Analysis of the Performance and Accuracy of a PSA and PSA Ratio-Based Nomogram to Predict the Probability of Prostate Cancer in a Cohort of Patients with PIRADS 3 Findings at Multiparametric Magnetic Resonance Imaging
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Punglia, R.S.; D’Amico, A.V.; Catalona, W.J.; Roehl, K.A.; Kuntz, K.M. Effect of Verification Bias on Screening for Prostate Cancer by Measurement of Prostate-Specific Antigen. N. Engl. J. Med. 2003, 349, 335–342. [Google Scholar] [CrossRef]
- Cuzick, J.; Berney, D.M.; Fisher, G.; Mesher, D.; Møller, H.; Reid, J.E.; Perry, M.; Park, J.; Younus, A.; Gutin, A.; et al. Transatlantic Prostate Group. Prognostic Value of a Cell Cycle Progression Signature for Prostate Cancer Death in a Conservatively Managed Needle Biopsy Cohort. Br. J. Cancer 2012, 106, 1095–1099. [Google Scholar] [CrossRef]
- Thompson, J.E.; Moses, D.; Shnier, R.; Brenner, P.; Delprado, W.; Ponsky, L.; Pulbrook, M.; Böhm, M.; Haynes, A.-M.; Hayen, A.; et al. Multiparametric Magnetic Resonance Imaging Guided Diagnostic Biopsy Detects Significant Prostate Cancer and Could Reduce Unnecessary Biopsies and over Detection: A Prospective Study. J. Urol. 2014, 192, 67–74. [Google Scholar] [CrossRef]
- Stabile, A.; Giganti, F.; Rosenkrantz, A.B.; Taneja, S.S.; Villeirs, G.; Gill, I.S.; Allen, C.; Emberton, M.; Moore, C.M.; Kasivisvanathan, V. Multiparametric MRI for Prostate Cancer Diagnosis: Current Status and Future Directions. Nat. Rev. Urol. 2020, 17, 41–61. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.U.; Bosaily, A.E.-S.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic Accuracy of Multi-Parametric MRI and TRUS Biopsy in Prostate Cancer (PROMIS): A Paired Validating Confirmatory Study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- Kasivisvanathan, V.; Stabile, A.; Neves, J.B.; Giganti, F.; Valerio, M.; Shanmugabavan, Y.; Clement, K.D.; Sarkar, D.; Philippou, Y.; Thurtle, D.; et al. Magnetic Resonance Imaging-Targeted Biopsy Versus Systematic Biopsy in the Detection of Prostate Cancer: A Systematic Review and Meta-Analysis. Eur. Urol. 2019, 76, 284–303. [Google Scholar] [CrossRef]
- Drost, F.-J.H.; Osses, D.F.; Nieboer, D.; Steyerberg, E.W.; Bangma, C.H.; Roobol, M.J.; Schoots, I.G. Prostate MRI, with or without MRI-Targeted Biopsy, and Systematic Biopsy for Detecting Prostate Cancer. Cochrane Database Syst. Rev. 2019, 2019, CD012663. [Google Scholar] [CrossRef]
- Lorusso, V.; Talso, M.; Palmisano, F.; Branger, N.; Granata, A.M.; Fiori, C.; Gregori, A.; Pignot, G.; Walz, J. Is Imaging Accurate Enough to Detect Index Lesion in Prostate Cancer? Analysis of the Performance of MRI and Other Imaging Modalities. Minerva Urol. Nephrol. 2024, 76, 22–30. [Google Scholar] [CrossRef]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef]
- Schoots, I.G. MRI in Early Prostate Cancer Detection: How to Manage Indeterminate or Equivocal PI-RADS 3 Lesions? Transl. Androl. Urol. 2018, 7, 702–782. [Google Scholar] [CrossRef]
- Scialpi, M.; Martorana, E.; Aisa, M.C.; Rondoni, V.; D’Andrea, A.; Bianchi, G. Score 3 Prostate Lesions: A Gray Zone for PI-RADS V2. Turk. J. Urol. 2017, 43, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Arbuznikova, D.; Eder, M.; Grosu, A.-L.; Meyer, P.T.; Gratzke, C.; Zamboglou, C.; Eder, A.-C. Towards Improving the Efficacy of PSMA-Targeting Radionuclide Therapy for Late-Stage Prostate Cancer—Combination Strategies. Curr. Oncol. Rep. 2023, 25, 1363–1374. [Google Scholar] [CrossRef]
- Abdelaal, A.M.; Sohal, I.S.; Iyer, S.G.; Sudarshan, K.; Orellana, E.A.; Ozcan, K.E.; dos Santos, A.P.; Low, P.S.; Kasinski, A.L. Selective Targeting of Chemically Modified miR-34a to Prostate Cancer Using a Small Molecule Ligand and an Endosomal Escape Agent. Mol. Ther. Nucleic Acids 2024, 35, 102193. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, S.; Biganzoli, G.; Bussetti, M.; Castaldi, S.; Biganzoli, E.M.; Plebani, M. Managing the Impact of Inter-Method Bias of Prostate Specific Antigen Assays on Biopsy Referral: The Key to Move towards Precision Health in Prostate Cancer Management. Clin. Chem. Lab. Med. 2023, 61, 142–153. [Google Scholar] [CrossRef]
- Ferraro, S.; Biganzoli, D.; Rossi, R.S.; Palmisano, F.; Bussetti, M.; Verzotti, E.; Gregori, A.; Bianchi, F.; Maggioni, M.; Ceriotti, F.; et al. Individual Risk Prediction of High Grade Prostate Cancer Based on the Combination between Total Prostate-Specific Antigen (PSA) and Free to Total PSA Ratio. Clin. Chem. Lab. Med. 2023, 61, 1327–1334. [Google Scholar] [CrossRef]
- Porpiglia, F.; Manfredi, M.; Mele, F.; Cossu, M.; Bollito, E.; Veltri, A.; Cirillo, S.; Regge, D.; Faletti, R.; Passera, R.; et al. Diagnostic Pathway with Multiparametric Magnetic Resonance Imaging Versus Standard Pathway: Results from a Randomized Prospective Study in Biopsy-Naïve Patients with Suspected Prostate Cancer. Eur. Urol. 2017, 72, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, E.C.; Shih, J.H.; Belue, M.J.; Harmon, S.A.; Phelps, T.E.; Garcia, C.; Hazen, L.A.; Toubaji, A.; Merino, M.J.; Gurram, S.; et al. Prospective Evaluation of PI-RADS Version 2.1 for Prostate Cancer Detection and Investigation of Multiparametric MRI-Derived Markers. Radiology 2023, 307, e221309. [Google Scholar] [CrossRef]
- Park, S.Y.; Cho, N.H.; Jung, D.C.; Oh, Y.T. Prostate Imaging-Reporting and Data System Version 2: Beyond Prostate Cancer Detection. Korean J. Radiol. 2018, 19, 193–200. [Google Scholar] [CrossRef]
- Schoots, I.G.; Roobol, M.J.; Nieboer, D.; Bangma, C.H.; Steyerberg, E.W.; Hunink, M.G.M. Magnetic Resonance Imaging–Targeted Biopsy May Enhance the Diagnostic Accuracy of Significant Prostate Cancer Detection Compared to Standard Transrectal Ultrasound-Guided Biopsy: A Systematic Review and Meta-Analysis. Eur. Urol. 2015, 68, 438–450. [Google Scholar] [CrossRef]
- Thompson, J.E.; van Leeuwen, P.J.; Moses, D.; Shnier, R.; Brenner, P.; Delprado, W.; Pulbrook, M.; Böhm, M.; Haynes, A.M.; Hayen, A.; et al. The Diagnostic Performance of Multiparametric Magnetic Resonance Imaging to Detect Significant Prostate Cancer. J. Urol. 2016, 195, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Westphalen, A.C.; Fazel, F.; Nguyen, H.; Cabarrus, M.; Hanley-Knutson, K.; Shinohara, K.; Carroll, P.R. Detection of Clinically Significant Prostate Cancer with PI-RADS v2 Scores, PSA Density, and ADC Values in Regions with and without mpMRI Visible Lesions. Int. Braz. J. Urol. 2019, 45, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Zaytoun, O.M.; Kattan, M.W.; Moussa, A.S.; Li, J.; Yu, C.; Jones, J.S. Development of Improved Nomogram for Prediction of Outcome of Initial Prostate Biopsy Using Readily Available Clinical Information. Urology 2011, 78, 392–398. [Google Scholar] [CrossRef]
- Giannarini, G.; Zazzara, M.; Rossanese, M.; Palumbo, V.; Pancot, M.; Como, G.; Abbinante, M.; Ficarra, V. Will Multi-Parametric Magnetic Resonance Imaging Be the Future Tool to Detect Clinically Significant Prostate Cancer? Front. Oncol. 2014, 4, 294. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer-2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Roobol, M.J.; van Vugt, H.A.; Loeb, S.; Zhu, X.; Bul, M.; Bangma, C.H.; van Leenders, A.G.L.J.H.; Steyerberg, E.W.; Schröder, F.H. Prediction of Prostate Cancer Risk: The Role of Prostate Volume and Digital Rectal Examination in the ERSPC Risk Calculators. Eur. Urol. 2012, 61, 577–583. [Google Scholar] [CrossRef]
- Ankerst, D.P.; Hoefler, J.; Bock, S.; Goodman, P.J.; Vickers, A.; Hernandez, J.; Sokoll, L.J.; Sanda, M.G.; Wei, J.T.; Leach, R.J.; et al. Prostate Cancer Prevention Trial Risk Calculator 2.0 for the Prediction of Low- vs High-Grade Prostate Cancer. Urology 2014, 83, 1362–1367. [Google Scholar] [CrossRef]
- Ankerst, D.P.; Straubinger, J.; Selig, K.; Guerrios, L.; De Hoedt, A.; Hernandez, J.; Liss, M.A.; Leach, R.J.; Freedland, S.J.; Kattan, M.W.; et al. Contemporary Prostate Biopsy Risk Calculator Based on Multiple Heterogeneous Cohorts. Eur. Urol. 2018, 74, 197–203. [Google Scholar] [CrossRef]
- Jalali, A.; Foley, R.W.; Maweni, R.M.; Murphy, K.; Lundon, D.J.; Lynch, T.; Power, R.; O’Brien, F.; O’Malley, K.J.; Galvin, D.J.; et al. A Risk Calculator to Inform the Need for a Prostate Biopsy: A Rapid Access Clinic Cohort. BMC Med. Inform. Decis. Mak. 2020, 20, 148. [Google Scholar] [CrossRef]
- Fang, A.M.; Rais-Bahrami, S. Magnetic Resonance Imaging–Based Risk Calculators Optimize Selection for Prostate Biopsy among Biopsy-Naive Men. Cancer 2022, 128, 25–27. [Google Scholar] [CrossRef] [PubMed]
- Mehralivand, S.; Shih, J.H.; Rais-Bahrami, S.; Oto, A.; Bednarova, S.; Nix, J.W.; Thomas, J.V.; Gordetsky, J.B.; Gaur, S.; Harmon, S.A.; et al. A Magnetic Resonance Imaging-Based Prediction Model for Prostate Biopsy Risk Stratification. JAMA Oncol. 2018, 4, 678–685. [Google Scholar] [CrossRef]
- Wu, Q.; Li, F.; Yin, X.; Gao, J.; Zhang, X. Development and Validation of a Nomogram for Predicting Prostate Cancer in Patients with PSA ≤ 20 Ng/mL at Initial Biopsy. Medicine 2021, 100, e28196. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liang, Z.; Feng, T.; Mai, Z.; Jin, S.; Wu, L.; Zhou, H.; Chen, Y.; Yan, W. Up-to-Date Imaging and Diagnostic Techniques for Prostate Cancer: A Literature Review. Diagnostics 2023, 13, 2283. [Google Scholar] [CrossRef]
- Wasserman, N.F.; Niendorf, E.; Spilseth, B. Measurement of Prostate Volume with MRI (A Guide for the Perplexed): Biproximate Method with Analysis of Precision and Accuracy. Sci. Rep. 2020, 10, 575. [Google Scholar] [CrossRef]
- van Leeuwen, P.J.; Hayen, A.; Thompson, J.E.; Moses, D.; Shnier, R.; Böhm, M.; Abuodha, M.; Haynes, A.-M.; Ting, F.; Barentsz, J.; et al. Multiparametric Magnetic Resonance Imaging-Based Risk Model to Determine the Risk of Significant Prostate Cancer Prior to Biopsy. BJU Int. 2017, 120, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Wagaskar, V.G.; Sobotka, S.; Ratnani, P.; Young, J.; Lantz, A.; Parekh, S.; Falagario, U.G.; Li, L.; Lewis, S.; Haines, K.; et al. A 4K Score/MRI-Based Nomogram for Predicting Prostate Cancer, Clinically Significant Prostate Cancer, and Unfavorable Prostate Cancer. Cancer Rep. 2021, 4, e1357. [Google Scholar] [CrossRef]
- King, N.; Lang, J.; Jambunathan, S.; Lombardi, C.; Saltzman, B.; Nagalakshmi, N.; Sindhwani, P. The Value of Adding Exosome-Based Prostate Intelliscore to Multiparametric Magnetic Resonance Imaging in Prostate Biopsy: A Retrospective Analysis. Uro 2024, 4, 50–59. [Google Scholar] [CrossRef]
- Sultan, M.I.; Huynh, L.M.; Kamil, S.; Abdelaziz, A.; Hammad, M.A.; Gin, G.E.; Lee, D.I.; Youssef, R.F. Utility of Noninvasive Biomarker Testing and MRI to Predict a Prostate Cancer Diagnosis. Int. Urol. Nephrol. 2023, 56, 539–546. [Google Scholar] [CrossRef]
Variables | Total Number of Patients = 70 |
---|---|
Age, years [median (range)] | 66 (61–73) |
PSA, ng/mL [median (IQR)] | 5.50 (3.9–6.9) |
PSA ratio, [median (IQR)] | 0.89 (0.52–1.3) |
PSA density, ng/mL/mL [median (IQR)] | 0.1 (0.06–0.12) |
Prostate volume, mL [median (IQR)] | 63 (49–100) |
Dimension of the lesion, mm [median (IQR)] | 8 (6–10.5) |
Location of the lesion, N [%] | |
- Apex | 23 (32.9%) |
- Intermediate | 26 (37.1%) |
- Base | 9 (12.9%) |
Gland zone of the lesion | |
- Anterior | 13 (18.6%) |
- Peripheric | 38 (54.3%) |
- Transitional | 16 (22.9%) |
Overall biopsy result | |
- Negative for PCa | 56 (80%) |
- Positive for PCa | 14 (20%) |
Variables | Probability [%] |
---|---|
Nomogram A overall, % [IQR] | 5% (0–15%) |
- Patients with positive biopsy | 8% (0–20%) |
Nomogram B overall, % [IQR] | 33% (27.75–40%) |
- Patients with positive biopsy | 37% (29.50–50.75%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmisano, F.; Lorusso, V.; Legnani, R.; Martorello, V.; Nedbal, C.; Tramanzoli, P.; Marchesotti, F.; Ferraro, S.; Talso, M.; Granata, A.M.; et al. Analysis of the Performance and Accuracy of a PSA and PSA Ratio-Based Nomogram to Predict the Probability of Prostate Cancer in a Cohort of Patients with PIRADS 3 Findings at Multiparametric Magnetic Resonance Imaging. Cancers 2024, 16, 3084. https://doi.org/10.3390/cancers16173084
Palmisano F, Lorusso V, Legnani R, Martorello V, Nedbal C, Tramanzoli P, Marchesotti F, Ferraro S, Talso M, Granata AM, et al. Analysis of the Performance and Accuracy of a PSA and PSA Ratio-Based Nomogram to Predict the Probability of Prostate Cancer in a Cohort of Patients with PIRADS 3 Findings at Multiparametric Magnetic Resonance Imaging. Cancers. 2024; 16(17):3084. https://doi.org/10.3390/cancers16173084
Chicago/Turabian StylePalmisano, Franco, Vito Lorusso, Rebecca Legnani, Vincenzo Martorello, Carlotta Nedbal, Pietro Tramanzoli, Federica Marchesotti, Simona Ferraro, Michele Talso, Antonio Maria Granata, and et al. 2024. "Analysis of the Performance and Accuracy of a PSA and PSA Ratio-Based Nomogram to Predict the Probability of Prostate Cancer in a Cohort of Patients with PIRADS 3 Findings at Multiparametric Magnetic Resonance Imaging" Cancers 16, no. 17: 3084. https://doi.org/10.3390/cancers16173084
APA StylePalmisano, F., Lorusso, V., Legnani, R., Martorello, V., Nedbal, C., Tramanzoli, P., Marchesotti, F., Ferraro, S., Talso, M., Granata, A. M., Sighinolfi, M. C., Rocco, B., & Gregori, A. (2024). Analysis of the Performance and Accuracy of a PSA and PSA Ratio-Based Nomogram to Predict the Probability of Prostate Cancer in a Cohort of Patients with PIRADS 3 Findings at Multiparametric Magnetic Resonance Imaging. Cancers, 16(17), 3084. https://doi.org/10.3390/cancers16173084