Haemodynamic Forces: Emerging Markers of Ventricular Remodelling in Multiple Myeloma Cardiovascular Baseline Risk Assessment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Assessment
2.2. Haemodynamic Forces
- Acceleration phase (SyAcc_ab), starting at the opening of the aortic valve; the blood pressure gradient is directed from the apex towards the heart base (positive deflection in Figure 1);
- Ejection phase (SyEj_ab): the blood pressure gradient is directed towards the heart base, but decreases as blood flows through the aortic valve (positive deflection);
- Deceleration phase (SyDec_ab): as blood enters the arterial system, the pressure vector inside the ventricle inverts (negative deflection).
2.3. Statistical Analysis
3. Results
3.1. General Characteristics and Cardiovascular Risk Factors
3.2. Cardiac Deformation Analysis
3.2.1. Standard Echocardiographic Markers
3.2.2. Haemodynamic Forces Analysis
3.3. Subclinical Organ Damage Markers
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Röllig, C.; Knop, S.; Bornhäuser, M. Multiple myeloma. Lancet 2015, 385, 2197–2208. [Google Scholar] [CrossRef]
- Hsu, B.; Korda, R.; Naganathan, V.; Lewis, P.; Ooi, S.-Y.; Brieger, D.; Jorm, L. Burden of cardiovascular diseases in older adults using aged care services. Age Ageing 2021, 50, 1845–1849. [Google Scholar] [CrossRef]
- Backs, D.; Saglam, I.; Löffler, C.; Ihne, S.; Morbach, C.; Brenner, S.; Angermann, C.; Ertl, G.; Frantz, S.; Störk, S.; et al. Prevalence of cardiovascular risk factors and diseases in patients with multiple myeloma undergoing autologous peripheral blood stem cell transplantation. Oncotarget 2019, 10, 3154–3165. [Google Scholar] [CrossRef] [PubMed]
- Fontes Oliveira, M.; Naaktgeboren, W.R.; Hua, A.; Ghosh, A.K.; Oakervee, H.; Hallam, S.; Manisty, C. Optimising cardiovascular care of patients with multiple myeloma. Heart Br. Card. Soc. 2021, 107, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.; Martin, T.; Nooka, A.; Harvey, R.D.; Vij, R.; Niesvizky, R.; Badros, A.Z.; Jagannath, S.; McCulloch, L.; Rajangam, K.; et al. Integrated safety profile of single-agent carfilzomib: Experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica 2013, 98, 1753–1761. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Goldschmidt, H.; Niesvizky, R.; Joshua, D.; Chng, W.-J.; Oriol, A.; Orlowski, R.Z.; Ludwig, H.; Facon, T.; Hajek, R.; et al. Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): An interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol. 2017, 18, 1327–1337. [Google Scholar] [CrossRef] [PubMed]
- Mingrone, G.; Astarita, A.; Colomba, A.; Catarinella, C.; Cesareo, M.; Airale, L.; Paladino, A.; Leone, D.; Vallelonga, F.; Bringhen, S.; et al. Patients with Very High Risk of Cardiovascular Adverse Events during Carfilzomib Therapy: Prevention and Management of Events in a Single Center Experience. Cancers 2023, 15, 1149. [Google Scholar] [CrossRef]
- Kistler, K.D.; Kalman, J.; Sahni, G.; Murphy, B.; Werther, W.; Rajangam, K.; Chari, A. Incidence and Risk of Cardiac Events in Patients with Previously Treated Multiple Myeloma Versus Matched Patients without Multiple Myeloma: An Observational, Retrospective, Cohort Study. Clin. Lymphoma Myeloma Leuk. 2017, 17, 89–96.e3. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension the Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef]
- Milan, A.; Bruno, G.; Maffei, I.; Iannaccone, A.; Ravera, A.; Schiavone, D.; Veglio, F. Arterial Hypertension and Multiple Myeloma: Physiopathology and Cardiovascular Risk and “Practical” Indications in Patients Receiving Carfilzomib. Curr. Hypertens. Rev. 2019, 15, 47–53. [Google Scholar] [CrossRef]
- Mucherino, S.; Gimeno-Miguel, A.; Carmona-Pirez, J.; Gonzalez-Rubio, F.; Ioakeim-Skoufa, I.; Moreno-Juste, A.; Orlando, V.; Aza-Pascual-Salcedo, M.; Poblador-Plou, B.; Menditto, E.; et al. Changes in Multimorbidity and Polypharmacy Patterns in Young and Adult Population over a 4-Year Period: A 2011–2015 Comparison Using Real-World Data. Int. J. Environ. Res. Public Health 2021, 18, 4422. [Google Scholar] [CrossRef]
- Lyon, A.R.; Dent, S.; Stanway, S.; Earl, H.; Brezden-Masley, C.; Cohen-Solal, A.; Tocchetti, C.G.; Moslehi, J.J.; Groarke, J.D.; Bergler-Klein, J.; et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur. J. Heart Fail. 2020, 22, 1945–1960. [Google Scholar] [CrossRef]
- Van Der Velde, N.; Janus, C.P.M.; Bowen, D.J.; Hassing, H.C.; Kardys, I.; Van Leeuwen, F.E.; So-Osman, C.; Nout, R.A.; Manintveld, O.C.; Hirsch, A. Detection of Subclinical Cardiovascular Disease by Cardiovascular Magnetic Resonance in Lymphoma Survivors. Cardio Oncol. 2021, 3, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Mingrone, G.; Astarita, A.; Airale, L.; Maffei, I.; Cesareo, M.; Crea, T.; Bruno, G.; Leone, D.; Avenatti, E.; Catarinella, C.; et al. Effects of Carfilzomib Therapy on Left Ventricular Function in Multiple Myeloma Patients. Front. Cardiovasc. Med. 2021, 8, 645678. [Google Scholar] [CrossRef] [PubMed]
- Al Saikhan, L.; Park, C.; Hardy, R.; Hughes, A. Prognostic implications of left ventricular strain by speckle-tracking echocardiography in the general population: A meta-analysis. Vasc. Health Risk Manag. 2019, 15, 229–251. [Google Scholar] [CrossRef]
- Potter, E.; Marwick, T.H. Assessment of Left Ventricular Function by Echocardiography. JACC Cardiovasc. Imaging 2018, 11, 260–274. [Google Scholar] [CrossRef]
- Pedrizzetti, G.; Martiniello, A.R.; Bianchi, V.; D’Onofrio, A.; Caso, P.; Tonti, G. Cardiac fluid dynamics anticipates heart adaptation. J. Biomech. 2015, 48, 388–391. [Google Scholar] [CrossRef]
- Matsuura, K.; Shiraishi, K.; Mandour, A.S.; Sato, K.; Shimada, K.; Goya, S.; Yoshida, T.; Kitpipatkun, P.; Hamabe, L.; Uemura, A.; et al. The Utility of Intraventricular Pressure Gradient for Early Detection of Chemotherapy-Induced Subclinical Cardiac Dysfunction in Dogs. Animals 2021, 11, 1122. [Google Scholar] [CrossRef] [PubMed]
- Pedrizzetti, G.; Arvidsson, P.M.; Töger, J.; Borgquist, R.; Domenichini, F.; Arheden, H.; Heiberg, E. On estimating intraventricular hemodynamic forces from endocardial dynamics: A comparative study with 4D flow MRI. J. Biomech. 2017, 60, 203–210. [Google Scholar] [CrossRef]
- Laenens, D.; van der Bijl, P.; Stassen, J.; Rossi, A.C.; Pedrizzetti, G.; Reiber, J.H.C.; Marsan, N.A.; Bax, J.J. Introduction to hemodynamic forces by echocardiography. Int. J. Cardiol. 2023, 370, 442–444. [Google Scholar] [CrossRef]
- Mele, D.; Smarrazzo, V.; Pedrizzetti, G.; Capasso, F.; Pepe, M.; Severino, S.; Luisi, G.A.; Maglione, M.; Ferrari, R. Intracardiac Flow Analysis: Techniques and Potential Clinical Applications. J. Am. Soc. Echocardiogr. 2019, 32, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Pedrizzetti, G.; Martiniello, A.R.; Bianchi, V.; D’Onofrio, A.; Caso, P.; Tonti, G. Changes in electrical activation modify the orientation of left ventricular flow momentum: Novel observations using echocardiographic particle image velocimetry. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Kleber, M.; Engelhardt, M.; Zweegman, S.; Gay, F.; Kastritis, E.; van de Donk, N.W.C.J.; Bruno, B.; Sezer, O.; Broijl, A.; et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica 2015, 100, 1254–1266. [Google Scholar] [CrossRef]
- Astarita, A.; Mingrone, G.; Airale, L.; Vallelonga, F.; Covella, M.; Catarinella, C.; Cesareo, M.; Bruno, G.; Leone, D.; Giordana, C.; et al. Multiple Myeloma Patients Undergoing Carfilzomib: Development and Validation of a Risk Score for Cardiovascular Adverse Events Prediction. Cancers 2021, 13, 1631. [Google Scholar] [CrossRef]
- Voigt, J.-U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a Common Standard for 2D Speckle Tracking Echocardiography: Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 183–193. [Google Scholar] [CrossRef]
- Airale, L.; Vallelonga, F.; Forni, T.; Leone, D.; Magnino, C.; Avenatti, E.; Iannaccone, A.; Astarita, A.; Mingrone, G.; Cesareo, M.; et al. A Novel Approach to Left Ventricular Filling Pressure Assessment: The Role of Hemodynamic Forces Analysis. Front. Cardiovasc. Med. 2021, 8, 704909. [Google Scholar] [CrossRef] [PubMed]
- Vallelonga, F.; Airale, L.; Tonti, G.; Argulian, E.; Milan, A.; Narula, J.; Pedrizzetti, G. Introduction to Hemodynamic Forces Analysis: Moving into the New Frontier of Cardiac Deformation Analysis. J. Am. Heart Assoc. 2021, 10, e023417. [Google Scholar] [CrossRef]
- Freund, J.B.; Goetz, J.G.; Hill, K.L.; Vermot, J. Fluid flows and forces in development: Functions, features and biophysical principles. Development 2012, 139, 1229–1245. [Google Scholar] [CrossRef]
- Mele, D.; Smarrazzo, V.; Pedrizzetti, G.; Bertini, M.; Ferrari, R. Intracardiac flow analysis in cardiac resynchronization therapy: A new challenge? Echocardiography 2019, 36, 1919–1929. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Battisti, N.M.L.; Andres, M.S.; Lee, K.A.; Ramalingam, S.; Nash, T.; Mappouridou, S.; Senthivel, N.; Asavisanu, K.; Obeid, M.; Tripodaki, E.-S.; et al. Incidence of cardiotoxicity and validation of the Heart Failure Association-International Cardio-Oncology Society risk stratification tool in patients treated with trastuzumab for HER2-positive early breast cancer. Breast Cancer Res. Treat. 2021, 188, 149–163. [Google Scholar] [CrossRef] [PubMed]
- López-Fernandez, T.; Dent, S.F. Strategies for Risk Stratification and Cardiovascular Toxicity Prevention in Patients with Cancer. Available online: https://www.escardio.org/Councils/Council-for-Cardiology-Practice-(CCP)/Cardiopractice/strategies-for-risk-stratification-and-cardiovascular-toxicity-prevention-in-pat (accessed on 30 March 2024).
- Astarita, A.; Mingrone, G.; Airale, L.; Cesareo, M.; Colomba, A.; Catarinella, C.; Leone, D.; Gay, F.; Bringhen, S.; Veglio, F.; et al. Carfilzomib-Based Regimen and Cardiotoxicity in Multiple Myeloma: Incidence of Cardiovascular Events and Organ Damage in Carfilzomib-Dexamethasone versus Carfilzomib-Lenalidomide-Dexamethasone. A Real-Life Prospective Study. Cancers 2023, 15, 955. [Google Scholar] [CrossRef] [PubMed]
General Characteristics | All Subjects (n = 173) | MM Patients (n = 71) | Non-MM Patients (n = 102) | p-Value (MM vs. Non-MM Patients) |
---|---|---|---|---|
Age, years | 63 [17] | 69 [11] | 60 [26.80] | <0.001 |
Male sex, n (%) | 107 (61.80) | 45 (63.38) | 62 (60.78) | 0.73 |
BMI, kg/m2 | 25.70 [6.02] | 27.70 ± 4.08 | 24.80 [5.24] | <0.001 |
Office BP | ||||
Systolic BP, mmHg | 129 ± 18.30 | 129 ± 17.80 | 128 ± 18.70 | 0.67 |
Diastolic BP, mmHg | 75.30 ± 10.20 | 76.80 ± 9.91 | 73 [13] | 0.11 |
Arterial stiffness | ||||
PWV, m/s | 7.90 [2.60] | 7.55 [2.63] | 8.10 [2.50] | 0.16 |
Increased arterial stiffness (PWV > 9 m/s), n (%) | 51 (31.30) | 19 (26.76) | 32 (31.37) | 0.72 |
Ventricular Mass | ||||
LVMi, g/m2 | 81.60 [33.50] | 89.10 ± 21.10 | 75.90 [37] | 0.14 |
LVH (M mass ≥ 115 g/m2; F ≥ 95 g/m2), n (%) | 29 (17.40) | 11 (15.49) | 18 (17.64) | 0.73 |
General Characteristics | MMHT, n = 44 | MMNT, n = 27 | CoHT, n = 52 | CoNT, n = 50 | p-Value |
---|---|---|---|---|---|
Age, years | 69 [7] d | 64.40 ± 10 d | 65 [12.50] d | 45 [37] b c a | <0.001 |
Male sex, n (%) | 31 (70.50) | 14 (51.90) | 40 (75.50) | 23 (46) | 0.009 |
BMI, kg/m2 | 28.80 ± 4.35 d b | 26 ± 3.88 d a | 27.10 [4.97] d | 22.10 [3.52] b a c | <0.050 |
Office BP | |||||
Systolic blood pressure, mmHg | 138 ± 15.90 d b | 116 ± 11.10 a c | 141 ± 16 d b | 115 ± 10.80 a c | <0.001 |
Diastolic blood pressure, mmHg | 80.90 ± 9.35 d b | 70.10 ± 9.18 a c | 77.80 ± 10.80 d b | 68 [9.75] a c | <0.001 |
Arterial stiffness | |||||
Pulse wave velocity, m/s | 8.50 ± 1.70 b | 7.10 [1.50] c a | 9.30 [2.48] d b | 7.60 [2.20] c | <0.001 |
Increased arterial stiffness (PWV > 9 m/s), n (%) | 16 (36.40) | 3 (11.10) c | 22 (42.30) d b | 10 (20) c | <0.050 |
Ventricular Mass | |||||
LVMi, g/m2 | 96.90 ± 18.60 d b | 77.80 [22.30] c a | 98.40 [30.80] d b | 67.30 [19.20] a c | <0.001 |
LVH (M mass ≥ 115 g/m2; F ≥ 95 g/m2), n (%) | 9 (20.50) | 2 (7.40) | 16 (30.80) d | 2 (4) c | <0.001 |
MMHT, n = 44 | MMNT, n = 27 | CoHT, n = 52 | CoNT, n = 50 | p-Value | |
---|---|---|---|---|---|
EF | 58.30 ± 5.40 d | 60.90 ± 4.10 c | 58 ± 4.90 d b | 62.70 ± 3.60 a c | <0.005 |
EndoGCS | −28.70 ± 4.40 d | −30.10 ± 3.10 c | −27.90 ± 3.70 d b | −31.70 ± 3 c a | <0.005 |
EndoGLS | −21 ± 2.60 d | −22.30 ± 2.60 | −20.90 ± 2.50 d | −23.40 ± 2.50 a c | <0.001 |
EH_ab | 9.35 ± 2.62 d | 10.90 ± 3.50 | 9.70 ± 3.30 d | 12.70 ± 3.30 a c | <0.001 |
Sy_ab | 12.20 ± 3.50 d | 14 ± 4.90 d | 13.50 ± 5.40 d | 17.60 ± 5.20 a c b | <0.006 |
SyAcc_ab | 11.40 ± 3.70 d | 13.10 ± 4.30 | 12.20 ± 5.30 d | 15.60 ± 4.20 a c | <0.001 |
SyEj_ab | 11.97 ± 4.10 d | 14.12 ± 4.90 d | 12.94 ± 5.20 d | 17.82 ± 5.10 a c b | <0.008 |
SyDec_ab | −7.40 ± 2.20 | −7.62 ± 2.20 | −6.80 ± 2.20 | −7.50 ± 2.80 | >0.050 |
Di_ab | 6.90 ± 2.40 | 7.60 ± 2.70 c | 6.20 ± 1.80 d b | 7.50 ± 2.30 c | <0.040 |
DiRelax_ab | −5.90 ± 2 c | −6.90 ± 2.30 c | −4.60 ± 1.60 d b a | −6.90 ± 1.90 c | <0.030 |
DiDec_ab | 4.80 ± 2.50 d b | 7.50 ± 3.40 c a | 4.90 ± 1.90 d b | 8.20 ± 3.50 a c | <0.003 |
PWV (m/s) | 8.50 ± 1.70 b | 7.10 [1.50] c a | 9.30 [2.48] d b | 7.60 [2.20] c | <0.001 |
LVMi (g/m2) | 96.90 ± 18.60 d b | 77.80 [22.30] c a | 98.40 [30.80] d b | 67.30 [19.20] a c | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colomba, A.; Astarita, A.; Mingrone, G.; Airale, L.; Catarinella, C.; Vallelonga, F.; Leone, D.; Cesareo, M.; Paladino, A.; Bringhen, S.; et al. Haemodynamic Forces: Emerging Markers of Ventricular Remodelling in Multiple Myeloma Cardiovascular Baseline Risk Assessment. Cancers 2024, 16, 3081. https://doi.org/10.3390/cancers16173081
Colomba A, Astarita A, Mingrone G, Airale L, Catarinella C, Vallelonga F, Leone D, Cesareo M, Paladino A, Bringhen S, et al. Haemodynamic Forces: Emerging Markers of Ventricular Remodelling in Multiple Myeloma Cardiovascular Baseline Risk Assessment. Cancers. 2024; 16(17):3081. https://doi.org/10.3390/cancers16173081
Chicago/Turabian StyleColomba, Anna, Anna Astarita, Giulia Mingrone, Lorenzo Airale, Cinzia Catarinella, Fabrizio Vallelonga, Dario Leone, Marco Cesareo, Arianna Paladino, Sara Bringhen, and et al. 2024. "Haemodynamic Forces: Emerging Markers of Ventricular Remodelling in Multiple Myeloma Cardiovascular Baseline Risk Assessment" Cancers 16, no. 17: 3081. https://doi.org/10.3390/cancers16173081
APA StyleColomba, A., Astarita, A., Mingrone, G., Airale, L., Catarinella, C., Vallelonga, F., Leone, D., Cesareo, M., Paladino, A., Bringhen, S., Gay, F., Pedrizzetti, G., Veglio, F., & Milan, A. (2024). Haemodynamic Forces: Emerging Markers of Ventricular Remodelling in Multiple Myeloma Cardiovascular Baseline Risk Assessment. Cancers, 16(17), 3081. https://doi.org/10.3390/cancers16173081