Combination of JAKi and HDACi Exerts Antiangiogenic Potential in Cutaneous T-Cell Lymphoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Culturing
2.2. Drugs Tested
2.3. Transendothelial Migration Transwell Assay
2.4. Angiogenesis CAM Assay
2.5. Expression of Angiogenesis-Related Genes
2.6. HDAC Activity and HDAC Gene Expression
2.7. Western Blot
2.8. Data Analysis and Statistics
3. Results
3.1. Combination of Ruxolitinib with Resminostat Inhibits Transendothelial Migration in Chick Embryo CAM Assay
3.2. Combination of Ruxolitinib with Resminostat Blocks Angiogenesis in CTCL Chick Embryo Model
3.3. Combination of Ruxolitinib with Resminostat Affects HDAC Activity in CTCL Chick Embryo Model
3.4. Major Implicated Pathways Affected by the Combination of Ruxolitinib with Resminostat in CTCL Chick Embryo Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scarisbrick, J.J.; Hodak, E.; Bagot, M.; Stranzenbach, R.; Stadler, R.; Ortiz-Romero, P.L.; Papadavid, E.; Evison, F.; Knobler, R.; Quaglino, P.; et al. Blood Classification and Blood Response Criteria in Mycosis Fungoides and Sézary Syndrome Using Flow Cytometry: Recommendations from the EORTC Cutaneous Lymphoma Task Force. Eur. J. Cancer 2018, 93, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Phyo, Z.H.; Shanbhag, S.; Rozati, S. Update on Biology of Cutaneous T-Cell Lymphoma. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Tanase, C.; Popescu, I.D.; Enciu, A.M.; Gheorghisan-Galateanu, A.A.; Codrici, E.; Mihai, S.; Albulescu, L.; Necula, L.; Albulescu, R. Angiogenesis in Cutaneous T-Cell Lymphoma-Proteomic Approaches. Oncol. Lett. 2019, 17, 4060. [Google Scholar] [CrossRef] [PubMed]
- Yancopoulos, G.D.; Davis, S.; Gale, N.W.; Rudge, J.S.; Wiegand, S.J.; Holash, J. Vascular-Specific Growth Factors and Blood Vessel Formation. Nature 2000, 407, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Shahrabi, S.; Rezaeeyan, H.; Ahmadzadeh, A.; Shahjahani, M.; Saki, N. Bone Marrow Blood Vessels: Normal and Neoplastic Niche. Oncol. Rev. 2016, 10, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Lin, P.C. Angiopoietin/Tie2 Signaling, Tumor Angiogenesis and Inflammatory Diseases. Front. Biosci. 2005, 10, 666–674. [Google Scholar] [CrossRef]
- Saharinen, P.; Eklund, L.; Pulkki, K.; Bono, P.; Alitalo, K. VEGF and Angiopoietin Signaling in Tumor Angiogenesis and Metastasis. Trends Mol. Med. 2011, 17, 347–362. [Google Scholar] [CrossRef]
- Vacca, A.; Moretti, S.; Ribatti, D.; Pellegrino, A.; Pimpinelli, N.; Bianchi, B.; Bonifazi, E.; Ria, R.; Serio, G.; Dammacco, F. Progression of Mycosis Fungoides Is Associated with Changes in Angiogenesis and Expression of the Matrix Metalloproteinases 2 and 9. Eur. J. Cancer 1997, 33, 1685–1692. [Google Scholar] [CrossRef]
- Mazur, G.; Woźniak, Z.; Wróbel, T.; Maj, J.; Kuliczkowski, K. Increased Angiogenesis in Cutaneous T-Cell Lymphomas. Pathol. Oncol. Res. 2004, 10, 34–36. [Google Scholar] [CrossRef]
- Fagiani, E.; Christofori, G. Angiopoietins in Angiogenesis. Cancer Lett. 2013, 328, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Miyagaki, T.; Sugaya, M.; Oka, T.; Takahashi, N.; Kawaguchi, M.; Suga, H.; Fujita, H.; Yoshizaki, A.; Asano, Y.; Sato, S. Placental Growth Factor and Vascular Endothelial Growth Factor Together Regulate Tumour Progression via Increased Vasculature in Cutaneous T-Cell Lymphoma. Acta Derm. Venereol. 2017, 97, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Subotički, T.; Ajtić, O.M.; Živković, E.; Diklić, M.; Đikić, D.; Tošić, M.; Beleslin-čokić, B.; Dragojević, T.; Gotić, M.; Santibanez, J.F.; et al. VEGF Regulation of Angiogenic Factors via Inflammatory Signaling in Myeloproliferative Neoplasms. Int. J. Mol. Sci. 2021, 22, 6671. [Google Scholar] [CrossRef]
- Pérez, C.; González-Rincón, J.; Onaindia, A.; Almaráz, C.; García-Díaz, N.; Pisonero, H.; Curiel-Olmo, S.; Gómez, S.; Cereceda, L.; Madureira, R.; et al. Mutated JAK Kinases and Deregulated STAT Activity Are Potential Therapeutic Targets in Cutaneous T-Cell Lymphoma. Haematologica 2015, 100, e450–e453. [Google Scholar] [CrossRef]
- Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA Approval Summary: Vorinostat for Treatment of Advanced Primary Cutaneous T-Cell Lymphoma. Oncologist 2007, 12, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Hull, E.E.; Montgomery, M.R.; Leyva, K.J. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. Biomed Res. Int. 2016, 2016, 8797206. [Google Scholar] [CrossRef] [PubMed]
- Karagianni, F.; Piperi, C.; Mpakou, V.; Spathis, A.; Foukas, P.G.; Dalamaga, M.; Pappa, V.; Papadavid, E. Ruxolitinib with Resminostat Exert Synergistic Antitumor Effects in Cutaneous T-Cell Lymphoma. PLoS ONE 2021, 16, e0248298. [Google Scholar] [CrossRef]
- Piekarz, R.L.; Robey, R.; Sandor, V.; Bakke, S.; Wilson, W.H.; Dahmoush, L.; Kingma, D.M.; Turner, M.L.; Altemus, R.; Bates, S.E. Inhibitor of Histone Deacetylation, Depsipeptide (FR901228), in the Treatment of Peripheral and Cutaneous T-Cell Lymphoma: A Case Report. Blood 2001, 98, 2865–2868. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, S.; Liu, W.; Ming, J.; Wang, X.; Hu, X. Ruxolitinib-Based Combinations in the Treatment of Myelofibrosis: Worth Looking Forward To. Ann. Hematol. 2020, 99, 1161–1176. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fiskus, W.; Chong, D.G.; Buckley, K.M.; Natarajan, K.; Rao, R.; Joshi, A.; Balusu, R.; Koul, S.; Chen, J.; et al. Cotreatment with Panobinostat and JAK2 Inhibitor TG101209 Attenuates JAK2V617F Levels and Signaling and Exerts Synergistic Cytotoxic Effects against Human Myeloproliferative Neoplastic Cells. Blood 2009, 114, 5024–5033. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, J.; Sandy, L.; Lu, M.; Yoon, J.; Petersen, B.; Zhang, D.; Ye, F.; Newsom, C.; Najfeld, V.; Hochman, T.; et al. A Phase II Study of Panobinostat in Patients with Primary Myelofibrosis (PMF) and Post-Polycythemia Vera/Essential Thrombocythemia Myelofibrosis (Post-PV/ET MF). Leuk. Res. 2017, 53, 13–19. [Google Scholar] [CrossRef] [PubMed]
- t Ribrag, V.; Harrison, C.N.; Heidel, F.H.; Kiladjian, J.-J.; Acharyya, S.; Mu, S.; Liu, T.; Williams, D.; Giles, F.J.; Conneally, E.; et al. A Phase 1b, Dose-Finding Study Of Ruxolitinib Plus Panobinostat In Patients With Primary Myelofibrosis (PMF), Post–Polycythemia Vera MF (PPV-MF), Or Post–Essential Thrombocythemia MF (PET-MF): Identification Of The Recommended Phase 2 Dose. Blood 2013, 122, 4045. [Google Scholar] [CrossRef]
- Kiladjian, J.-J.; Heidel, F.H.; Vannucchi, A.M.; Ribrag, V.; Passamonti, F.; Hayat, A.; Conneally, E.; Martino, B.; Kindler, T.; Lipka, D.B.; et al. Efficacy, Safety, and Confirmation of the Recommended Phase 2 Dose of Ruxolitinib Plus Panobinostat in Patients with Intermediate or High-Risk Myelofibrosis. Blood 2014, 124, 711. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, G.-M.; Wang, F.-Y.; Zhang, L.-J.; Liang, W.-T.; Cheng, Z.-Y. The Effect of Ruxolitinib on the Expression of VEGF and HIF-1α in Leukemia HEL Cells. J. Sichuan Univ. (Med. Sci. Ed) 2016, 47, 5. Available online: https://pubmed.ncbi.nlm.nih.gov/28598077/ (accessed on 27 November 2023).
- Karagianni, F.; Piperi, C.; Casar, B.; de la Fuente-Vivas, D.; García-Gómez, R.; Lampadaki, K.; Pappa, V.; Papadavid, E. Combination of Resminostat with Ruxolitinib Exerts Antitumor Effects in the Chick Embryo Chorioallantoic Membrane Model for Cutaneous T Cell Lymphoma. Cancers 2022, 14, 1070. [Google Scholar] [CrossRef] [PubMed]
- Deryugina, E.I.; Quigley, J.P. CHAPTER TWO: Chick Embryo Chorioallantoic Membrane Models to Quantify Angiogenesis Induced by Inflammatory and Tumor Cells or Purified Effector Molecules. Methods Enzymol. 2008, 444, 21. [Google Scholar] [CrossRef]
- El Omari, N.; Lee, L.-H.; Bakrim, S.; Makeen, H.A.; Alhazmi, H.A.; Mohan, S.; Khalid, A.; Ming, L.C.; Bouyahya, A. Molecular Mechanistic Pathways Underlying the Anticancer Therapeutic Efficiency of Romidepsin. Biomed. Pharmacother. 2023, 164, 114774. [Google Scholar] [CrossRef]
- Smolewski, P.; Robak, T. The Discovery and Development of Romidepsin for the Treatment of T-Cell Lymphoma. Expert Opin. Drug Discov. 2017, 12, 859–873. [Google Scholar] [CrossRef]
- Zain, J.; O’Connor, O.A. Targeting Histone Deacetyalses in the Treatment of B- and T-Cell Malignancies. Investig. New Drugs 2010, 28 (Suppl. 1), 58–78. [Google Scholar] [CrossRef] [PubMed]
- Delen, E.; Doğanlar, O. The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway. J. Korean Neurosurg. Soc. 2020, 63, 444. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.J.; Huang, H.; He, B.; Hu, D.H.; Li, P.H.; Yu, Y.J.; Zhou, X.H.; Lv, Z.; Zhou, L.; Hu, T.Y.; et al. Romidepsin Induces G2/M Phase Arrest via Erk/Cdc25C/Cdc2/CyclinB Pathway and Apoptosis Induction through JNK/c-Jun/Caspase3 Pathway in Hepatocellular Carcinoma Cells. Biochem. Pharmacol. 2017, 127, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Gray, S.G.; Wabitsch, M.; Greene, C.M.; Lawless, M.W. The Therapeutic Properties of Resminostat for Hepatocellular Carcinoma. Oncoscience 2018, 5, 196. [Google Scholar] [CrossRef] [PubMed]
- Soukupova, J.; Bertran, E.; Peñuelas-Haro, I.; Urdiroz-Urricelqui, U.; Borgman, M.; Kohlhof, H.; Fabregat, I. Resminostat Induces Changes in Epithelial Plasticity of Hepatocellular Carcinoma Cells and Sensitizes Them to Sorafenib-Induced Apoptosis. Oncotarget 2017, 8, 110367–110379. [Google Scholar] [CrossRef] [PubMed]
- Streubel, G.; Schrepfer, S.; Kallus, H.; Parnitzke, U.; Wulff, T.; Hermann, F.; Borgmann, M.; Hamm, S. Histone Deacetylase Inhibitor Resminostat in Combination with Sorafenib Counteracts Platelet-Mediated pro-Tumoral Effects in Hepatocellular Carcinoma. Sci. Rep. 2021, 11, 9587. [Google Scholar] [CrossRef] [PubMed]
- Duvic, M.; Vu, J. Vorinostat: A New Oral Histone Deacetylase Inhibitor Approved for Cutaneous T-Cell Lymphoma. Expert Opin. Investig. Drugs 2007, 16, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.L.; Kuehn, H.S.; Zhao, F.; Niemela, J.E.; Deenick, E.K.; Palendira, U.; Avery, D.T.; Moens, L.; Cannons, J.L.; Biancalana, M.; et al. Dominant-Activating Germline Mutations in the Gene Encoding the PI(3)K Catalytic Subunit P110δ Result in T Cell Senescence and Human Immunodeficiency. Nat. Immunol. 2014, 15, 88–97. [Google Scholar] [CrossRef]
- Liu, C.; Lou, Y.; Lizée, G.; Qin, H.; Liu, S.; Rabinovich, B.; Kim, G.J.; Wang, Y.H.; Ye, Y.; Sikora, A.G.; et al. Plasmacytoid Dendritic Cells Induce NK Cell-Dependent, Tumor Antigen-Specific T Cell Cross-Priming and Tumor Regression in Mice. J. Clin. Investig. 2008, 118, 1165–1175. [Google Scholar] [CrossRef]
- Kim, Y.H.; Girardi, M.; Duvic, M.; Kuzel, T.; Link, B.K.; Pinter-Brown, L.; Rook, A.H. Phase I Trial of a Toll-like Receptor 9 Agonist, PF-3512676 (CPG 7909), in Patients with Treatment-Refractory, Cutaneous T-Cell Lymphoma. J. Am. Acad. Dermatol. 2010, 63, 975–983. [Google Scholar] [CrossRef]
- Marks, P.A.; Breslow, R. Dimethyl Sulfoxide to Vorinostat: Development of This Histone Deacetylase Inhibitor as an Anticancer Drug. Nat. Biotechnol. 2007, 25, 84–90. [Google Scholar] [CrossRef]
- Neri, L.M.; Cani, A.; Martelli, A.M.; Simioni, C.; Junghanss, C.; Tabellini, G.; Ricci, F.; Tazzari, P.L.; Pagliaro, P.; McCubrey, J.A.; et al. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 2014, 28, 739–748. [Google Scholar] [CrossRef]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Levy, R.S.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.; Miller, C.; Silver, R.T.; et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 2012, 366, 799–807. [Google Scholar] [CrossRef] [PubMed]
- McLornan, D.P.; Pope, J.E.; Gotlib, J.; Harrison, C.N. Current and Future Status of JAK Inhibitors. Lancet 2021, 398, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.; Kershaw, N.J.; Babon, J.J. The Molecular Details of Cytokine Signaling via the JAK/STAT Pathway. Protein Sci. 2018, 27, 1984–2009. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Beheshti, R.; Nakashima, F.; Habib, N.A.; Foss, F.V. HDAC and JAK Inhibition Impairs STAT3-Mediated Gene Transcription and Induces Apoptosis in Multiple Myeloma Cells. Proc. Natl. Acad. Sci. USA 2015, 112, 6454–6459. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karagianni, F.; Piperi, C.; Valero-Diaz, S.; Amato, C.; Vaque, J.P.; Casar, B.; Papadavid, E. Combination of JAKi and HDACi Exerts Antiangiogenic Potential in Cutaneous T-Cell Lymphoma. Cancers 2024, 16, 3176. https://doi.org/10.3390/cancers16183176
Karagianni F, Piperi C, Valero-Diaz S, Amato C, Vaque JP, Casar B, Papadavid E. Combination of JAKi and HDACi Exerts Antiangiogenic Potential in Cutaneous T-Cell Lymphoma. Cancers. 2024; 16(18):3176. https://doi.org/10.3390/cancers16183176
Chicago/Turabian StyleKaragianni, Fani, Christina Piperi, Sara Valero-Diaz, Camilla Amato, Jose Pedro Vaque, Berta Casar, and Evangelia Papadavid. 2024. "Combination of JAKi and HDACi Exerts Antiangiogenic Potential in Cutaneous T-Cell Lymphoma" Cancers 16, no. 18: 3176. https://doi.org/10.3390/cancers16183176
APA StyleKaragianni, F., Piperi, C., Valero-Diaz, S., Amato, C., Vaque, J. P., Casar, B., & Papadavid, E. (2024). Combination of JAKi and HDACi Exerts Antiangiogenic Potential in Cutaneous T-Cell Lymphoma. Cancers, 16(18), 3176. https://doi.org/10.3390/cancers16183176