Immunotherapy and Radiotherapy for Older Patients with Locally Advanced Non-Metastatic Non-Small-Cell Lung Cancer Who Are Not Candidates for or Decline Surgery and Chemotherapy: A Practical Proposal by the International Geriatric Radiotherapy Group
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Role of PD-L1 in NSCLC
3. The Role of Radiotherapy in Increasing Tumor Cell PD-L1 Expression
4. Efficacy and Tolerance of Older Cancer Patients with Locally Advanced NSCLC to Immunotherapy with ICI
5. Preliminary Study of Immunotherapy Combined with Radiotherapy for Locally Advanced NSCLC
6. Efficacy and Toxicity of Radiotherapy at High Doses and Immunotherapy for Early-Stage and Metastatic NSCLC
7. Safety and Efficacy of Hypofractionated Radiotherapy for Older Patients with Locally Advanced NSCLC
8. Inclusion of Frailty in the Treatment of Older Patients with NSCLC
9. The Role of Liquid Biopsy in the Management of Older Patients with Locally Advanced NSCLC
10. Future Research on Immunotherapy for Older Patients with Locally Advanced NSCLC
11. Special Issues of Older Patients Monitoring during Immunotherapy
12. Protocol of the IGRG for Older Patients with Locally Advanced NSCLC Unfit for Surgery and Chemotherapy or Who Decline Those Two Treatment Modalities
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bryan, D.S.; Donington, J.S. The role of surgery in management of locally advanced non-small cell lung cancer. Curr. Treat. Opt. Oncol. 2019, 2, 27. [Google Scholar] [CrossRef]
- Aslawad, M. Locally advanced non-small cell lung cancer: Current issues and recent trends. Rep. Pract. Oncol. Radiother. 2023, 28, 286–303. [Google Scholar]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Overall survival with Durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Hino, H.; Karasaki, T.; Yoshida, Y.; Fukami, T.; Sano, A.; Tanaka, M.; Furuhata, Y.; Ichinose, J.; Kawashima, M.; Nakajima, J. Risk factors for postoperative complications and long-term survival in lung cancer patients older than 80 years. Eur. J. Thorac. Cardio. Surg. 2018, 53, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, R.; Shen, Y.; Su, L.; Dong, B.; Hao, Q. Prediction of chemotherapy adverse reactions and mortality in older patients with primary lung cancer through frailty index based on routine laboratory data. Clin. Interv. Aging 2019, 14, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.; Wu, F.; Chen, Y. Efficacy of chemoradiotherapy versus radiation alone in patients with inoperable locally advanced non-small cell lung cancer. Medicine 2019, 98, e16167. [Google Scholar] [CrossRef]
- Xu, Y.; Wan, B.; Chen, X.; Zhan, P.; Zhao, Y.; Zhang, T.; Liu, H.; Afzal, M.Z.; Dermime, S.; Hochwald, S.N.; et al. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival on non-small cell lung cancer patients: A meta-analysis of randomized controlled trials. Transl. Lung Cancer Res. 2019, 8, 414–428. [Google Scholar] [CrossRef]
- Tagliamento, M.; Frelaut, M.; Baldini, C.; Naigeon, M.; Nencioni, A.; Chaput, N.; Besse, B. The use of immunotherapy in older patients with advanced non-small cell lung cancer. Cancer Treat. Rev. 2022, 106, 102394. [Google Scholar] [CrossRef]
- Popescu, T.; Karlsson, U.; Vinh-Hung, V.; Trigo, L.; Thariat, J.; Vuong, T.; Baumert, B.G.; Motta, M.; Zamagni, A.; Bonet, M.; et al. Challenges facing radiation oncologists in the management of older cancer patients: Consensus of the International Geriatric Radiotherapy Group. Cancers 2019, 11, 371. [Google Scholar] [CrossRef]
- Mezache, L.; Magro, C.; Hofmeister, C.; Pichiorri, F.; Sborov, D.; Nuovo, G.J. Modulation of PD-L1 and CD8 activity in idiopathic and infectious chronic inflammatory conditions. Appl. Immunohistochem. Mol. Morphol. 2017, 25, 100–109. [Google Scholar] [CrossRef]
- Kythreotou, A.; Siddique, A.; Mauri, F.A.; Bower, M.; Pinato, D.J. PD-L1. J. Clin. Pathol. 2018, 71, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Pawelczyk, K.; Piotrowska, A.; Ciesielska, U.; Jablonska, K.; Glatzel-Plucinska, N.; Grzegrzolka, J.; Podhorska-Okolow, M.; Dziegiel, P.; Nowinska, K. Role of PD-L1 expression in non-small cell lung cancer and their prognostic significance according to clinical pathological factors and diagnostic markers. Int. J. Mol. Sci. 2019, 20, 824. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; O’Sullivan, B.; Hughes, F.; Mullis, T.; Smith, M.; Trim, N.; Paniere, P. The clinicopathological and molecular associations of PD-L1 expression in non-small cell lung cancer: Analysis of a series of 10,005 cases tested with the 22C3 assay. Pathol. Oncol. Res. 2020, 26, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shi, F.; Zhou, Q.; Li, Y.; Wu, J.; Wang, R.; Song, Q. Prognostic significance of PD-L1 in advanced non-small cell lung carcinoma. Medicine 2020, 99, 45. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, F.; Kriegsmann, M.; Klotz, L.V.; Kriegsmann, K.; Muley, T.; Zgorzelski, C.; Christopoulos, P.; Winter, H.; Eichhorn, M.E. Prognostic impact of PD-L1 expression in pN1NSCLC: A retrospective single center analysis. Cancers 2021, 13, 2046. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, Y.; Lv, C.; Huang, M.; Li, M.; Dong, B.; Liu, X.; An, G.; Zhang, W.; Zhang, J.; et al. Upregulation of programmed cell death ligand promotes resistance response in non-small cell lung cancer patients treated with neoadjuvant chemotherapy. Cancer Sci. 2016, 107, 1563–1571. [Google Scholar] [CrossRef]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus chemotherapy for PD-L1 positive non-small cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, E.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small cell lung carcinoma (KEYNOTE-042): A randomized, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Aguilar, E.J.; Ricciuti, B.; Gainor, J.F.; Kehl, K.L.; Kravets, S.; Dahlberg, S.; Nishino, M.; Sholl, L.M.; Adeni, A.; Subegdjo, S.; et al. Outcomes to first line pembrolizumab in patients with non-small cell lung cancer and a very high PD-L1 level. Ann. Oncol. 2019, 30, 1653–1659. [Google Scholar] [CrossRef]
- Wan, X.; Fang, M.; Chen, T.; Wang, H.; Zhou, Q.; Wei, Y.; Zheng, L.; Zhou, Y.; Chen, K. The mechanism of low-dose radiation-induced upregulation of immune checkpoint molecule expression in lung cancer cells. Biochem. Biophys. Res. Comm. 2022, 608, 102–107. [Google Scholar] [CrossRef]
- Gong, X.; Li, X.; Jiang, T.; Xie, H.; Zhu, Z.; Zhou, F.; Zhou, C. Combined radiotherapy and anti-PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer. J. Thorac. Oncol. 2017, 12, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.J.; Xu, L.J.; Yang, L.; Tsai, Y.; Keng, P.C.; Chen, Y.; Lee, S.O.; Chen, Y. Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6-MEK/Erk signaling pathway. Oncotarget 2017, 8, 80506–80520. [Google Scholar] [CrossRef] [PubMed]
- Herter-Sprie, G.S.; Koyama, S.; Korideck, H.; Hai, J.; Deng, J.; Li, Y.Y.; Buczkowski, K.A.; Grant, A.K.; Ullas, S.; Rhee, K.; et al. Synergy of radiotherapy and PD-L1 blockade in K-ras mutant lung cancer. Jt. Comm. Int. Insight 2016, 1, e87415. [Google Scholar]
- Yoneda, K.; Kuwata, T.; Kanayama, M.; Mori, M.; Kawanami, T.; Yatera, K.; Ohguri, T.; Hisaoka, M.; Nakayama, T.; Tanaka, F. Alteration in tumor PD-L1 expression and stromal CD8-positive tumor-infiltrating lymphocytes after concurrent chemo-radiotherapy for non-small cell lung cancer. Br. J. Cancer 2019, 121, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.L.; Adams, D.K.; He, J.; Kalhor, N.; Zhang, M.; Xu, T.; Gao, H.; Reuben, J.M.; Qiao, Y.; Komaki, R.; et al. Sequential tracking of PD-L1 expression and RAD50 induction in circulating tumor and stromal cells of lung cancer patients undergoing radiotherapy. Clin. Cancer Res. 2017, 23, 5948–5958. [Google Scholar] [CrossRef]
- Mori, M.; Kanayama, M.; Kuwata, T.; Manabe, T.; Nemoto, Y.; Nishizawa, M.; Oyama, R.; Matsumiya, H.; Nabe, Y.; Taira, A.; et al. Prognostic impact of PD-L1 and TIGIT expression in non-small cell lung cancer following concurrent chemoradiotherapy. Sci. Rep. 2023, 13, 3270. [Google Scholar] [CrossRef]
- Moran, J.A.; Adams, D.L.; Edelman, M.J.; Lopez, P.; He, J.; Qiao, Y.; Xu, T.; Liao, Z.; Gardner, K.P.; Tang, C.; et al. Monitoring PD-L1 expression on circulating tumor-associated cells in recurrent metastatic non-small cell lung carcinoma predicts response to immunotherapy with radiotherapy. J. Clin. Oncol. Prec. Oncol. 2022, 6, e2200457. [Google Scholar] [CrossRef]
- Lee, S.M.; Schultz, C.; Prabhash, K.; Kowalski, D.; Szczesna, A.; Han, B.; Rittmeyer, A.; Talbot, T.; Vicente, D.; Califano, R.; et al. First-line atezolizumab monotherapy versus single-agent chemotherapy in patients with non-small cell lung cancer ineligible for treatment with a platinum containing regimen (IPSOS): A phase III, global, multicenter, open-label, randomized controlled study. Lancet 2023, 402, 451–463. [Google Scholar] [CrossRef]
- Ron, D.A.; Manrique, M.C.A.; Martinez, J.M.; Gonzalez, J.G.; Afonso, F.J.A.; Quintela, M.L.; Nunez, N.F.; Raposeiras, C.A.; Gancedo, M.A.; Couto, L.S.; et al. Efficacy and safety of nivolumab in older patients with pretreated lung cancer: A subgroup analysis of the Galician lung cancer group. J. Geriatr. Oncol. 2021, 12, 410–415. [Google Scholar]
- Grosjean, H.A.I.; Dolter, S.; Meyers, D.E.; Ding, P.Q.; Stukalin, I.; Goutam, S.; Kong, S.; Chu, Q.; Heng, D.W.C.; Bebb, D.G.; et al. Effectiveness of first-line pembrolizumab in older adults with PD-L1 positive non-small cell lung cancer: A retrospective cohort study of the Alberta immunotherapy database. Curr. Oncol. 2021, 28, 4213–4222. [Google Scholar] [CrossRef]
- Imai, H.; Sawamoto, S.; Yamaguchi, O.; Suzuki, K.; Sugiyama, T.; Uchino, J.; Minemura, H.; Osaki, T.; Ishii, H.; Umeda, Y.; et al. Efficacy and safety of first-line pembrolizumab monotherapy in elderly patients (age >75 years) with non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2020, 146, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.; Lorigan, P.; Woodley, S.; Foden, P.; Burns, K.; Yorke, J.; Blackhall, F. A prospective cohort study on the safety of checkpoint inhibitors in older cancer patients-the Elder study. Eur. Soc. Med. Oncol. Open 2021, 6, 100042. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, Q.; Tang, X.; Xu, R.; Zhang, L.; Chen, X.; Xue, Q.; Wang, Z.; Shi, R.; Wang, F.; et al. Correlations between patients’age and cancer immunotherapy efficacy. Oncoimmunology 2019, 8, e1568810. [Google Scholar] [PubMed]
- Marur, S.; Singh, H.; Mishra-Kalyani, P.; Larkins, E.; Keegan, P.; Sridhara, R.; Blumental, G.M.; Pazdur, R. FDA analysis of survival in adults with metastatic non-small cell lung cancer in controlled trials of PD1/PD-L1 blocking antibodies. Sem. Oncol. 2018, 45, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Corbaux, P.; Maillet, D.; Boespflug, A.; Lacatelli-Sanchez, M.; Perier-Muzet, M.; Duruisseaux, M.; Kiakouama-Maleka, L.; Dalle, S.; Falandry, C.; Péron, J. Older and younger patients treated with immune checkpoint inhibitors have similar outcomes in real-life setting. Eur. J. Cancer 2019, 121, 192–201. [Google Scholar] [CrossRef]
- Perret, M.; Bertaut, A.; Niogret, J.; Marilier, S.; Jouanny, P.; Manckoundia, P.; Bengrine-Lefebvre, L.; Quipourt, V.; Barben, J. Associated factors to efficacy and tolerance of immunotherapy in older patients with cancer aged 70 years and over: Impact of coprescriptions. Drugs Aging 2023, 40, 837–846. [Google Scholar] [CrossRef]
- Facchinetti, F.; Di Maio, M.; Perrone, F.; Tisco, M. First-line immunotherapy in non-small cell lung cancers patients with poor performance status: A systemic review and meta-analysis. Transl. Lung Cancer Res. 2021, 10, 2917–2936. [Google Scholar] [CrossRef]
- Sehgal, K.; Bulumulle, A.; Brody, H.; Gill, R.R.; Macheria, S.; Qilleri, A.; McDonald, D.C.; Cherry, C.R.; Shea, M.; Huberman, M.S.; et al. Association of extended release interval s or delays in pembrolizumab-based regimens with survival outcomes in advanced non-small cell lung cancer. Clin. Lung Cancer 2021, 22, e379–e389. [Google Scholar] [CrossRef]
- Tachihara, M.; Tsujino, K.; Ishihara, T.; Hayashi, H.; Sato, Y.; Kurata, T.; Sugarawa, S.; Shiraishi, Y.; Teraoka, S.; Azuma, K.; et al. Durvalumab plus concurrent radiotherapy for treatment of locally advanced non-small cell lung cancer. The Dolphin phase I9:I nonrandomized controlled trial. JAMA Oncol. 2023, 9, 1505–1513. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Chiappori, A.; Lee, K.H.; de Wit, M.; Cho, B.C.; et al. Durvalumab after chemoradiotherapy in stage III non-small cell lung cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]
- Jassem, J.; de Marinis, F.; Giaccone, G.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Oprean, C.; Kim, Y.; Andric, Z.; et al. Update overall survival analysis from IMpower 110: Atezolizumab versus platinum-based chemotherapy in treatment-naïve programmed death ligand 1- selected NSCLC. J. Thorac. Oncol. 2021, 16, 1872–1882. [Google Scholar] [CrossRef]
- Carbone, D.P.; Reck, M.; Pares-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.; Badin, F.; et al. First-line nivolumab in stage IV or recurrent non-small cell lung cancer. N. Engl. J. Med. 2017, 376, 2415–2416. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Godinez, J.; Shen, W.; Vinh-Hung, V.; Gorobets, H.; Thariat, J.; Ampil, F.; Vock, J.; Karlsson, U.; Chi, A. Is surgery indicated for elderly patients with non-small cell lung cancer, in the era of stereotactic body radiotherapy. Medicine 2016, 43, e5212. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.P.; Gonzalez, A.C.; Mazibuko, T.; Villoria, A.; Lonagadane, G.; Vinh-Hung, V.; Gorobets, H.; Karlsson, U.; Motta, M.; Lara, C.; et al. The potential of immunotherapy and stereotactic body radiotherapy for older patients with early stage non-small cell lung cancer in the Covid-19 era: Proposed t treatment strategy by the International Geriatric Radiotherapy Group. Arch. Clin. Biomed. Res. 2021, 5, 201–213. [Google Scholar]
- Chang, J.Y.; Lin, S.H.; Dong, W.; Liao, Z.; Gandhi, S.A.; Gay, C.M.; Zhang, J.; Chun, S.G.; Elamin, Y.Y.; Fosella, S.V.; et al. Stereotactic ablative radiotherapy with or without immunotherapy for early stage or isolated lung parenchymal recurrent node-negative-non-small cell lung cancer. Lancet 2023, 402, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, K.; Yang, M.; Hlaing, S.S.; Chen, M.; Gu, P.; Meng, Y.; Yang, H. Radiotherapy improves the outcome of immunotherapy with sintilimab in non-small cell lung cancer. Front. Immunol. 2022, 13, 991431. [Google Scholar]
- Welsch, J.; Menon, H.; Chen, D.; Verma, V.; Tang, C.; Altan, M.; Hess, K.; de Groot, P.; Nguyen, Q.; Varghese, R.; et al. Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: A randomized phase I-II trial. J. Immunother. Cancer 2020, 8, e001001. [Google Scholar] [CrossRef] [PubMed]
- Theelen, W.S.M.E.; Peulen, H.M.U.; Lalezari, F.; van der Noort, V.; de Vries, J.F.; Aerts, J.G.J.V.A.; Dumoulin, D.W.; Bahce, I.; Neimeijer, A.N.; de Langen, A.J.; et al. Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer. Results of the pembro-RT phase II randomized trial. JAMA Oncol. 2019, 5, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Zhang, Q.; Feng, S.; Li, C.; Wang, L.; Zhao, X.; Yang, Z.; Li, Z.; Luo, H.; Liu, R.; et al. Safety and efficacy of PD-1/PD-L1 inhibitors combined with radiotherapy in patients with non-small cell lung cancer: A systemic review and meta-analysis. Cancer Med. 2021, 10, 1222–1239. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, Y.H.; Chung, M.J.; Seol, K.H. Hypofractionated radiotherapy for elderly lung cancer patients. J. Thorac. Oncol. 2023, 18, S583. [Google Scholar] [CrossRef]
- Iyengar, P.; Velten, E.Z.; Court, L.; Westover, K.; Yan, Y.; Lin, M.; Xiong, Z.; Patel, M.; Rivera, D.; Chang, J.; et al. Accelerated hypofractionated image-guided vs conventional radiotherapy for patients with stage II/III non-small cell lung cancer and poor performance status. JAMA Oncol. 2021, 7, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, D.; De Rose, F.; Cozzi, L.; Navarria, P.; Clerici, E.; Franzese, E.; Comito, T.; Tozzi, A.; Iftode, C.; D’Agostino, G.; et al. Radical hypofractionated radiotherapy with volumetric arc therapy in lung cancer. Stahlenther. Onkol. 2017, 193, 385–391. [Google Scholar] [CrossRef]
- Kravutske, H.; Lehmann, J.; Guggenberger, J.E.; Mansoorian, S.; Taugner, J.; Kasmann, L.; Belka, C.; Manapov, F.; Eze, C. Moderately hypofractionated PET/CT based thoracic radiotherapy in elderly and multimorbid patients with stage II/III NSCLC. J. Thorac. Oncol. 2023, 18, S575–S576. [Google Scholar] [CrossRef]
- Hopkins, B.; Kesarwala, A.; Stokes, B.; Shelton, J.; Steuer, C.; Carlisle, J.; Leal, T.; Ramalingam, S.; Higgins, K.; Tian, S. Definitive hypofractionated radiation therapy with or without immunotherapy for stage IIb-III NSCLC: An institutional experience. J. Thorac. Oncol. 2023, 18, S586. [Google Scholar] [CrossRef]
- Valeriani, M.; Marinelly, L.; Nicosia, L.; Reverberi, C.; De Sanctis, V.; Mollo, D.; Osti, M.F. Locally advanced inoperable primary or recurrent non-small cell lung cancer treated with 4-weeks hypofractionated radiation therapy (3 Gy/fraction). Radiol. Med. 2019, 124, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Eze, C.; Taugner, J.; Schmidt-Hegemann, N.; Kasman, L.; Guggenberger, J.E.; Roengvoraphoz, O.; Dantes, M.; Gjika, A.; Li, M.; Belka, C.; et al. Feasibility of hypofractionated radiotherapy in node-positive NSCLC patients with poor prognostic factors and limited pulmonary reserve. Acta Oncol. 2021, 60, 1074–1078. [Google Scholar] [CrossRef]
- Tekatli, H.; Haasbeek, N.; Dahele, M.; De Haan, P.; Verbakel, W.; Bongers, E.; Hashemi, H.; Nossent, E.; Spoelstra, F.; de Langen, A.J.; et al. Outcome of hypofractionated high dose radiotherapy in poor risk patients with ultracentral non-small cell lung cancer. J. Thorac. Oncol. 2016, 11, 1081–1089. [Google Scholar] [CrossRef]
- Dai, S.; Yang, M.; Song, J.; Dai, S.; Wu, J. Impact of frailty on prognosis in lung cancer patients: A systemic review and meta-analysis. Front. Med. 2021, 8, 715513. [Google Scholar] [CrossRef]
- Chen, X.; Mao, G. Leng SX. Frailty syndrome: An overview. Clin. Interv. Aging 2014, 9, 433–441. [Google Scholar]
- Gale, C.R.; Cooper, C.; Sayer, A.A. Prevalence of frailty and disability: Findings from the English longitudinal study of aging. Age Ageing 2015, 44, 162–165. [Google Scholar] [CrossRef]
- El Assar, M.; Rodriguez-Sanchez, I.; Alvarez-Bustos, A.; Rodriguez-Manas, L. Biomarkers of frailty. Mol. Asp. Med. 2024, 97, 101271. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Takahashi, M.; Komine, K.; Yamada, H.; Kasahara, Y.; Chikamatsu, S.; Okita, A.; Ito, S.; Ouchi, K.; Okada, Y.; et al. The G8 screening tool enhances prognostic value to ECOG performance status in elderly cáncer patients: A retrospective, single institution study. PLoS ONE 2017, 12, e0179694. [Google Scholar] [CrossRef] [PubMed]
- Bellera, C.A.; Rainfray, M.; Mathoulin-Pelissier, S.; Mertens, C.; Delva, F.; Fonck, A.; Soubeyran, P.L. Screening older cáncer patients: First evaluation of the G8 screening tool. Ann. Oncol. 2012, 23, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Augustus, E.; Zwaenepoel, K.; Siozopoulou, V.; Raskin, J.; Jordaens, S.; Baggerman, G.; Sorber, L.; Roeyen, G.; Peeters, M.; Pauwels, P. Prognostic and predictive biomarkers in non-small cell lung cáncer patients on immunotherapy—The role of liquid biopsy in unraveling the puzzle. Cancers 2021, 13, 1675. [Google Scholar] [CrossRef]
- Herbreteau, G.; Vallee, E.; Charpentier, S.; Normanno, N.; Hofman, P.; Denis, M.G. Circulating free tumor DNA in NSCLC: Clinical application and future perspectives. J. Thorac. Dis. 2019, 11, S113–S126. [Google Scholar] [CrossRef]
- Kilgour, E.; Rothwell, D.G.; Brady, G.; Dive, C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell Rev. 2020, 37, 485–495. [Google Scholar] [CrossRef]
- Ricciutti, B.; Jones, G.; Severgnini, M.; Alessi, J.A.; Recondo, G.; Lawrence, M.; Forshew, T.; Lydon, C.; Nishino, M.; Cheng, M.; et al. Early plasma circulating tumor DNA (ctDNA) changes predict response to first-time pembrolizumab-based therapy in NSCLC. J. Immunother. Cancer 2021, 9, e001504. [Google Scholar]
- Goldberg, S.B.; Narayan, A.; Kole, A.J.; Decker, R.H.; Teysir, J.; Carriero, N.J.; Lee, A.; Nemati, R.; Nath, S.K.; Mane, S.M.; et al. Early assessment of lung cáncer immunotherapy response via circulating tumor DNA. Clin. Cancer Res. 2018, 24, 1872–1880. [Google Scholar] [CrossRef]
- Gristina, V.; Barraco, N.; La Mantia, M.; Castellana, M.; Insalaco, L.; Bono, M.; Perez, A.; Sardo, D.; Insuglia, S.; Iacono, F.; et al. Clinical potential of circulating cell-free DNA (cfDNA) for longitudinal monitoring clinical outcomes in the first-line setting of NSCLC: A real-world prospective study. Cancers 2022, 14, 6013. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Tsoulos, N.; Tsantikidi, K.; Metaxa-Mariatou, V.; Stamou, P.E.; Kladi-Skandali, A.; Kapeni, E.; Tsaousis, G.; Pentheroudakis, G.; Petheroudakis, G.; et al. Clinical feasibility of NGS liquid biopsy analysis in NSCLC. PLoS ONE 2019, 14, e0226853. [Google Scholar] [CrossRef]
- Raez, L.E.; Brice, K.; Dumais, K.; Lopez-Cohen, A.; Wietecha, D.; Izquierdo, P.A.; Santos, E.S.; Powery, H.W. Liquid biopsy versus tissue biopsy to determine front line therapy in metastatic non-small cell lung cáncer. Clin. Lung Cancer 2022, 24, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Meoni, G.; Decarli, N.L.; Benucci, M.; Raspanti, C.; Ribecco, A.S. Pseudoprogression in lung cáncer: A case report. Explor. Target. Antitunor. Ther. 2020, 1, 372–380. [Google Scholar] [CrossRef]
- Fujimoto, D.; Yoshioka, H.; Kataoka, Y.; Morimoto, T.; Hata, T.; Kim, Y.H.; Tomii, K.; Ishida, T.; Hirabayashi, M.; Hara, S.; et al. Pseudoprogression in previously treated patients with non-small lung cáncer who received nivolumab. J. Thorac. Oncol. 2018, 14, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Guibert, N.; Mazieres, J.; Delaunay, M.; Casanova, A.; Farella, M.; Keller, L.; Favre, G.; Pradines, A. Monitoring of KRAS-mutated ctDNA to discriminate pseudo-progression from true progression during anti-PD-1 treatment for lung adenocarcinoma. Oncotarget 2017, 8, 38056–38060. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Araya, T.; Yoneda, T.; Shirasaki, H.; Kurokawa, K.; Sakai, T.; Koba, H.; Tambo, Y.; Nishikawa, S.; Sone, T.; et al. Long-lasting responses after discontinuation of nivolumab treatment for reasons other than tumor progression. Cancer Commun. 2019, 39, 78. [Google Scholar] [CrossRef]
- Komiya, K.; Nakamura, T.; Abe, T.; Ogusu, S.; Nakashima, C.; Takahashi, K.; Kimura, S.; Sueoka-Aragane, N. Discontinuation due to immune-related adverse events is a possible predictive factor for immune checkpoint inhibitors in patients with non-small cell lung cancer. Thorac. Cancer 2019, 10, 1798–1804. [Google Scholar] [CrossRef]
- Hernandez-Favela, C.G.; Jimenez-Sotomayor, M.R.; Morales-Alfaro, A.; de la O-Murillo, A.; Soto-Perez-de-Celis, E. Providing geriatric oncology care using telemedicine for older patients with cancer during the COVID-19 pandemic in Mexico. Ecancer 2023, 17, 1528. [Google Scholar] [CrossRef]
- Alexander, K.; Hamlin, P.A.; Tew, W.P.; Trevino, K.; Tin, A.l.; Shahrokni, A.; Meditz, E.; Borapai, M.; Amirnia, F.; Sun, S.W.; et al. Development and implementation of an interdisciplinary telemedicine clinic for older patients with cancer-preliminary data. J. Am. Geriatr. Soc. 2023, 71, 1638–1649. [Google Scholar] [CrossRef]
- Naidoo, J.; Zhang, J.; Lipson, E.J.; Forde, P.M.; Suresh, K.; Moseley, K.F.; Mehta, S.; Kwatra, S.J.; Parian, A.M.; Kim, A.K.; et al. A multidisciplinary toxicity team for cancer immunotherapy-related events. J. Natl. Compr. Cancer Netw. 2019, 17, 712–720. [Google Scholar] [CrossRef]
- Wesevich, A.; Goldstein, D.A.; Paydari, K.; Peer, C.J.; Figg, W.D.; Ratain, M.J. Intervention pharmacoeconomics for immune checkpoint inhibitors through alternative dosing strategies. Br. J. Cancer 2023, 129, 1389–1396. [Google Scholar] [CrossRef]
- Patil, V.M.; Noronha, V.; Menon, N.; Raj, R.; Bhattacharjee, A.; Singh, A.; Nawale, K.; Jogdhankar, S.; Tambe, R.; Dhumal, S.; et al. Low-dose immunotherapy in head and neck cancer: A randomized study. J. Clin. Oncol. 2023, 41, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Wang, C.C.; Chen, Y.Y.; Wang, J.H.; Hung, C.H.; Kuo, Y.H. Low-dose nivolumab in advanced hepatocellular carcinoma. Boston Med. Cent. Cancer 2022, 22, 1153. [Google Scholar] [CrossRef] [PubMed]
- Low, J.L.; Huang, Y.; Sooi, K.; Ang, Y.; Chan, Z.Y.; Spencer, K.; Jeyasekharan, A.D.; Sundar, R.; Goh, B.C.; Dhumal, S.; et al. Low-dose pembrolizumab in the treatment of advanced non-small cell lung cancer. Int. J. Cancer 2021, 149, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Schultz, A.; Rodler, S.; Szabados, B.; Graser, A.; Buchner, A.; Stef, C.; Casuscelli, J. Safety, efficacy and prognostic impact of immune checkpoint inhibitors in older patients with genitourinary cancers. J. Geriatr. Oncol. 2020, 11, 1061–1066. [Google Scholar] [CrossRef]
- Hayashi-Tanner, Y.; Polewski, P.J.; Gaddam, M.; Fisher, N.R.; Kovacs, A.J.; Marinier, D.E. Immune checkpoint inhibitor toxicity and associated outcomes in older patients with cancer. J. Geriatr. Oncol. 2022, 13, 1011–1016. [Google Scholar] [CrossRef]
- Morinaga, D.; Asahina, F.; Ito, S.; Honjo, O.; Tanaka, H.; Honda, R.; Yokouchi, H.; Nakamura, K.; Takamura, K.; Hommura, F.; et al. Real-world data on the efficacy and safety of immune-checkpoint inhibitors in elderly patients with non-small cell lung cancer. Cancer Med. 2023, 23, 11525–11541. [Google Scholar] [CrossRef]
- Samani, A.; Zhang, S.; Spiers, L.; Suwaidan, A.A.; Merrick, S.; Tippu, Z.; Payne, M.; Faust, G.; Papa, S.; Fields, P.; et al. Impact of age on the toxicity of immune checkpoint inhibition. J. Immunother. Cancer 2020, 8, e000871. [Google Scholar] [CrossRef]
- Paderi, A.; Fancelli, S.; Caliman, E.; Pillozi, S.; Gambale, E.; Mela, M.M.; Doni, L.; Mazzoni, F.; Antonuzzo, L. Safety of immune checkpoint inhibitors in elderly patients: An observational study. Curr. Oncol. 2021, 28, 3259–3267. [Google Scholar] [CrossRef]
- Johns, A.C.; Yang, M.; Wei, L.; Grogan, M.; Spakowicz, D.; Patel, S.D.; Li, M.; Husain, M.; Kendra, K.L.; Otterson, K.A.; et al. Risk factors for immune checkpoint inhibitor immunotoxicity among older adults with cancer. Oncologist 2023, 28, e625–e632. [Google Scholar] [CrossRef]
- Bruijnen, C.P.; Koldenhof, J.J.; Verheijden, R.J.; van den Boss, F.; Emmelot-Vonk, M.H.; Witteveen, P.O.; Suijkerbuijk, K.P.M. Frailty and checkpoint inhibitor toxicity in older patients with melanoma. Cancer 2022, 128, 2746–2752. [Google Scholar] [CrossRef]
- Tran van Hoi, E.; Trompet, S.; van Holstein, Y.; Van den Bos, S.; Van Heemst, D.; Codrington, S.; Labots, G.; Lohman, S.; Ozkan, A.; Portielje, J.; et al. Toxicity in older patients with cancer receiving immunotherapy. Drug Aging 2024, 41, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Unger, J.M.; Vaidya, R.; Albain, K.S.; LeBlanc, M.; Minasian, L.M.; Gotay, C.C.; Henry, N.L.; Fisch, M.J.; Lee, S.M.; Blanke, C.D.; et al. Sex differences in risk of severe adverse events in patients receiving immunotherapy, targeted therapy, or chemotherapy in clinical trials. J. Clin. Oncol. 2022, 40, 1474–1486. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Sun, J.; Lee, S.; Ahn, J.S.; Park, K.; Ahn, M. Are there any ethnic differences in the efficacy and safety of immune checkpoint inhibitors for treatment of lung cancer. J. Thorac. Dis. 2020, 12, 3796–3803. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Wu, Y. Immunotherapy in the Asiatic population. J. Thorac. Dis. 2018, 10, S1482–S1493. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, T.; Wang, J.; Xu, Y.; Zhao, X.; Ou, Q.; Shao, Y.; Wang, X.; Wu, Y.; Wu, L.; et al. The clinical utility of dynamic ctDNA monitoring in inoperable localized NSCLC patients. Mol. Cancer 2022, 21, 117. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, G.; Wang, X.; Liu, Y.; Wu, L.; Hao, Y.; Liu, C.; Zhu, S.; Zhang, X.; Li, Y.; et al. Furmonertinib (AST2818) versus gefitinib as first-line therapy for Chinese patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cáncer (FURLONG): A multicenter, double-blind, randomised phase 3 study. Lancet Resp. Med. 2022, 10, 1019–1028. [Google Scholar] [CrossRef]
- Hastings, K.; Yu, H.A.; Wei, W.; Sanchez-Vega, F.; DeVeaux, M.; Choi, J.; Lisberg, A.; Truini, A.; Lydon, C.A.; Liu, Z.; et al. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cáncer. Ann. Oncol. 2019, 30, 1311–1320. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Karlsson, U.; Lehrman, D.; Mazibuko, T.; Saghatelyan, T.; Thariat, J.; Baumert, B.G.; Vinh-Hung, V.; Gorobets, O.; Giap, H.; et al. Impact of COVID-19 pandemic on older cáncer patients: Proposed solution by the International Geriatric Radiotherapy Group. Front. Oncol. 2023, 13, 1091329. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Baumert, B.G.; Oboite, E.; Motta, M.; Appalanaido, G.; Arenas, M.; Lara, P.C.; Bonet, M.; Zamagni, A.; Vuong, T.; et al. Immunotherapy and radiotherapy for older cáncer patients during the COVID-19 era: Proposed paradigm by the International Geriatric Radiotherapy Group. Gerontology 2021, 67, 379–385. [Google Scholar] [CrossRef]
Study | Prognosis | Comments |
---|---|---|
Pawelczyk et al. [12] | Increase risk of mediastinal lymph node involvement, poorly differentiated histology, and poor survival | Retrospective study |
Large number of patients (n = 866) | ||
Zhao et al. [14] | Increase risk of nerve or blood vessel invasion and mediastinal lymph node invasion | Retrospective study |
Small number of patients (n = 97) | ||
Eichhorm et al. [15] | No benefit of chemotherapy among patients who were PD-L1-positive | Retrospective study |
Small number of patients (n = 277) | ||
Zhang et al. [16] | Poor response to neoadjuvant chemotherapy and poor survival among patients with high PD-L1 expression | Retrospective study |
Small number of patients (n = 92) |
Study | Findings | Comments |
---|---|---|
Wan et al. [20] | Increase in PD-L1 expression in NSCLC cell lines A549 and LLC following radiation | rigorous in vitro study, no bias |
Gong et al. [21] | Increase in PD-L1 expression in NSCLC cell lines A549, PC9, and H20 after radiation | rigorous in vitro study, no bias |
Shen et al. [22] | Increase in PD-L1 expression in NSCLC cell lines A547 and H-157 proportional to radiation dose | rigorous in vitro study, no bias |
Herter-Sprie et al. [23] | Increase in PD-L1 expression of KRAS NSCLC implanted in mice after radiation | rigorous in vivo study, no bias |
Yoneda et al. [24] | Increase in PD-L1 expression following neoadjuvant chemoradiation in patients with locally advanced NSCLC | small number of patients (n = 23), retrospective study |
Adams et al. [25] | Increase in PD-L1 expression in CTCs after RT alone or chemoradiation in patients with NSCLC | small number of patients (n = 41), prospective study |
Moran et al. [27] | Increase in PD-L1 expression in CTCs and circulating stromal cells after radiation in patients with recurrent or metastatic NSCLC | small number of patients, prospective study |
Study | ICI | Age | Survival | Toxicity | Comments |
---|---|---|---|---|---|
Lee et al. [28] | atezolizumab | 70 or older | 24% (ICI) | 16% gr. 3–4 | well-designed randomized study |
12% (C) | 33% gr. 3–4 | ||||
Ron et al. [29] | nivolumab | 70 or older | NS | 8% gr. 3–4 | small number of patients (n = 38) |
retrospective study | |||||
subgroup analysis | |||||
Grosjean et al. [30] | pembrolizumab | 70 or older | 12.7% (<70) | 26% gr. 3–4 | retrospective study |
12.4% (70+) | 26% gr. 3–4 | subgroup analysis | |||
Imai et al. [31] | pembrolizumab | 75 or older | 74% disease control | 15% gr. 3–4 | retrospective study |
4% gr. 5 | small number of patients (n = 47) | ||||
short follow up (median: 10 months) | |||||
Gomes et al. [32] | various | 70 or older | NS | 12.9% gr. 3–5 (<70) | prospective longitudinal study |
18.6% gr. 3–5) (70+) | small number of patients (n = 140) | ||||
Wu et al. [33] | various | 65 or older | improved survival for younger (<65) and older (65+) patients | NS | meta-analysis of 11,157 |
Tumor heterogeneity as all tumors | |||||
types were included | |||||
Marur et al. [34] | various | 65 or older | 14.5 months (<65) | 47% gr. 3–4 (<65) | retrospective study |
14.2 months (65+) | 49% gr. 3–4 (65+) | ||||
Corbaux et al. [35] | various | 70 or older | no survival | 11% gr. 3–4 (<70) | retrospective study |
difference | 12% gr. 3–4 (70+) | tumor heterogeneity | |||
based on age | as all tumor types were included |
Study | ICI | Survival Benefit | Comments |
---|---|---|---|
Chang et al. [45] | nivolumab | 77% (SBRT + ICI) | Randomized study |
53% (SBRT) | Small number of patients (n = 156) | ||
Li et al. [46] | sintilimab | 30 months (RT + ICI) | Retrospective study |
16 months (RT) | |||
Geng et al. [49] | various | Improved survival and progression-free | Meta-analysis |
survival of immunotherapy and radiotherapy | Only two randomized trials among | ||
compared to either therapy alone | the 20 studies selected | ||
Small number of patients (n = 2027) |
Study | Patient No | Age (Median) | Radiotherapy Dose | LC | RC | DM | Survival | Complications | Follow-Up (Median) |
---|---|---|---|---|---|---|---|---|---|
Lee et al. [50] | 53 | 80 | 45 Gy | 89.6% | 80% | 4.7% | 13 m | No | NS |
3 Gy/fr | (median) | ||||||||
Iengar et al. [51] | 50 | 71 | 60 Gy | 79.5% | 86.6% | 26.3% | 37.7% (1-y) | 17% gr. 3–5 | 8.7 m |
4 Gy/fr | 4% gr. 5 | ||||||||
Franceschini et al. [52] | 41 | 78.6 | 50–56 Gy | 76% | NS | 49% | 51.3% | No | 9.9 m |
2.5–2.8 Gy | (1-y) | ||||||||
Kravutski et al. [53] | 76 | 76.7 | 38–56 Gy | NS | NS | NS | 67% | 5.2% gr. 3 | 46.8 m |
2.5–3.8 Gy/fr | (1-y) | ||||||||
Hopkins et al. [54] | 41 | 73 | 60 Gy | NS | NS | NS | 9 m | No | 12.2 m |
4 Gy/fr | (median) | ||||||||
Valeriani et al. [55] | 76 | 70 | 60 Gy | NS | NS | 60.6% | 38.9% | 3.9% gr. 3 | 50 m |
3 Gy/fr | (2-y) | ||||||||
Eze et al. [56] | 47 | 72 | 42–49 Gy | NS | NS | 29.8% | 66% | 4.2% gr. 3 | 28.9 m |
2.8–3.5 Gy/fr | (1-y) | ||||||||
Tekatli et al. [57] | 47 | 77.5 | 60 Gy | 100% | 98% | 30% | 20.1% | 38% gr. 3–5 | 29.3 m |
5 Gy/fr | (3-y) | 15% gr. 5 |
PD-L1 < 1 | 60 Gy in 3 Gy/fraction followed by 8 cycles of immunotherapy every three weeks [24,25,26,27,55] |
PD-L1 = 1 or more | 4 cycles of immunotherapy first followed by 60 Gy in 3 Gy/fraction. Immunotherapy will resume after radiotherapy for four cycles unless excessive toxicity observed during the induction phase [17,39,40,41,42,55]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.P.; Page, B.R.; Giap, H.; Dahbi, Z.; Vinh-Hung, V.; Gorobets, O.; Mohammadianpanah, M.; Motta, M.; Portaluri, M.; Arenas, M.; et al. Immunotherapy and Radiotherapy for Older Patients with Locally Advanced Non-Metastatic Non-Small-Cell Lung Cancer Who Are Not Candidates for or Decline Surgery and Chemotherapy: A Practical Proposal by the International Geriatric Radiotherapy Group. Cancers 2024, 16, 3112. https://doi.org/10.3390/cancers16173112
Nguyen NP, Page BR, Giap H, Dahbi Z, Vinh-Hung V, Gorobets O, Mohammadianpanah M, Motta M, Portaluri M, Arenas M, et al. Immunotherapy and Radiotherapy for Older Patients with Locally Advanced Non-Metastatic Non-Small-Cell Lung Cancer Who Are Not Candidates for or Decline Surgery and Chemotherapy: A Practical Proposal by the International Geriatric Radiotherapy Group. Cancers. 2024; 16(17):3112. https://doi.org/10.3390/cancers16173112
Chicago/Turabian StyleNguyen, Nam P., Brandi R. Page, Huan Giap, Zineb Dahbi, Vincent Vinh-Hung, Olena Gorobets, Mohammad Mohammadianpanah, Micaela Motta, Maurizio Portaluri, Meritxell Arenas, and et al. 2024. "Immunotherapy and Radiotherapy for Older Patients with Locally Advanced Non-Metastatic Non-Small-Cell Lung Cancer Who Are Not Candidates for or Decline Surgery and Chemotherapy: A Practical Proposal by the International Geriatric Radiotherapy Group" Cancers 16, no. 17: 3112. https://doi.org/10.3390/cancers16173112
APA StyleNguyen, N. P., Page, B. R., Giap, H., Dahbi, Z., Vinh-Hung, V., Gorobets, O., Mohammadianpanah, M., Motta, M., Portaluri, M., Arenas, M., Bonet, M., Lara, P. C., Kim, L., Dutheil, F., Natoli, E., Loganadane, G., Lehrman, D., Bose, S., Kaur, S., ... Chi, A. (2024). Immunotherapy and Radiotherapy for Older Patients with Locally Advanced Non-Metastatic Non-Small-Cell Lung Cancer Who Are Not Candidates for or Decline Surgery and Chemotherapy: A Practical Proposal by the International Geriatric Radiotherapy Group. Cancers, 16(17), 3112. https://doi.org/10.3390/cancers16173112