FBXO11 Mediates Ubiquitination of ZEB1 and Modulates Epithelial-to-Mesenchymal Transition in Lung Cancer Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Transfection
2.2. Plasmids and Mutagenesis
2.3. Western Blotting and Immunoprecipitation
2.4. His-Tagged Protein Interaction Pull-Down Assay
2.5. Immunofluorescence
2.6. Lentiviral shRNA Depletion and qRT-PCR
2.7. In Vitro Ubiquitination Assay
2.8. Protein Degradation Assays
2.9. ZEB1 Half-Life Assay
2.10. Transwell Invasion Assay
2.11. Wound-Healing Migration Assay
2.12. Mouse Subcutaneous Tumor Formation Assay
2.13. Molecular Docking
2.14. Kaplan–Meier Plot
2.15. Statistical Analysis
3. Results
3.1. ZEB1 as the Major Transcription Factor Induces EMT in Lung Cancer Cells
3.2. FBXO11 Associates with ZEB1
3.3. FBXO11 Stabilizes ZEB1 though Ubiquitination Acticity
3.4. FBXO11 Regulates the Expression of EMT-Related Factors
3.5. The FBXO11–ZEB1 Axis Regulates the EMT Pathway in LUAD
3.6. FBXO11 Inhibits LUAD Progression by Stabilizing ZEB1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.D.; Wu, Y.X.; Shao, J.; Zhang, L.; Li, H.; Wang, Q.; Liu, X.; Huang, Z.; Zhou, Y.; Xie, Y.; et al. Clinicopathological variables influencing overall survival, recurrence and post-recurrence survival in resected stage I non-small-cell lung cancer. BMC Cancer 2020, 20, 150. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A.; Stiehler, M.F.; Ou, Y.; Ma, J.; Islami, F.; Xu, J.; Cheng, C.; et al. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Cordero, R.; Devine, W.P. Targeted Therapy and Checkpoint Immunotherapy in Lung Cancer. Surg. Pathol. Clin. 2020, 13, 17–33. [Google Scholar] [CrossRef]
- Rami-Porta, R.; Bolejack, V.; Giroux, D.J.; Chansky, K.; Crowley, J.; Asamura, H.; Detterbeck, F.C.; Rusch, V.W.; Tsuboi, M.; Goldstraw, P.; et al. The IASLC lung cancer staging project: The new database to inform the eighth edition of the TNM classification of lung cancer. J. Thorac. Oncol. 2014, 9, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Chansky, K.; Detterbeck, F.C.; Nicholson, A.G.; Rusch, V.W.; Vallieres, E.; Groome, P.; Kennedy, C.; Krasnik, M.; Peake, M.; Shemanski, L.; et al. The IASLC Lung Cancer Staging Project: External Validation of the Revision of the TNM Stage Groupings in the Eighth Edition of the TNM Classification of Lung Cancer. J. Thorac. Oncol. 2017, 12, 1109–1121. [Google Scholar] [CrossRef] [PubMed]
- Wahbah, M.; Boroumand, N.; Castro, C.; El-Zeky, F.; Dean, S.; de la Cruz, M.; Goel, A.; Chung, J.; Pusztai, L.; Albo, D.; et al. Changing trends in the distribution of the histologic types of lung cancer: A review of 4439 cases. Ann. Diagn. Pathol. 2007, 11, 89–96. [Google Scholar] [CrossRef]
- Van’t Veer, L.J. Road map to metastasis. Nat. Med. 2003, 9, 999–1000. [Google Scholar] [CrossRef]
- Kalluri, R.; Neilson, E.G.; Zeisberg, M.; Kanagawa, M.; von Levetzow, C.; Li, Y.; Campbell, H.; Xiao, Y.; Schnaper, H.W.; Ash, S.R.; et al. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Investig. 2003, 112, 1776–1784. [Google Scholar] [CrossRef]
- Liskova, P.; Tuft, S.J.; Gwilliam, R.; Ebenezer, N.D.; Jirsova, K.; Prescott, Q.; Bhattacharya, S.S.; Delp, M.; Stankovska, M.; Hegedus, L.; et al. Novel Mutations in the ZEB1 Gene Identified in Czech and British Patients With Posterior Polymorphous Corneal Dystrophy. Hum. Mutat. 2007, 28, 638. [Google Scholar] [CrossRef]
- Wu, H.T.; Zhong, H.T.; Li, G.W.; Zhang, Y.; Liu, M.; Zhu, L.; Li, Z.; Wang, X.; Chen, P.; Zhuang, L.; et al. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. J. Transl. Med. 2020, 18, 51. [Google Scholar] [CrossRef]
- Eger, A.; Aigner, K.; Sonderegger, S.; Dampier, B.; Oehler, S.; Schreiber, M.; Mikula, M.; Schwarz, H.; Grillari, J.; Nagy, Z.; et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005, 24, 2375–2385. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Jike, Y.; Liu, K.; Gan, F.; Zhang, K.; Xie, M.; Zhang, J.; Chen, C.; Zou, X.; Jiang, X.; et al. Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1. Mol. Cancer 2023, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Xiao, G.Y.; Tan, X.; Zheng, V.J.; Shi, L.; Rabassedas, M.N.B.; Guo, H.F.; Liu, X.; Yu, J.; Diao, L.; et al. The EMT activator ZEB1 accelerates endosomal trafficking to establish a polarity axis in lung adenocarcinoma cells. Nat. Commun. 2021, 12, 6354. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, X.; Montoya-Durango, D.E.; Liu, Y.H.; Dean, K.C.; Darling, D.S.; Kaplan, H.J.; Dean, D.C.; Gao, L.; Liu, Y. ZEB1 Regulates Multiple Oncogenic Components Involved in Uveal Melanoma Progression. Sci. Rep. 2017, 7, 45. [Google Scholar] [CrossRef]
- Díaz, V.M.; García de Herreros, A. F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin. Cancer Biol. 2016, 36, 71–79. [Google Scholar] [CrossRef]
- Mao, J.H.; Kim, I.J.; Wu, D.; Climent, J.; Kang, H.C.; DelRosario, R.; Balmain, A.; Reilly, R.; Lu, Y.; Qiu, Z.; et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 2008, 321, 1499–1502. [Google Scholar] [CrossRef]
- Lander, R.; Nordin, K.; LaBonne, C. The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1. J. Cell Biol. 2011, 194, 17–25. [Google Scholar] [CrossRef]
- Vernon, A.E.; LaBonne, C. Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. Development 2006, 133, 3359–3370. [Google Scholar] [CrossRef]
- Vinas-Castells, R.; Frias, A.; Robles-Lanuza, E.; Zhang, K.; Longmore, G.D.; García de Herreros, A.; Batlle, E.; Postigo, A.; Nieto, M.A.; Cano, A.; et al. Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability. Nucleic Acids Res. 2014, 42, 1079–1094. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, C.; Zhao, X.; Chen, C.; Zhang, H.; Yuan, H.; Qian, Y.; Liu, J.; Wang, Z.; Li, M.; et al. Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors. Oncotarget 2015, 6, 979–994. [Google Scholar] [CrossRef]
- Chandra, D.S.; Nathubhai, K.N.; Kumar, A. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex. Proteins 2016, 84, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.S.; Cermak, L.; Vangala, D.; Rahman, S.; Nawaz, Z.; Jung, K.H.; Qiu, X.; Lou, H.J.; Cheng, M.; Perna, F.; et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 2012, 481, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Duan, S.; Jeong, Y.T.; Dai, Q.; Zhang, J.; Chung, S.Y.; Xing, L.; Lu, M.; Feng, Z.; Hu, H.; et al. Regulation of the CRL4Cdt2 ubiquitin ligase and cell cycle exit by the SCF Fbxo11 ubiquitin ligase. Mol. Cell 2013, 49, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Abbas, T.; Keaton, M.; Dutta, A.; Liu, S.; Wang, Z.; Wang, H.; Ranjan, A.; Wei, G.; Zhang, S.; Lin, C.; et al. Regulation of TGF-β signaling, exit from the cell cycle, and cellular migration through cullin cross-regulation SCF-FBXO11 turns off CRL4-Cdt2. Cell Cycle 2013, 12, 2175–2182. [Google Scholar] [CrossRef]
- Jin, Y.; Anitha, K.; Zhang, Q.; Swensen, J.; Long, D.T.; Reese, J.C.; Wang, L.; Hu, W.; Zhou, J.; Zhang, Y.; et al. FBXO11 promotes ubiquitination of the Snail family of transcription factors in cancer progression and epidermal development. Cancer Lett. 2015, 362, 70–82. [Google Scholar] [CrossRef]
- Zheng, H.Q.; Shen, M.H.; Zhao, C.; Li, S.; Cheng, J.Q.; Du, Y.; Li, X.; Wang, Y.; Wei, Y.; Li, H.; et al. PKD1 phosphorylation-dependent degradation of SNAIL by SCF FBXO11 regulates epithelial-mesenchymal transition and metastasis. Cancer Cell 2014, 26, 358–373. [Google Scholar] [CrossRef]
- Kasuga, Y.; Ouda, R.; Watanabe, M.; Goto, A.; Kikuchi, R.; Takahashi, N.; Ito, S.; Yamada, T.; Sugiyama, Y.; Saito, K.; et al. FBXO11 constitutes a major negative regulator of MHC class II through ubiquitin-dependent proteasomal degradation of CIITA. Proc. Natl. Acad. Sci. USA 2023, 120, e2218955120. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, P.; Yang, Z.S.; Liu, X.; Wang, W.; Chen, L.; Zhang, M.; Sun, Y.; Zhou, H.; Guo, X.; et al. Cullin-associated and neddylation-dissociated 1 regulate reprogramming of lipid metabolism through SKP1-Cullin-1-F-boxFBXO1-mediated heterogeneous nuclear ribonucleoprotein A2/B1 ubiquitination and promote hepatocellular carcinoma. Clin. Transl. Med. 2023, 13, e1443. [Google Scholar] [CrossRef]
- Ba, Z.C.; Zhou, Y.F.; Sun, M.; Zhang, S.; Zhao, Y.; Li, W.; Zhang, Q.; Zhou, X.; Liu, Y.; Wang, H.; et al. miR-324-5p upregulation potentiates resistance to cisplatin by targeting FBXO11 signalling in non-small cell lung cancer cells. J. Biochem. 2019, 166, 517–527. [Google Scholar] [CrossRef]
- Sonego, M.; Pellarin, I.; Costa, A.; Vinciguerra, G.L.R.; Coan, M.; Kraut, A.; D’Andrea, S.; Dall’Acqua, A.; Castillo-Tong, D.C.; Califano, D.; et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci. Adv. 2019, 5, eaav3235. [Google Scholar] [CrossRef]
- Xu, X.; Zhuang, X.; Yu, H.; Li, P.; Li, X.; Lin, H.; Teoh, J.P.; Chen, Y.; Yang, Y.; Chen, W.; et al. FSH induces EMT in ovarian cancer via ALKBH5-regulated Snail m6A demethylation. Theranostics 2023, 13, 1092–1104. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Tang, S.C.; Wang, P.H.; Lee, H.; Ko, J.L. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J. Biol. Chem. 2012, 287, 25292–25302. [Google Scholar] [CrossRef]
- Chen, H.; Ke, Q.; Costa, M.; Zhang, P.; Yan, Y.; Bai, W.; Zhang, Z.; Liu, L.; Huang, C.; Shi, X.; et al. Nickel ions increase the invasiveness of human lung cancer cells via TGF-β signaling pathway. Toxicol. Appl. Pharmacol. 2006, 210, 148–155. [Google Scholar]
- Zhang, Q.; Bhattacharya, S.; Andersen, M.E.; Conolly, R.B.; Clewell, H.J.; John, B.T.; Zang, Y.; Teng, C.; Wang, L.; Chen, H.; et al. Nickel-induced epithelial-mesenchymal transition via downregulation of E-cadherin in human bronchial epithelial cells. Toxicology 2013, 305, 146–153. [Google Scholar]
- Ito, M.; Hiramatsu, H.; Kobayashi, K.; Suzue, K.; Kawahata, M.; Hioki, K.; Ueyama, Y.; Sugawara, M.; Nakamura, T.; Tsujimura, K.; et al. NOD/SCID/γc null mouse: An excellent recipient mouse model for engraftment of human cells. Blood 2002, 100, 3175–3182. [Google Scholar] [CrossRef]
- Maiuthed, A.; Chantarawong, W.; Promjantuek, W.; Rattanaburi, P.; Wattanapan, P.; Worawichawong, S.; Suwankulanan, S.; Jitariu, A.A.; Berindan-Neagoe, I.; Crea, F.; et al. Lung Cancer Stem Cells and Cancer Stem Cell-targeting Natural Compounds. Anticancer Res. 2018, 38, 3797–3809. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.; Giovannucci, E.; Misghinna, M.; Lortet-Tieulent, J.; et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S.; Shaw, A.T.; Lim, J.K.; McGranahan, N.; Swanton, C.; Landau, D.A.; et al. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Toyokawa, G.; Yamada, Y.; Tagawa, T.; Takahashi, F.; Yamasaki, Y.; Hirai, F.; Taira, T.; Miyazawa, Y.; Kodama, Y.; Shoji, F.; et al. Significance of spread through air spaces in early-stage lung adenocarcinomas undergoing limited resection. Thorac. Cancer 2018, 9, 1255–1261. [Google Scholar] [CrossRef]
- Bakir, B.; Chiarella, A.M.; Pitarresi, J.R.; Rustgi, A.K. EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol. 2020, 30, 764–776. [Google Scholar] [CrossRef]
- Beerling, E.; Seinstra, D.; de Wit, E.; Kester, L.; van der Velden, D.; Maynard, C.; Schafer, R.; van Diest, P.; Voest, E.; van Oudenaarden, A.; et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 2016, 14, 2281–2288. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.O.; Gibbons, D.L.; Goswami, S.; Cortez, M.A.; Ahn, Y.H.; Byers, L.A.; Zhang, X.; Yi, X.; Dwyer, D.; Lin, W.; et al. Metastasis is regulated via microRNA-200/Z EB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 2014, 5, 5241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.J.; Wei, Y.K.; Wang, L.; Debeb, B.G.; Yuan, Y.; Zhang, J.; Zhou, X.; Li, H.; Xu, W.; Liu, Y.; et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK. Nat. Cell Biol. 2014, 16, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.H.; Kundu, S.T.; Fradette, J.J.; Diao, L.; Tong, P.; Byers, L.A.; Wang, J.; Zhang, H.; Liu, H.; Wu, Y.; et al. ZEB1 suppression sensitizes KRAS mutant cancers to MEK inhibition by an IL17RD-dependent mechanism. Sci. Transl. Med. 2019, 11, eaaq1238. [Google Scholar] [CrossRef]
- Zheng, N.; Schulman, B.A.; Song, L.; Miller, J.J.; Jeffrey, P.D.; Wang, P.; Chu, C.; Koepp, D.M.; Elledge, S.J.; Pagano, M.; et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 2002, 416, 703–709. [Google Scholar] [CrossRef]
- Cardozo, T.; Pagano, M. The SCF ubiquitin ligase: Insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 2004, 5, 739–751. [Google Scholar] [CrossRef]
- Skaar, J.R.; Pagan, J.K.; Pagano, M. SnapShot: F box proteins I. Cell 2009, 137, 1160–1160.e1. [Google Scholar] [CrossRef]
- Nelson, D.E.; Randle, S.J.; Laman, H. Beyond ubiquitination: The atypical functions of Fbxo7 and other F-box proteins. Open Biol. 2013, 3, 130131. [Google Scholar] [CrossRef]
Characteristic | FBXO11—High (n = 286) | FBXO11—Low (n = 286) | p Value * |
---|---|---|---|
Age (years), mean (SD) | 66 (60.73) | 66 (57.72) | 0.407 † |
Sex (n(%)) | 0.737 | ||
Women | 153 (53.5) | 157 (54.9) | |
Men | 133 (46.5) | 129 (45.1) | |
Radiation therapy | 0.385 | ||
No | 224 (78.4) | 195 (68.2) | |
YES | 33 (11.5) | 36 (12.6) | |
Missing | 29 (10.1) | 55 (19.2) | |
Smoking history | 0.718 | ||
≤2 | 100 (35) | 108 (37.8) | |
>2 | 177 (61.9) | 167 (58.4) | |
Missing | 9 (3.1) | 11 (3.8) | |
Tumor stage | 0.146 ‡ | ||
i | 169 (59.1) | 141 (49.4) | |
ii | 56 (19.6) | 77 (26.9) | |
iii | 47 (16.4) | 46 (16.1) | |
iv | 12 (4.2) | 15 (5.2) | |
Missing | 2 (0.7) | 7 (2.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Han, Z.; Liu, R.; Li, Z.; Mei, L.; Jin, Y. FBXO11 Mediates Ubiquitination of ZEB1 and Modulates Epithelial-to-Mesenchymal Transition in Lung Cancer Cells. Cancers 2024, 16, 3269. https://doi.org/10.3390/cancers16193269
Zhao X, Han Z, Liu R, Li Z, Mei L, Jin Y. FBXO11 Mediates Ubiquitination of ZEB1 and Modulates Epithelial-to-Mesenchymal Transition in Lung Cancer Cells. Cancers. 2024; 16(19):3269. https://doi.org/10.3390/cancers16193269
Chicago/Turabian StyleZhao, Xinyue, Zhihui Han, Ruiying Liu, Zehao Li, Ling Mei, and Yue Jin. 2024. "FBXO11 Mediates Ubiquitination of ZEB1 and Modulates Epithelial-to-Mesenchymal Transition in Lung Cancer Cells" Cancers 16, no. 19: 3269. https://doi.org/10.3390/cancers16193269
APA StyleZhao, X., Han, Z., Liu, R., Li, Z., Mei, L., & Jin, Y. (2024). FBXO11 Mediates Ubiquitination of ZEB1 and Modulates Epithelial-to-Mesenchymal Transition in Lung Cancer Cells. Cancers, 16(19), 3269. https://doi.org/10.3390/cancers16193269