic anT–CTLA–4 AnTbody Therapy in Murine Models of Melanoma; AMER Assoc Cancer Research 615 Chestnut St, 17th Floor: Philadelphia, PA, USA, 2013; Volume 73. [Google Scholar]
- Thompson, J.F.; Agarwala, S.S.; Smithers, B.M.; Ross, M.I.; Scoggins, C.R.; Coventry, B.J.; Neuhaus, S.J.; Minor, D.R.; Singer, J.M.; Wachter, E.A. Phase 2 Study of Intralesional PV-10 in Refractory Metastatic Melanoma. Ann. Surg. Oncol. 2015, 22, 2135–2142. [Google Scholar] [CrossRef] [PubMed]
Reference | Other [%] | ORR [%] | CR [%] | OS [%] | PFS Rate [%] | Systemic (S)/Locoregional (L) | Treatment | No. Patients |
---|---|---|---|---|---|---|---|---|
Systemic treatments | ||||||||
[29] | 54 | 26 (2 years) | 63 (2 years) (85% responders; 40% non-responders) | 48 (1 year) 39 (2 years) | S | ICI (Anti-PD-1, anti-CTLA-4, Anti-PD-1/anti-CTLA-4) | 58 | |
[29] | 58 | 30 (2 years) | S | Anti-PD-1 | 40 | |||
38 | 50 (2 years) | S | Anti-CTLA-4 | 8 | ||||
40 | 80 (2 years) | S | Anti-PD-1/anti-CTLA-4 | 5 | ||||
[100] | RFS, 54% (4 years) | S | BRAF/MEK inhibitors | 870 | ||||
Systemic and Locoregional treatments | ||||||||
[28] | PD, 32 | 56 | 36 | 47 (1 year) 33 (2 years) 19 (5 years) | S/S + L | ICI (Anti-PD-1, anti-CTLA-4, Anti-PD-1/anti-CTLA-4)/ICI + Locoregional | 287 | |
PD, 34 | 56 | 37 | S/S + L | Anti-PD-1 (72/233 also locoregional) | 233 | |||
[28] | PD, 35 | 43 | 30 | S/S + L | Anti-CTLA-4 (12/23 also locoregional) | 23 | ||
PD, 23 | 68 | 35 | S/S + L | Anti-PD-1/anti-CTLA-4 (14/31 also locoregional) | 31 | |||
[104] | 75 | 6 | 33 (2 years) | S + L | IT + ILP | 18 | ||
47 | 81 (2 years) | L | ILP | 79 | ||||
[105] | PD, 28 | 67 | 48 | 61 (3 years) | S + L | IT + ILP | 88 | |
PD, 31 | 50 | 43 (3 years) | L | ILP | 99 | |||
[106] | PD, 7 (local) PD, 38 (systemic) | 78 (local) 25 (systemic) | 49 (local) 11 (systemic) | 88 (1 year) 70 (2 years) | S + L | Anti-PD-1-ECT | 45 | |
PD, 27 (local) PD, 68 (systemic) | 39 (local) 25 (systemic) | 32 (local) 21 (systemic) | 64 (1 year) 43 (2 years) | S | Anti-PD-1 | 44 | ||
PD, 2 | 81 (local) | 44 (local) | L | ECT | 41 | |||
[107] | 67 | S + L | Anti-PD-1 + PV-10 | 21 (ICI-naïve) | ||||
[108] | 29 | S + L | Anti-PD-1 + PV-10 | 14 (ICI non-responders) | ||||
[109] | 65 (3 months) (+ 24% PR) | 78 (18 months) | 57 (1 year) | S + L | Anti-CTLA-4 + ILI | 18 | ||
[110] | 75 | 86 (local) | S + L | Anti-PD-1 + ILP | 10 | |||
60 | 67 (local) | L | ILP | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russano, F.; Rastrelli, M.; Dall’Olmo, L.; Del Fiore, P.; Gianesini, C.; Vecchiato, A.; Mazza, M.; Tropea, S.; Mocellin, S. Therapeutic Treatment Options for In-Transit Metastases from Melanoma. Cancers 2024, 16, 3065. https://doi.org/10.3390/cancers16173065
Russano F, Rastrelli M, Dall’Olmo L, Del Fiore P, Gianesini C, Vecchiato A, Mazza M, Tropea S, Mocellin S. Therapeutic Treatment Options for In-Transit Metastases from Melanoma. Cancers. 2024; 16(17):3065. https://doi.org/10.3390/cancers16173065
Chicago/Turabian StyleRussano, Francesco, Marco Rastrelli, Luigi Dall’Olmo, Paolo Del Fiore, Carlomaria Gianesini, Antonella Vecchiato, Marcodomenico Mazza, Saveria Tropea, and Simone Mocellin. 2024. "Therapeutic Treatment Options for In-Transit Metastases from Melanoma" Cancers 16, no. 17: 3065. https://doi.org/10.3390/cancers16173065
APA StyleRussano, F., Rastrelli, M., Dall’Olmo, L., Del Fiore, P., Gianesini, C., Vecchiato, A., Mazza, M., Tropea, S., & Mocellin, S. (2024). Therapeutic Treatment Options for In-Transit Metastases from Melanoma. Cancers, 16(17), 3065. https://doi.org/10.3390/cancers16173065