Leucocyte Telomere Length and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Systematic Search Strategy
2.2. Inclusion and Exclusion Criteria for Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics and Quality Assessment
3.3. Meta-Analysis
3.4. Sensitivity Analysis
3.5. Pubblication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, W.; Zhang, Y.; Liu, D.; Songyang, Z.; Wan, M. Telomeres-structure, function, and regulation. Exp. Cell Res. 2013, 319, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.F.R.; Parkinson, G.N.; Haider, S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024, 63, 827–842. [Google Scholar] [CrossRef]
- Smith, E.M.; Pendlebury, D.F.; Nandakumar, J. Structural biology of telomeres and telomerase. Cell Mol Life Sci. 2020, 77, 61–79. [Google Scholar] [CrossRef]
- Mather, K.A.; Jorm, A.F.; Parslow, R.A.; Christensen, H. Is telomere length a biomarker of aging? A review. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 202–213. [Google Scholar] [CrossRef]
- Gardner, M.; Bann, D.; Wiley, L.; Cooper, R.; Hardy, R.; Nitsch, D.; Martin-Ruiz, C.; Shiels, P.; Sayer, A.A.; Barbieri, M. Gender and telomere length: Systematic review and meta-analysis. Exp. Gerontol. 2014, 51, 15–27. [Google Scholar] [CrossRef]
- Nelson, C.P.; Codd, V. Genetic determinants of telomere length and cancer risk. Curr. Opin. Genet. Dev. 2020, 60, 63–68. [Google Scholar] [CrossRef]
- Barragán, R.; Ortega-Azorín, C.; Sorlí, J.V.; Asensio, E.M.; Coltell, O.; St-Onge, M.P.; Portolés, O.; Corella, D. Effect of Physical Activity, Smoking, and Sleep on Telomere Length: A Systematic Review of Observational and Intervention Studies. J. Clin. Med. 2021, 11, 76. [Google Scholar] [CrossRef]
- Assavanopakun, P.; Sapbamrer, R.; Kumfu, S.; Chattipakorn, N.; Chattipakorn, S.C. Effects of air pollution on telomere length: Evidence from in vitro to clinical studies. Environ. Pollut. 2022, 312, 120096. [Google Scholar] [CrossRef]
- D’Angelo, S. Diet and Aging: The Role of Polyphenol-Rich Diets in Slow Down the Shortening of Telomeres: A Review. Antioxidants 2023, 12, 2086. [Google Scholar] [CrossRef]
- Jose, S.S.; Bendickova, K.; Kepak, T.; Krenova, Z.; Fric, J. Chronic Inflammation in Immune Aging: Role of Pattern Recognition Receptor Crosstalk with the Telomere Complex? Front. Immunol. 2017, 8, 1078. [Google Scholar] [CrossRef]
- Gallicchio, L.; Gadalla, S.M.; Murphy, J.D.; Simonds, N.I. The Effect of Cancer Treatments on Telomere Length: A Systematic Review of the Literature. J. Natl. Cancer Inst. 2018, 110, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.J.; Byun, Y.H.; Park, C.K. Techniques for assessing telomere length: A methodological review. Comput. Struct. Biotechnol. J. 2024, 23, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Yan, Y.; Wang, H.; Xu, J. Association between genetically determined telomere length and health-related outcomes: A systematic review and meta-analysis of Mendelian randomization studies. Aging Cell 2023, 22, e13874. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Luchini, C.; Demurtas, J.; Soysal, P.; Stubbs, B.; Hamer, M.; Nottegar, A.; Lawlor, R.T.; Lopez-Sanchez, G.F.; Firth, J. Telomere length and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational studies. Ageing Res. Rev. 2019, 51, 1–10. [Google Scholar] [CrossRef]
- Savage, S.A. Telomere length and cancer risk: Finding Goldilocks. Biogerontology 2024, 25, 265–278. [Google Scholar] [CrossRef]
- Giaccherini, M.; Gentiluomo, M.; Fornili, M.; Lucenteforte, E.; Baglietto, L.; Campa, D. Association between telomere length and mitochondrial copy number and cancer risk in humans: A meta-analysis on more than 300,000 individuals. Crit. Rev. Oncol. Hematol. 2021, 167, 103510. [Google Scholar] [CrossRef]
- Benites-Zapata, V.A.; Ulloque-Badaracco, J.R.; Alarcón-Braga, E.A.; Fernández-Alonso, A.M.; López-Baena, M.T.; Pérez-López, F.R. Telomerase activity and telomere length in women with breast cancer or without malignancy: A systematic review and meta-analysis. Maturitas 2024, 180, 107882. [Google Scholar] [CrossRef]
- Naing, C.; Aung, K.; Lai, P.K.; Mak, J.W. Association between telomere length and the risk of colorectal cancer: A meta-analysis of observational studies. BMC Cancer 2017, 17, 24. [Google Scholar] [CrossRef]
- Hu, R.; Hua, X.G.; Jiang, Q.C. Associations of telomere length in risk and recurrence of prostate cancer: A meta-analysis. Andrologia 2019, 51, e13304. [Google Scholar] [CrossRef]
- Karimi, B.; Yunesian, M.; Nabizadeh, R.; Mehdipour, P.; Aghaie, A. Is Leukocyte Telomere Length Related with Lung Cancer Risk?: A Meta-Analysis. Iran. Biomed. J. 2017, 21, 142–153. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, Z.; Wei, S.; Liu, Z.; Pooley, A.; Dunning, A.M.; Svenson, U.; Roos, G.; Hosgood, H.D.; Shen, M.; et al. Shortened telomere length is associated with increased risk of cancer: A meta-analysis. PLoS ONE 2011, 6, e20466. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Han, W.; Xue, W.; Zou, Y.; Xie, C.; Du, J.; Jin, G. The association between telomere length and cancer risk in population studies. Sci. Rep. 2016, 6, 22243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Q.; Zhu, W.; Liu, T.; Xie, S.H.; Zhong, L.X.; Cai, Y.Y.; Li, X.N.; Liang, M.; Chen, W.; et al. The Association of Telomere Length in Peripheral Blood Cells with Cancer Risk: A Systematic Review and Meta-analysis of Prospective Studies. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 1381–1390. [Google Scholar] [CrossRef]
- Wan, B.; Lu, L.; Lv, C. Mendelian randomization study on the causal relationship between leukocyte telomere length and prostate cancer. PLoS ONE 2023, 18, e0286219. [Google Scholar] [CrossRef]
- Machiela, M.J.; Hofmann, J.N.; Carreras-Torres, R.; Brown, K.M.; Johansson, M.; Wang, Z.; Foll, M.; Li, P.; Rothman, N.; Savage, S.A.; et al. Genetic Variants Related to Longer Telomere Length are Associated with Increased Risk of Renal Cell Carcinoma. Eur. Urol. 2017, 72, 747–754. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Chiavarini, M.; Rosignoli, P.; Sorbara, B.; Giacchetta, I.; Fabiani, R. Benzene Exposure and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Human Studies. Int. J. Environ. Res. Public Health 2024, 21, 205. [Google Scholar] [CrossRef]
- Fabiani, R.; La Porta, G.; Li Cavoli, L.; Rosignoli, P.; Chiavarini, M. Adherence to Data-Driven Dietary Patterns and Lung Cancer Risk: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2023, 15, 4406. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Non Randomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2000; Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 30 May 2024).
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Mazumdar, M. Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Wong, J.Y.; Blechter, B.; Hubbard, A.K.; Machiela, M.J.; Shi, J.; Gadalla, S.M.; Hu, W.; Rahman, M.L.; Rothman, N.; Lan, Q. Phenotypic and genetically predicted leucocyte telomere length and lung cancer risk in the prospective UK Biobank. Thorax 2024, 79, 274–278. [Google Scholar] [CrossRef]
- Wong, J.Y.Y.; Shu, X.O.; Hu, W.; Blechter, B.; Shi, J.; Wang, K.; Cawthon, R.; Cai, Q.; Yang, G.; Rahman, M.L.; et al. Associations between Longer Leukocyte Telomere Length and Increased Lung Cancer Risk among Never Smokers in Urban China. Cancer Epidemiol. Biomarkers Prev. 2023, 32, 1734–1737. [Google Scholar] [CrossRef]
- Han, D.; Zhu, Y.; Choudhry, A.A.; Cheng, J.; Liang, H.; Lin, F.; Chang, Q.; Liu, H.; Pan, P.; Zhang, Y. Association of telomere length with risk of lung cancer: A large prospective cohort study from the UK Biobank. Lung Cancer 2023, 184, 107358. [Google Scholar] [CrossRef]
- Samavat, H.; Luu, H.N.; Beckman, K.B.; Jin, A.; Wang, R.; Koh, W.P.; Yuan, J.M. Leukocyte telomere length, cancer incidence and all-cause mortality among Chinese adults: Singapore Chinese Health Study. Int. J. Cancer 2021, 148, 352–362. [Google Scholar] [CrossRef]
- Yuan, J.M.; Beckman, K.B.; Wang, R.; Bull, C.; Adams-Haduch, J.; Huang, J.Y.; Jin, A.; Opresko, P.; Newman, A.B.; Zheng, Y.L.; et al. Leukocyte telomere length in relation to risk of lung adenocarcinoma incidence: Findings from the Singapore Chinese Health Study. Int. J. Cancer 2018, 142, 2234–2243. [Google Scholar] [CrossRef]
- Doherty, J.A.; Grieshober, L.; Houck, J.R.; Barnett, M.J.; De Dieu Tapsoba, J.; Thornquist, M.D.; Wang, C.Y.; Goodman, G.E.; Chen, C. Nested case-control study of telomere length and lung cancer risk among heavy smokers in the β-Carotene and Retinol Efficacy Trial. Br. J. Cancer 2018, 118, 1513–1517. [Google Scholar] [CrossRef]
- Seow, W.J.; Cawthon, R.M.; Purdue, M.P.; Hu, W.; Gao, Y.T.; Huang, W.Y.; Weinstein, S.J.; Ji, B.T.; Virtamo, J.; Hosgood, H.D.; et al. Telomere length in white blood cell DNA and lung cancer: A pooled analysis of three prospective cohorts. Cancer Res. 2014, 74, 4090–4098. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Cawthon, R.; Gao, Y.; Hu, W.; Hosgood, H.D.; Barone-Adesi, F.; Ji, B.T.; Bassig, B.; Chow, W.H.; Shu, X.; et al. Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. PLoS ONE 2013, 8, e59230. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Cawthon, R.; Rothman, N.; Weinstein, S.J.; Virtamo, J.; Hosgood, H.D.; Hu, W.; Lim, U.; Albanes, D.; Lan, Q. A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer. Lung Cancer 2011, 73, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Doherty, J.A.; Burgess, S.; Hung, R.J.; Lindström, S.; Kraft, P.; Gong, J.; Amos, C.I.; Sellers, T.A.; Monteiro, A.N.; et al. Genetic determinants of telomere length and risk of common cancers: A Mendelian randomization study. Hum. Mol. Genet. 2015, 24, 5356–5366. [Google Scholar] [CrossRef]
- Kachuri, L.; Saarela, O.; Bojesen, S.E.; Davey Smith, G.; Liu, G.; Landi, M.T.; Caporaso, N.E.; Christiani, D.C.; Johansson, M.; Panico, S.; et al. Mendelian Randomization and mediation analysis of leukocyte telomere length and risk of lung and head and neck cancers. Int. J. Epidemiol. 2019, 48, 751–766. [Google Scholar] [CrossRef]
- Teng, Y.; Huang, D.Q.; Li, R.X.; Yi, C.; Zhan, Y.Q. Association between telomere length and risk of lung cancer in an asian population: A Mendelian randomization study. World J. Oncol. 2023, 14, 277–284. [Google Scholar] [CrossRef]
- Cao, X.; Huang, M.; Zhu, M.; Fang, R.; Ma, Z.; Jiang, T.; Dai, J.; Ma, H.; Jin, G.; Shen, H.; et al. Mendelian randomization study of telomere length and lung cancer risk in East Asian population. Cancer Med. 2019, 17, 7469–7476. [Google Scholar] [CrossRef]
- Astuti, Y.; Wardhana, A.; Watkins, J.; Wulaningsih, W.; PILAR Research Network. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ. Res. 2017, 158, 480–489. [Google Scholar] [CrossRef]
- Raschenberger, J.; Lamina, C.; Haun, M.; Kollerits, B.; Coassin, S.; Boes, E.; Kedenko, L.; Köttgen, A.; Kronenberg, F. Influence of DNA extraction methods on relative telomere length measurements and its impact on epidemiological studies. Sci. Rep. 2016, 6, 25398. [Google Scholar] [CrossRef]
- Lin, J.; Smith, D.L.; Esteves, K.; Drury, S. Telomere length measurement by qPCR—Summary of critical factors and recommendations for assay design. Psychoneuroendocrinology 2019, 99, 271–278. [Google Scholar] [CrossRef]
- Shay, J.W. Role of Telomeres and Telomerase in Aging and Cancer. Cancer Discov. 2016, 6, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Aviv, A.; Anderson, J.J.; Shay, J.W. Mutations, Cancer and the Telomere Length Paradox. Trends Cancer 2017, 3, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Lansdorp, P.M. Telomeres, aging, and cancer: The big picture. Blood 2022, 139, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, eaaz6876. [Google Scholar] [CrossRef]
- Shiraishi, K.; Takahashi, A.; Momozawa, Y.; Daigo, Y.; Kaneko, S.; Kawaguchi, T.; Kunitoh, H.; Matsumoto, S.; Horinouchi, H.; Goto, A.; et al. Identification of telomere maintenance gene variations related to lung adenocarcinoma risk by genome-wide association and whole genome sequencing analyses. Cancer Commun. 2024, 44, 287–293. [Google Scholar] [CrossRef]
- Córdoba-Lanús, E.; Montuenga, L.M.; Domínguez-de-Barros, A.; Oliva, A.; Mayato, D.; Remírez-Sanz, A.; Gonzalvo, F.; Celli, B.; Zulueta, J.J.; Casanova, C. Oxidative damage and telomere length as markers of lung cancer development among chronic obstructive pulmonary disease (COPD) smokers. Antioxidants 2024, 13, 156. [Google Scholar] [CrossRef]
- Bhat, G.R.; Jamwal, R.S.; Sethi, I.; Bhat, A.; Shah, R.; Verma, S.; Sharma, M.; Sadida, H.Q.; Al-Marzooqi, S.K.; Masoodi, T.; et al. Associations between telomere attrition, genetic variants in telomere maintenance genes, and non-small cell lung cancer risk in the Jammu and Kashmir population of North India. BMC Cancer 2023, 23, 874. [Google Scholar] [CrossRef]
- Belić, M.; Sopić, M.; Roksandić-Milenković, M.; Ćeriman, V.; Guzonijić, A.; Vukašinović, A.; Ostanek, B.; Dimić, N.; Jovanović, D.; Kotur-Stevuljević, J. Correlation of short leukocyte telomeres and oxidative stress with the presence and severity of lung cancer explored by principal component analysis. Folia Biol. 2023, 69, 59–68. [Google Scholar] [CrossRef]
- Cortez, C.P.R.; Smith-Byrne, K.; Atkins, J.R.; Haycock, P.C.; Kar, S.; Codd, V.; Samani, N.J.; Nelson, C.; Milojevic, M.; Gabriel, A.A.G.; et al. Common genetic variations in telomere length genes and lung cancer: A Mendelian randomisation study and its novel application in lung tumour transcriptome. eLife 2023, 12, e83118. [Google Scholar] [CrossRef]
- Chang, X.; Gurung, R.L.; Wang, L.; Jin, A.; Li, Z.; Wang, R.; Beckman, K.B.; Adams-Haduch, J.; Meah, W.Y.; Sim, K.S.; et al. Low frequency variants associated with leukocyte telomere length in the Singapore Chinese population. Commun. Biol. 2021, 4, 519. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, X.; Huang, X.; Zhu, Z.; Chen, M.; Chu, J.; Yang, G.; Wang, Q.; Kong, X. Shortened telomere length in peripheral blood leukocytes of patients with lung cancer, chronic obstructive pulmonary disease in a high indoor air pollution region in China. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2020, 858–860, 503250. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wei, Y.; Zhou, X.; Huang, S.; Zhao, H.; Zeng, P. Assessing the relationship between leukocyte telomere length and cancer risk/mortality in UK Biobank and TCGA datasets with the genetic risk score and Mendelian randomization approaches. Front. Genet. 2020, 11, 583106. [Google Scholar] [CrossRef] [PubMed]
- Autsavapromporn, N.; Klunklin, P.; Threeratana, C.; Tuntiwechapikul, W.; Hosoda, M.; Tokonami, S. Short telomere length as a biomarker risk of lung cancer development induced by high radon levels: A pilot study. Int. J. Environ. Res. Public Health 2018, 15, 2152. [Google Scholar] [CrossRef]
- Doherty, J.A.; Grieshober, L.; Houck, J.R.; Barnett, M.J.; Tapsoba, J.D.; Thornquist, M.; Wang, C.Y.; Goodman, G.E.; Chen, C. Telomere length and lung cancer mortality among heavy smokers. Cancer Epidemiol. Biomarkers Prev. 2018, 27, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Haycock, P.C.; Burgess, S.; Nounu, A.; Zheng, J.; Okoli, G.N.; Bowden, J.; Wade, K.H.; Timpson, N.J.; Evans, D.M.; Willeit, P.; et al. Association between telomere length and risk of cancer and non-neoplastic diseases: A Mendelian randomization study. JAMA Oncol. 2017, 3, 636–651. [Google Scholar] [CrossRef] [PubMed]
- Rode, L.; Nordestgaard, B.G.; Bojesen, S.E. Long telomeres and cancer risk among 95 568 individuals from the general population. Int. J. Epidemiol. 2016, 45, 1634–1643. [Google Scholar] [CrossRef]
- Fernández-Marcelo, T.; Gómez, A.; Pascua, I.; de Juan, C.; Head, J.; Hernando, F.; Jarabo, J.R.; Calatayud, J.; Torres-García, A.J.; Iniesta, P. Telomere length and telomerase activity in non-small cell lung cancer prognosis: Clinical usefulness of a specific telomere status. J. Exp. Clin. Cancer Res. 2015, 34, 78. [Google Scholar] [CrossRef]
- Machiela, M.J.; Hsiung, C.A.; Shu, X.O.; Seow, W.J.; Wang, Z.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wu, C.; Hosgood, H.D.; et al. Genetic variants associated with longer telomere length are associated with increased lung cancer risk among never-smoking women in Asia: A report from the female lung cancer consortium in Asia. Int. J. Cancer 2015, 137, 311–319. [Google Scholar] [CrossRef]
- Sun, B.; Wang, Y.; Kota, K.; Shi, Y.; Motlak, S.; Makambi, K.; Loffredo, C.A.; Shields, P.G.; Yang, Q.; Harris, C.C.; et al. Telomere length variation: A potential new telomere biomarker for lung cancer risk. Lung Cancer 2015, 88, 297–303. [Google Scholar] [CrossRef]
- Sanchez-Espiridion, B.; Chen, M.; Chang, J.Y.; Lu, C.; Chang, D.W.; Roth, J.A.; Wu, X.; Gu, J. Telomere length in peripheral blood leukocytes and lung cancer risk: A large case-control study in Caucasians. Cancer Res. 2014, 74, 2476–2486. [Google Scholar] [CrossRef]
- Weischer, M.; Nordestgaard, B.G.; Cawthon, R.M.; Freiberg, J.J.; Tybjærg-Hansen, A.; Bojesen, S.E. Short telomere length, cancer survival, and cancer risk in 47102 individuals. J. Natl. Cancer Inst. 2013, 105, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Willeit, P.; Willeit, J.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Brandstätter, A.; Kronenberg, F.; Kiechl, S. Telomere length and risk of incident cancer and cancer mortality. JAMA 2010, 304, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, H.D.; Cawthon, R.; He, X.; Chanock, S.; Lan, Q. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility. Lung Cancer 2009, 66, 157–161. [Google Scholar] [CrossRef]
- Jang, J.S.; Choi, Y.Y.; Lee, W.K.; Choi, J.E.; Cha, S.I.; Kim, Y.J.; Kim, C.H.; Kam, S.; Jung, T.H.; Park, J.Y. Telomere length and the risk of lung cancer. Cancer Sci. 2008, 99, 1385–1389. [Google Scholar] [CrossRef]
- Wu, X.; Amos, C.I.; Zhu, Y.; Zhao, H.; Grossman, B.H.; Shay, J.W.; Luo, S.; Hong, W.K.; Spitz, M.R. Telomere dysfunction: A potential cancer predisposition factor. J. Natl. Cancer Inst. 2003, 95, 1211–1218. [Google Scholar] [CrossRef]
First Author Year Location Reference | Study Design and Name Population Cases/Controls Incident Cases Follow-Up Age | DNA Source and Extraction Method | TL 1 Measurement Method and Units to Express TL | Histologic Type of Lung Cancer | Telomere Length Parametrization (Units) | OR/RR/HR (95% CI) According to Gender and (Smoking) | Matched or Adjusted Variables | NOS |
---|---|---|---|---|---|---|---|---|
Wong et al. 2024 UK [36] | Cohort UK Biobank 371,890 subjects Incident cases: 2829 Follow-up: 12.36 ± 1.64 years Age: 40–69 years | Peripheral blood Cartridge-based magnetic bead | Multiplex qPCR T/S ratio 2 | All types Adenocarcinoma Squamous cell carcinoma | Quartile 1 (T/S < 0.74) Quartile 4 (T/S ≥ 0.91) Quartile 4 Quartile 4 Quartile 4 Quartile 4 Quartile 4 Quartile 4 Quartile 4 Quartile 4 Quartile 4 Quartile 1 Quartile 4 Quartile 1 Quartile 4 | MEN + WOMEN (All) 1.00 (Ref.) 1.27 (1.15–1.42) MEN + WOMEN (Never-smokers) 1.72 (1.31–2.26) MEN + WOMEN (Former smokers) 1.33 (1.13–1.56) MEN + WOMEN (Current smokers) 1.09 (0.92–1.30) MEN (Never-smokers) 2.03 (1.27–3.26) MEN (Former smokers) 1.19 (0.96–1.48) MEN (Current smokers) 1.19 (0.94–1.51) WOMEN (Never-smokers) 1.55 (1.11–2.17) WOMEN (Former smokers) 1.57 (1.23–2.02) WOMEN (Current smokers) 0.92 (0.71–1.20) MEN + WOMEN (All) 1.00 (Ref.) 1.78 (1.50–2.12) MEN + WOMEN (All) 1.00 (Ref.) 0.88 (0.67–1.17) | Age, sex, race/ethnicity, smoking, assessment center, body mass index, Townsend deprivation index, alcohol, secondhand smoke, leucocyte differentials | 7 |
Wong et al. 2023 China [37] | Nested case-control on -Shanghai Women’s Health Study (SWHS) Cases: 798 Age: 56.8 ± 8.9 years Controls: 792 Age: 56.9 ± 8.9 years -Shanghai Men’s Health Study (SMHS) cohort Cases: 161 Age: 62.3 ± 8.4 years Controls: 162 Age: 62.7 ± 8.5 years | Whole blood Phenol–chloroform | Multiplex qPCR T/S ratio | All types Adenocarcinoma | Quartile 1 (T/S < 0.487) Quartile 4 (T/S > 0.724) Quartile 1 (T/S < 0.487) Quartile 4 (T/S > 0.724) Quartile 1 Quartile 4 Quartile 1 Quartile 4 | WOMEN (Never-smokers) 1.00 (Ref.) 2.10 (1.52–2.90) MEN (Never-smokers) 1.00 (Ref.) 1.85 (0.99–3.44) WOMEN (Never-smokers) 1.00 (Ref.) 2.00 (1.34–3.00) MEN (Never-smokers) 1.00 (Ref.) 1.54 (0.78–3.03) | Age, BMI, education, alcohol, secondhand smoke | 7 |
Han et al. 2023 UK [38] | Cohort UK Biobank 425,146 subjects 226,072 Women 199,074 Men Incident cases: 1909 Follow-up: median 13 years Age: 37–73 years | Peripheral blood Cartridge-based magnetic bead | Multiplex qPCR T/S ratio | All types Adenocarcinoma Squamous cell carcinoma Others | Quintile 1 (Short TL) Quintile 5 (Long TL) Quintile 5 Quintile 5 Quintile 5 Quintile 5 Quintile 1 Quintile 5 Quintile 5 Quintile 5 Quintile 5 Quintile 5 Quintile 1 Quintile 5 Quintile 5 Quintile 5 Quintile 5 Quintile 5 Quintile 1 Quintile 5 | MEN + WOMEN (All) 1.00 (Ref.) 1.25 (1.09–1.45) WOMEN (All) 1.40 (1.13–1.72) MEN (All) 1.14 (0.93–1.40) MEN + WOMEN (Never-smokers) 2.14 (1.46–3.15) MEN + WOMEN (Previous smokers) 1.15 (0.98–1.34) MEN + WOMEN (All) 1.00 (Ref.) 1.69 (1.35–2.11) WOMEN (All) 1.61 (1.19–2.18) MEN (All) 1.79 (1.29–2.50) MEN + WOMEN (Never-smokers) 2.31 (1.38–3.86) MEN + WOMEN (Previous smokers) 1.55 (1.20–1.99) MEN + WOMEN (All) 1.00 (Ref.) 0.75 (0.52–1.08) WOMEN (All) 0.84 (0.48–1.49) MEN (All) 0.69 (0.43–1.10) MEN + WOMEN (Never-smokers) 3.83 (0.73–19.99) MEN + WOMEN (Previous smokers) 0.69 (0.47–1.00) MEN + WOMEN (All) 1.00 (Ref.) 1.16 (0.92–1.45) | Age, sex, smoking, ethnicity, BMI, alcohol status, white blood cell count, educational level, household income, Townsend deprivation index | 7 |
Samavat et al. 2020 China [39] | Cohort Singapore Chinese Health Study (SCHS) 28,125 subjects Incident cases: 309 Age: 62.9 ± 7.7 years Follow-up: 13.25 years | Whole blood QIAamp 3 | Multiplex qPCR T/S ratio | Adenocarcinoma | Quintile 1 (T/S 0.7–0.8) Quintile 5 (T/S 1.24–1.42) | MEN + WOMEN (All) 1.00 (Ref.) 2.87 (1.99–4.13) | Age, sex, dialect group, BMI, level of education, smoking status, number of cigarettes per day, number of years of smoking, alcohol consumption, weekly vigorous work or strenuous sports, number of hours of sleep per night, diabetes mellitus, hypertension | 8 |
Yuan et al. 2018 China [40] | Cohort Singapore Chinese Health Study (SCHS) 26,540 subjects Incident cases: 654 Age: 45–74 years Follow-up: 11,8 years | Peripheral blood QIAamp | Multiplex qPCR T/S ratio | Adenocarcinoma Squamous cell carcinoma Others | Quintile 1 (T/S 0.19–0.83) Quintile 5 (T/S 1.19–3.24) Quintile 5 Quintile 5 Quintile 5 Quintile 5 Quintile 1 Quintile 5 Quintile 1 Quintile 5 | MEN + WOMEN (All) 1.00 (Ref.) 2.84 (1.94, 4.15) MEN + WOMEN (Never-smokers) 3.14 (1.80, 5.49) MEN + WOMEN (Ever smokers) 2.46 (1.45, 4.18) MEN (All) 2.33 (1.46, 3.74) WOMEN (All) 4.26 (2.11, 8.61) MEN + WOMEN (All) 1.00 (Ref.) 1.13 (0.60, 2.13) MEN + WOMEN (All) 1.00 (Ref.) 1.05 (0.69, 1.58) | Age, sex, dialect group, education, body mass index, number of cigarettes per day, number of years of smoking, number of years since quitting smoking (for former smokers only), and alcohol consumption | 9 |
Doherty et al. 2018 USA [41] | Nested case-control on β-Carotene and Retinol Efficacy Trial (CARET) cohort Cases: 709 Age: 59.3 ± 5.5 years Controls: 1313 Age: 60.3 ± 5.4 years | Blood QIAamp | Singleplex qPCR T/S ratio | All types Adenocarcinoma Squamous cell carcinoma Small cell carcinomas | Tertile 1 (shortest TL) Tertile 3 (longest TL) Tertile 3 Tertile 3 Tertile 3 Tertile 3 Tertile 1 Tertile 3 Tertile 3 Tertile 3 Tertile 3 Tertile 3 Tertile 1 Tertile 3 Tertile 3 Tertile 3 Tertile 3 Tertile 3 Tertile 1 Tertile 3 Tertile 3 Tertile 3 Tertile 3 Tertile 3 | MEN + WOMEN (All) 1.00 (Ref.) 1.21 (0.95–1.55) MEN + WOMEN (Former smokers) 1.82 (1.20–2.77) MEN + WOMEN (Current smokers) 0.96 (0.71–1.31) WOMEN (All) 1.52 (1.01–2.29) MEN (All) 1.07 (0.79–1.46) MEN + WOMEN (All) 1.00 (Ref.) 1.45 (0.88–2.37) MEN + WOMEN (Former smokers) 2.26 (1.03–4.96) MEN + WOMEN (Current smokers) 1.10 (0.58–2.12) WOMEN (All) 2.21 (0.99–4.93) MEN (All) 1.07 (0.56–2.02) MEN + WOMEN (All) 1.00 (Ref.) 0.96 (0.54–1.70) MEN + WOMEN (Former smokers) 1.82 (0.50–6.58) MEN + WOMEN (Current smokers) 0.86 (0.44–1.69) WOMEN (All) 1.51 (0.53–4.29) MEN (All) 0.81 (0.40–1.65) MEN + WOMEN (All) 1.00 (Ref.) 0.92 (0.51–1.66) MEN + WOMEN (Former smokers) 0.92 (0.34–2.52) MEN + WOMEN (Current smokers) 0.86 (0.41–1.83) WOMEN (All) 0.83 (0.33–2.11) MEN (All) 0.91 (0.41–2.01) | Age, smoking status, sex, race/ethnicity, enrollment year, asbestos exposure, and follow-up time | 7 |
Seow et al. 2014 USA [42] | Nested case-control on Prostate, Lung, Colon, and Ovarian (PLCO) cohort Cases: 403 Age: 64.07 ± 4.97 years Controls: 403 Age: 63.64 ± 4.74 years Only data from PLCO were included to avoid repeated reports | Whole blood PLCO: magnetic bead-based extraction | Multiplex qPCR T/S ratio | All types Adenocarcinoma Squamous cell carcinoma | Quartile 1 (T/S <0.99) Quartile 4 (T/S >1.30) Quartile 4 Quartile 4 | MEN + WOMEN (All) 1.00 (Ref.) 1.83 (1.05–3.19) MEN + WOMEN (All) 2.82 (1.16–6.85) MEN + WOMEN (All) 1.57 (0.44–5.56) | Age, pack-years of smoking | 6 |
Lan et al. 2013 China [43] | Nested case-control on Shanghai Women’s Health Study cohort (SWHS). Cases: 215 Controls: 215 Age: 40–70 years | Buffy coats Phenol–chloroform | Multiplex qPCR T/S ratio | All types Adenocarcinoma 4 | Tertile 1 (T/S <1.37) Tertile 3 (T/S ≥1.60) Quartile 1 (T/S <1.30) Quartile 4 (T/S >1.64) | WOMEN (All) 1.00 (Ref.) 2.20 (1.20–4.00) WOMEN (All) 1.00 (Ref.) 2.65 (0.92–7.60) | Age, ever smoking | 7 |
Shen et al. 2011 Finland [44] | Nested case-control on Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Cases: 229 Age: 59 ± 5 years Controls 229 Age: 58 ± 5 years | Whole blood Phenol–chloroform | Multiplex qPCR T/S ratio TL cases: 1.14 ± 0.23 TL controls: 1.10 ± 0.22 | All types Adenocarcinoma 4 Squamous cell carcinoma 4 | Quartile 1 (T/S ≤0.94) Quartile 4 (T/S >1.25) Quartile 4 Quartile 4 | MEN (Smokers) 1.00 (Ref.) 1.50 (0.84–2.68) MEN (Smokers) 1.36 (0.23–7.99) MEN (Smokers) 0.66 (0.21–2.07) | Age, number of cigarettes per day, and number of years smoked | 7 |
No. of Studies | References | No. of Estimates | Combined Risk Estimate | Test of Heterogeneity | Publication Bias | |||||
---|---|---|---|---|---|---|---|---|---|---|
Value (95% CI) | p | Q | I2% | p | Egger p | Begg p | ||||
All types of lung cancer | ||||||||||
All | 7 | [36,37,38,41,42,43,44] | 10 | 1.42 (1.24–1.63) | <0.0001 | 18.36 | 50.98 | 0.031 | 0.072 | 0.089 |
Men | 4 | [37,38,41,44] | 4 | 1.19 (1.00–1.40) | 0.046 | 3.16 | 5.05 | 0.368 | 0.157 | 0.174 |
Women | 4 | [37,38,41,43] | 4 | 1.68 (1.33–2.13) | <0.0001 | 5.41 | 44.53 | 0.144 | 0.332 | 0.497 |
Current smokers | 3 | [36,41,42] | 4 | 1.08 (0.90–1.30) | 0.404 | 4.69 | 35.99 | 0.196 | 0.570 | 0.497 |
Never-smokers | 4 | [36,37,38,42] | 6 | 1.92 (1.62–2.28) | <0.0001 | 2.33 | 0.00 | 0.801 | 0.682 | 0.573 |
Former smokers | 3 | [36,38,41] | 4 | 1.34 (1.11–1.62) | 0.003 | 7.54 | 60.23 | 0.056 | 0.121 | 0.174 |
DNA extraction method | ||||||||||
QUIamp | 3 | [39,40,41] | 2 | 1.24 (0.88–1.74) | 0.213 | 1.81 | 44.69 | 0.179 | - | - |
Magnetic beads | 3 | [36,38,42] | 4 | 1.28 (1.16–1.42) | <0.0001 | 3.54 | 15.26 | 0.316 | 0.471 | 0.174 |
Phenol–chloroform | 3 | [37,43,44] | 4 | 1.96 (1.55–2.49) | <0.0001 | 1.17 | 0.00 | 0.761 | 0.491 | 0.497 |
Adenocarcinoma | ||||||||||
All | 9 | [36,37,38,39,40,41,42,43,44] | 13 | 1.98 (1.69–2.31) | <0.0001 | 17.42 | 31.13 | 0.134 | 0.361 | 0.272 |
Men | 5 | [37,38,40,41,44] | 5 | 1.75 (1.38–2.20) | <0.0001 | 3.91 | 0.0 | 0.418 | 0.485 | 0.624 |
Women | 5 | [37,38,40,41,43] | 5 | 2.14 (1.55–2.96) | <0.0001 | 6.71 | 40.43 | 0.152 | 0.146 | 0.142 |
Current smokers | 3 | [40,41,42] | 3 | 1.78 (1.05–3.01) | 0.033 | 3.61 | 44.63 | 0.164 | 0.833 | 0.602 |
Never-smokers | 4 | [37,38,40,42] | 5 | 2.21 (1.72–2.38) | <0.0001 | 2.90 | 0.0 | 0.574 | 0.930 | 1.000 |
Former smokers | 2 | [38,41] | 2 | 1.61 (1.26–2.04) | 0.0001 | 0.80 | 0.0 | 0.371 | - | - |
DNA extraction method | ||||||||||
QUIamp | 3 | [39,40,41] | 5 | 2.35 (1.59–3.47) | <0.0001 | 9.61 | 58.38 | 0.047 | 0.680 | 0.624 |
Magnetic beads | 3 | [36,38,42] | 4 | 1.77 (1.54–2.02) | <0.0001 | 1.44 | 0.00 | 0.696 | 0.425 | 0.497 |
Phenol–chloroform | 3 | [37,43,44] | 4 | 1.91 (1.38–2.64) | <0.0001 | 0.95 | 0.00 | 0.814 | 0.816 | 1.000 |
Squamous cell carcinoma | ||||||||||
All | 6 | [36,38,40,41,42,44] | 8 | 0.87 (0.72–1.06) | 0.171 | 3.77 | 0.0 | 0.806 | 0.375 | 0.458 |
Men | 3 | [38,41,44] | 3 | 0.72 (0.50–1.04) | 0.079 | 0.16 | 0.0 | 0.923 | 0.920 | 0.602 |
Women | 2 | [38,41] | 2 | 0.96 (0.58–1.58) | 0.871 | 0.93 | 0.0 | 0.334 | - | - |
Current smokers | 2 | [41,42] | 2 | 0.82 (0.48–1.38) | 0.450 | 0.06 | 0.0 | 0.805 | - | - |
Never-smokers | 1 | [38] | 1 | 3.83 (0.73–19.99) | - | - | - | - | - | - |
Former smokers | 2 | [38,41] | 2 | 0.91 (0.39–2.17) | 0.838 | 2.00 | 50.11 | 0.157 | - | - |
DNA extraction method | ||||||||||
QUIamp | 3 | [39,40,41] | 3 | 1.05 (0.68–1.61) | 0.825 | 1.03 | 0.00 | 0.597 | 0.622 | 0.602 |
Magnetic beads | 3 | [36,38,42] | 4 | 0.84 (0.68–1.05) | 0.126 | 1.71 | 0.00 | 0.634 | 0.651 | 0.497 |
Phenol–chloroform | 3 | [37,43,44] | 1 | 0.66 (0.21–2.07) | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabiani, R.; Chiavarini, M.; Rosignoli, P.; Giacchetta, I. Leucocyte Telomere Length and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies. Cancers 2024, 16, 3218. https://doi.org/10.3390/cancers16183218
Fabiani R, Chiavarini M, Rosignoli P, Giacchetta I. Leucocyte Telomere Length and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies. Cancers. 2024; 16(18):3218. https://doi.org/10.3390/cancers16183218
Chicago/Turabian StyleFabiani, Roberto, Manuela Chiavarini, Patrizia Rosignoli, and Irene Giacchetta. 2024. "Leucocyte Telomere Length and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies" Cancers 16, no. 18: 3218. https://doi.org/10.3390/cancers16183218
APA StyleFabiani, R., Chiavarini, M., Rosignoli, P., & Giacchetta, I. (2024). Leucocyte Telomere Length and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies. Cancers, 16(18), 3218. https://doi.org/10.3390/cancers16183218