Barriers to T Cell Functionality in the Glioblastoma Microenvironment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Glioblastoma Treatment and Its Impact on T Cell Function
2.1. Corticosteroids
2.2. Surgery
2.3. Chemotherapy
2.4. Radiation
3. Barriers to T Cell Trafficking
3.1. Tumor Epigenetics
3.2. T Cell Sequestration
3.3. Blood–Brain Barrier
4. The Immunosuppressive Tumor Microenvironment
4.1. MDSCs
4.2. M1/M2 Macrophages
4.3. Tregs
4.4. Hypoxia
5. Immune Checkpoints
5.1. PD1/PDL1
5.2. CTLA4
5.3. Other Immune Checkpoint Inhibitor Targets
6. Discussion
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koshy, M.; Villano, J.L.; Dolecek, T.A.; Howard, A.; Mahmood, U.; Chmura, S.J.; Weichselbaum, R.R.; McCarthy, B.J. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J. Neuro-Oncol. 2012, 107, 207–212. [Google Scholar] [CrossRef]
- Ratnam, N.M.; Sonnemann, H.M.; Frederico, S.C.; Chen, H.; Hutchinson, M.N.D.; Dowdy, T.; Reid, C.M.; Jung, J.; Zhang, W.; Song, H.; et al. Reversing Epigenetic Gene Silencing to Overcome Immune Evasion in CNS Malignancies. Front. Oncol. 2021, 11, 719091. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brandes, A.A.; Omuro, A.; Mulholland, P.; Lim, M.; Wick, A.; Baehring, J.; Ahluwalia, M.S.; Roth, P.; Bähr, O.; et al. Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, J.; Guo, G.; Yu, J. Immunotherapy for recurrent glioblastoma: Practical insights and challenging prospects. Cell Death Dis. 2021, 12, 299. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, V.A.; Dmello, C.; McGrail, D.J.; Brat, D.J.; Lee-Chang, C.; Heimberger, A.B.; Chand, D.; Stupp, R.; Sonabend, A.M. Immune checkpoint blockade in glioblastoma: From tumor heterogeneity to personalized treatment. J. Clin. Investig. 2023, 133, e163447. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.M.; Neidert, N.; Will, P.; Joseph, K.; Maier, J.P.; Kückelhaus, J.; Vollmer, L.; Goeldner, J.M.; Behringer, S.P.; Scherer, F.; et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat. Commun. 2022, 13, 925. [Google Scholar] [CrossRef]
- Giles, A.J.; Hutchinson, M.-K.N.D.; Sonnemann, H.M.; Jung, J.; Fecci, P.E.; Ratnam, N.M.; Zhang, W.; Song, H.; Bailey, R.; Davis, D.; et al. Dexamethasone-induced immunosuppression: Mechanisms and implications for immunotherapy. J. ImmunoTherapy Cancer 2018, 6, 51. [Google Scholar] [CrossRef]
- Kostaras, X.; Cusano, F.; Kline, G.A.; Roa, W.; Easaw, J. Use of dexamethasone in patients with high-grade glioma: A clinical practice guideline. Curr. Oncol. 2014, 21, e493–e503. [Google Scholar] [CrossRef]
- Dietrich, J.; Rao, K.; Pastorino, S.; Kesari, S. Corticosteroids in brain cancer patients: Benefits and pitfalls. Expert Rev. Clin. Pharmacol. 2011, 4, 233–242. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Chapman, K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Ratnam, N.M.; Frederico, S.C.; Gonzalez, J.A.; Gilbert, M.R. Clinical correlates for immune checkpoint therapy: Significance for CNS malignancies. Neuro-Oncol. Adv. 2020, 3, vdaa161. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.E.; Raucci, A. Alarmin(g) news about danger: Workshop on innate danger signals and HMGB1. EMBO Rep. 2006, 7, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Tie, Y.; Tu, C.; Wei, X. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin. Transl. Med. 2020, 10, 199–223. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; McLeland, C.B.; Potter, T.M.; Stern, S.T.; Adiseshaiah, P.P. Assessing NLRP3 Inflammasome Activation by Nanoparticles. Methods Mol. Biol. 2018, 1682, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Ershaid, N.; Sharon, Y.; Doron, H.; Raz, Y.; Shani, O.; Cohen, N.; Monteran, L.; Leider-Trejo, L.; Ben-Shmuel, A.; Yassin, M.; et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat. Commun. 2019, 10, 4375. [Google Scholar] [CrossRef]
- Sun, Z.; Du, C.; Xu, P.; Miao, C. Surgical trauma-induced CCL18 promotes recruitment of regulatory T cells and colon cancer progression. J. Cell Physiol. 2019, 234, 4608–4616. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, P.; Sun, Z.; Wang, Y.; Chen, J.; Miao, C. Surgical trauma induces postoperative T-cell dysfunction in lung cancer patients through the programmed death-1 pathway. Cancer Immunol. Immunother. 2015, 64, 1383–1392. [Google Scholar] [CrossRef]
- Kotecha, R.; Odia, Y.; Khosla, A.A.; Ahluwalia, M.S. Key clinical principles in the management of glioblastoma. JCO Oncol. Pract. 2023, 19, 180–189. [Google Scholar] [CrossRef]
- Fisher, J.P.; Adamson, D.C. Current FDA-Approved Therapies for High-Grade Malignant Gliomas. Biomedicines 2021, 9, 324. [Google Scholar] [CrossRef]
- Semyachkina-Glushkovskaya, O.; Bragin, D.; Bragina, O.; Socolovski, S.; Shirokov, A.; Fedosov, I.; Ageev, V.; Blokhina, I.; Dubrovsky, A.; Telnova, V.; et al. Low-Level Laser Treatment Induces the Blood-Brain Barrier Opening and the Brain Drainage System Activation: Delivery of Liposomes into Mouse Glioblastoma. Pharmaceutics 2023, 15, 567. [Google Scholar] [CrossRef]
- Campian, J.L.; Ye, X.; Gladstone, D.E.; Ambady, P.; Nirschl, T.R.; Borrello, I.; Golightly, M.; King, K.E.; Holdhoff, M.; Karp, J.; et al. Pre-radiation lymphocyte harvesting and post-radiation reinfusion in patients with newly diagnosed high grade gliomas. J. Neuro-Oncol. 2015, 124, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; O’Connor, R.S.; Grupp, S.A.; Barrett, D.M. Lingering effects of chemotherapy on mature T cells impair proliferation. Blood Adv. 2020, 4, 4653–4664. [Google Scholar] [CrossRef] [PubMed]
- Dutoit, V.; Philippin, G.; Widmer, V.; Marinari, E.; Vuilleumier, A.; Migliorini, D.; Schaller, K.; Dietrich, P.-Y. Impact of Radiochemotherapy on Immune Cell Subtypes in High-Grade Glioma Patients. Front. Oncol. 2020, 10, 89. [Google Scholar] [CrossRef]
- Campian, J.L.; Piotrowski, A.F.; Ye, X.; Hakim, F.T.; Rose, J.; Yan, X.-Y.; Lu, Y.; Gress, R.; Grossman, S.A. Serial changes in lymphocyte subsets in patients with newly diagnosed high grade astrocytomas treated with standard radiation and temozolomide. J. Neuro-Oncol. 2017, 135, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Dho, Y.-S.; Ock, C.-Y.; Kim, J.W.; Choi, S.H.; Lee, S.-T.; Kim, I.H.; Kim, T.M.; Park, C.-K. Clinical observation of lymphopenia in patients with newly diagnosed glioblastoma. J. Neuro-Oncol. 2019, 143, 321–328. [Google Scholar] [CrossRef]
- Fadul, C.E.; Fisher, J.L.; Gui, J.; Hampton, T.H.; Côté, A.L.; Ernstoff, M.S. Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro-Oncology 2011, 13, 393–400. [Google Scholar] [CrossRef]
- Chongsathidkiet, P.; Jackson, C.; Koyama, S.; Loebel, F.; Cui, X.; Farber, S.H.; Woroniecka, K.; Elsamadicy, A.A.; Dechant, C.A.; Kemeny, H.R.; et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat. Med. 2018, 24, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front. Cell Dev. Biol. 2020, 8, 41. [Google Scholar] [CrossRef]
- Arina, A.; Beckett, M.; Fernandez, C.; Zheng, W.; Pitroda, S.; Chmura, S.J.; Luke, J.J.; Forde, M.; Hou, Y.; Burnette, B.; et al. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat. Commun. 2019, 10, 3959. [Google Scholar] [CrossRef]
- Awada, H.; Paris, F.; Pecqueur, C. Exploiting radiation immunostimulatory effects to improve glioblastoma outcome. Neuro-Oncol. 2023, 25, 433–446. [Google Scholar] [CrossRef]
- Nagarajan, R.P.; Costello, J.F. Epigenetic mechanisms in glioblastoma multiforme. Semin. Cancer Biol. 2009, 19, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.A.; Lange, C.A. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 2008, 647, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Zhu, F.; Lin, W.-R.; Ying, R.-B.; Yang, Y.-P.; Zeng, L.-H. The novel EZH2 inhibitor, GSK126, suppresses cell migration and angiogenesis via down-regulating VEGF-A. Cancer Chemother. Pharmacol. 2016, 77, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Dejaegher, J.; Solie, L.; Hunin, Z.; Sciot, R.; Capper, D.; Siewert, C.; Van Cauter, S.; Wilms, G.; van Loon, J.; Ectors, N.; et al. DNA methylation based glioblastoma subclassification is related to tumoral T-cell infiltration and patient survival. Neuro-Oncology 2021, 23, 240–250. [Google Scholar] [CrossRef]
- Zhang, L.; Sorensen, M.D.; Kristensen, B.W.; Reifenberger, G.; McIntyre, T.M.; Lin, F. D-2-Hydroxyglutarate Is an Intercellular Mediator in IDH-Mutant Gliomas Inhibiting Complement and T Cells. Clin. Cancer Res. 2018, 24, 5381–5391. [Google Scholar] [CrossRef]
- Sharma, S.; Batra, R.K.; Yang, S.C.; Hillinger, S.; Zhu, L.; Atianzar, K.; Strieter, R.M.; Riedl, K.; Huang, M.; Dubinett, S.M. Interleukin-7 gene-modified dendritic cells reduce pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Hum. Gene Ther. 2003, 14, 1511–1524. [Google Scholar] [CrossRef] [PubMed]
- Sen, D.R.; Kaminski, J.; Barnitz, R.A.; Kurachi, M.; Gerdemann, U.; Yates, K.B.; Tsao, H.-W.; Godec, J.; LaFleur, M.W.; Brown, F.D.; et al. The epigenetic landscape of T cell exhaustion. Science 2016, 354, 1165–1169. [Google Scholar] [CrossRef]
- Philip, M.; Fairchild, L.; Sun, L.; Horste, E.; Camara, S.; Shakiba, M.; Scott, A.; Viale, A.; Lauer, P.; Merghoub, T.; et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 2017, 545, 452–456. [Google Scholar] [CrossRef]
- Kabashima, K.; Haynes, N.M.; Xu, Y.; Nutt, S.L.; Allende, M.L.; Proia, R.L.; Cyster, J.G. Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J. Exp. Med. 2006, 203, 2683–2690. [Google Scholar] [CrossRef]
- Montalvo, M.J.; Bandey, I.N.; Rezvan, A.; Wu, K.-L.; Saeedi, A.; Kulkarni, R.; Li, Y.; An, X.; Sefat, K.M.S.R.; Varadarajan, N.; et al. Decoding the mechanisms of chimeric antigen receptor (CAR) T cell-mediated killing of tumors: Insights from granzyme and Fas inhibition. Cell Death Dis. 2024, 15, 109. [Google Scholar] [CrossRef]
- Choi, B.D.; Gerstner, E.R.; Frigault, M.J.; Leick, M.B.; Mount, C.W.; Balaj, L.; Nikiforow, S.; Carter, B.S.; Curry, W.T.; Gallagher, K.; et al. Intraventricular CARv3-TEAM-E T Cells in Recurrent Glioblastoma. N. Engl. J. Med. 2024, 390, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Ghorashian, S.; Kramer, A.M.; Onuoha, S.; Wright, G.; Bartram, J.; Richardson, R.; Albon, S.J.; Casanovas-Company, J.; Castro, F.; Popova, B.; et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 2019, 25, 1408–1414. [Google Scholar] [CrossRef]
- Kochenderfer, J.N.; Somerville, R.P.T.; Lu, T.; Yang, J.C.; Sherry, R.M.; Feldman, S.A.; McIntyre, L.; Bot, A.; Rossi, J.; Lam, N.; et al. Long-Duration Complete Remissions of Diffuse Large B Cell Lymphoma after Anti-CD19 Chimeric Antigen Receptor T Cell Therapy. Mol. Ther. 2017, 25, 2245–2253. [Google Scholar] [CrossRef]
- Grigor, E.J.M.; Fergusson, D.; Kekre, N.; Montroy, J.; Atkins, H.; Seftel, M.D.; Daugaard, M.; Presseau, J.; Thavorn, K.; Hutton, B.; et al. Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis. Transfus. Med. Rev. 2019, 33, 98–110. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, D.M.; Nasrallah, M.P.; Desai, A.; Melenhorst, J.J.; Mansfield, K.; Morrissette, J.J.D.; Martinez-Lage, M.; Brem, S.; Maloney, E.; Shen, A.; et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 2017, 9, eaaa0984. [Google Scholar] [CrossRef] [PubMed]
- Suryadevara, C.M.; Desai, R.; Abel, M.L.; Riccione, K.A.; Batich, K.A.; Shen, S.H.; Chongsathidkiet, P.; Gedeon, P.C.; Elsamadicy, A.A.; Snyder, D.J.; et al. Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. Oncoimmunology 2018, 7, e1434464. [Google Scholar] [CrossRef]
- Goff, S.L.; Morgan, R.A.; Yang, J.C.; Sherry, R.M.; Robbins, P.F.; Restifo, N.P.; Feldman, S.A.; Lu, Y.-C.; Lu, L.; Zheng, Z.; et al. Pilot trial of adoptive transfer of chimeric antigen receptor transduced T cells targeting EGFRvIII in patients with glioblastoma. J. Immunother. 2019, 42, 126–135. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Yang, X.; Liu, Y.; Zou, C.; Lv, W.; Chen, C.; Cheng, K.K.-Y.; Chen, T.; Chang, L.-J.; et al. Safety and antitumor activity of GD2-Specific 4SCAR-T cells in patients with glioblastoma. Mol. Cancer 2023, 22, 3. [Google Scholar] [CrossRef]
- Bagley, S.J.; Logun, M.; Fraietta, J.A.; Wang, X.; Desai, A.S.; Bagley, L.J.; Nabavizadeh, A.; Jarocha, D.; Martins, R.; Maloney, E.; et al. Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: Phase 1 trial interim results. Nat. Med. 2024, 30, 1320–1329. [Google Scholar] [CrossRef]
- Wang, D.; Starr, R.; Chang, W.-C.; Aguilar, B.; Alizadeh, D.; Wright, S.L.; Yang, X.; Brito, A.; Sarkissian, A.; Ostberg, J.R.; et al. Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci. Transl. Med. 2020, 12, eaaw2672. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, S.; Zhang, Y.; Wang, Y.; Zhang, Z.; Yang, M.; Zhu, Y.; Zhang, G.; Guo, G.; Tong, A.; et al. B7-H3 as a Novel CAR-T Therapeutic Target for Glioblastoma. Mol. Ther.Oncol. 2019, 14, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, B.; Ransohoff, R.M. Capture, crawl, cross: The T cell code to breach the blood-brain barriers. Trends Immunol. 2012, 33, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Stone, K.P.; Hsuchou, H.; Manda, V.K.; Zhang, Y.; Kastin, A.J. Cytokine signaling modulates blood-brain barrier function. Curr. Pharm. Des. 2011, 17, 3729–3740. [Google Scholar] [CrossRef] [PubMed]
- Bienkowska, J.; Allaire, N.; Thai, A.; Goyal, J.; Plavina, T.; Nirula, A.; Weaver, M.; Newman, C.; Petri, M.; Beckman, E.; et al. Lymphotoxin-LIGHT pathway regulates the interferon signature in rheumatoid arthritis. PLoS ONE 2014, 9, e112545. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Usatorre, A.; Kadioglu, E.; Boivin, G.; Cianciaruso, C.; Guichard, A.; Torchia, B.; Zangger, N.; Nassiri, S.; Keklikoglou, I.; Schmittnaegel, M.; et al. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci. Transl. Med. 2021, 13, eabd1616. [Google Scholar] [CrossRef]
- Ramachandran, M.; Vaccaro, A.; van de Walle, T.; Georganaki, M.; Lugano, R.; Vemuri, K.; Kourougkiaouri, D.; Vazaios, K.; Hedlund, M.; Tsaridou, G.; et al. Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer Cell 2023, 41, 1134–1151.e1110. [Google Scholar] [CrossRef]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef]
- Ochoa, A.C.; Zea, A.H.; Hernandez, C.; Rodriguez, P.C. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res. 2007, 13 Pt 2, 721s–726s. [Google Scholar] [CrossRef]
- Rodriguez, P.C.; Hernandez, C.P.; Quiceno, D.; Dubinett, S.M.; Zabaleta, J.; Ochoa, J.B.; Gilbert, J.; Ochoa, A.C. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 2005, 202, 931–939. [Google Scholar] [CrossRef]
- Gabitass, R.F.; Annels, N.E.; Stocken, D.D.; Pandha, H.A.; Middleton, G.W. Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol. Immunother. 2011, 60, 1419–1430. [Google Scholar] [CrossRef]
- Jiang, H.; Gebhardt, C.; Umansky, L.; Beckhove, P.; Schulze, T.J.; Utikal, J.; Umansky, V. Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int. J. Cancer 2015, 136, 2352–2360. [Google Scholar] [CrossRef]
- Dolcetti, L.; Peranzoni, E.; Ugel, S.; Marigo, I.; Fernandez Gomez, A.; Mesa, C.; Geilich, M.; Winkels, G.; Traggiai, E.; Casati, A.; et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 2010, 40, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Frederico, S.C.; Sharma, N.; Darling, C.; Taori, S.; Dubinsky, A.C.; Zhang, X.; Raphael, I.; Kohanbash, G. Myeloid cells as potential targets for immunotherapy in pediatric gliomas. Front. Pediatr. 2024, 12, 1346493. [Google Scholar] [CrossRef] [PubMed]
- Kujawski, M.; Kortylewski, M.; Lee, H.; Herrmann, A.; Kay, H.; Yu, H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Investig. 2008, 118, 3367–3377. [Google Scholar] [CrossRef] [PubMed]
- Umansky, V.; Blattner, C.; Gebhardt, C.; Utikal, J. The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines 2016, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Serafini, P.; Meckel, K.; Kelso, M.; Noonan, K.; Califano, J.; Koch, W.; Dolcetti, L.; Bronte, V.; Borrello, I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 2006, 203, 2691–2702. [Google Scholar] [CrossRef]
- Orillion, A.; Hashimoto, A.; Damayanti, N.; Shen, L.; Adelaiye-Ogala, R.; Arisa, S.; Chintala, S.; Ordentlich, P.; Kao, C.; Elzey, B.; et al. Entinostat Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Lung and Renal Cell Carcinoma. Clin. Cancer Res. 2017, 23, 5187–5201. [Google Scholar] [CrossRef]
- Fleming, V.; Hu, X.; Weber, R.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression. Front. Immunol. 2018, 9, 398. [Google Scholar] [CrossRef]
- Nefedova, Y.; Fishman, M.; Sherman, S.; Wang, X.; Beg, A.A.; Gabrilovich, D.I. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 2007, 67, 11021–11028. [Google Scholar] [CrossRef]
- Alban, T.J.; Bayik, D.; Otvos, B.; Rabljenovic, A.; Leng, L.; Jia-Shiun, L.; Roversi, G.; Lauko, A.; Momin, A.A.; Mohammadi, A.M.; et al. Glioblastoma Myeloid-Derived Suppressor Cell Subsets Express Differential Macrophage Migration Inhibitory Factor Receptor Profiles That Can Be Targeted to Reduce Immune Suppression. Front. Immunol. 2020, 11, 1191. [Google Scholar] [CrossRef]
- Mills, C.D. M1 and M2 Macrophages: Oracles of Health and Disease. Crit. Rev. Immunol. 2012, 32, 463–488. [Google Scholar] [CrossRef] [PubMed]
- Noy, R.; Pollard, J.W. Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity 2014, 41, 866. [Google Scholar] [CrossRef]
- Khan, F.; Pang, L.; Dunterman, M.; Lesniak, M.S.; Heimberger, A.B.; Chen, P. Macrophages and microglia in glioblastoma: Heterogeneity, plasticity, and therapy. J. Clin. Investig. 2023, 133, e163446. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020, 11, 583084. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, H.; Liang, X.; Ni, S. Targeting tumor-associated macrophages for the immunotherapy of glioblastoma: Navigating the clinical and translational landscape. Front. Immunol. 2022, 13, 1024921. [Google Scholar] [CrossRef]
- Ohue, Y.; Nishikawa, H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019, 110, 2080–2089. [Google Scholar] [CrossRef]
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef]
- Humphries, W.; Wei, J.; Sampson, J.H.; Heimberger, A.B. The role of tregs in glioma-mediated immunosuppression: Potential target for intervention. Neurosurg. Clin. N. Am. 2010, 21, 125–137. [Google Scholar] [CrossRef]
- Fecci, P.E.; Mitchell, D.A.; Whitesides, J.F.; Xie, W.; Friedman, A.H.; Archer, G.E.; Herndon, J.E., 2nd; Bigner, D.D.; Dranoff, G.; Sampson, J.H. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 2006, 66, 3294–3302. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Xu, J.; Lu, Y.; Ji, X.; Yao, Y.; Chao, H.; Zhang, J.; Zhang, X.; Yao, S.; et al. Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy. Cancer Lett. 2021, 496, 134–143. [Google Scholar] [CrossRef]
- Coe, D.; Begom, S.; Addey, C.; White, M.; Dyson, J.; Chai, J.G. Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunol. Immunother. 2010, 59, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Amoozgar, Z.; Kloepper, J.; Ren, J.; Tay, R.E.; Kazer, S.W.; Kiner, E.; Krishnan, S.; Posada, J.M.; Ghosh, M.; Mamessier, E.; et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat. Commun. 2021, 12, 2582. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rahim, S.A.; Dirkse, A.; Oudin, A.; Schuster, A.; Bohler, J.; Barthelemy, V.; Muller, A.; Vallar, L.; Janji, B.; Golebiewska, A.; et al. Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. Br. J. Cancer 2017, 117, 813–825. [Google Scholar] [CrossRef]
- Sattiraju, A.; Kang, S.; Giotti, B.; Chen, Z.; Marallano, V.J.; Brusco, C.; Ramakrishnan, A.; Shen, L.; Tsankov, A.M.; Hambardzumyan, D.; et al. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. Immunity 2023, 56, 1825–1843.e1826. [Google Scholar] [CrossRef]
- Akindona, F.A.; Frederico, S.C.; Hancock, J.C.; Gilbert, M.R. Exploring the origin of the cancer stem cell niche and its role in anti-angiogenic treatment for glioblastoma. Front. Oncol. 2022, 12, 947634. [Google Scholar] [CrossRef]
- Weidemann, A.; Johnson, R.S. Biology of HIF-1alpha. Cell Death Differ. 2008, 15, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Shaifer, C.A.; Huang, J.; Lin, P.C. Glioblastoma cells incorporate into tumor vasculature and contribute to vascular radioresistance. Int. J. Cancer 2010, 127, 2063–2075. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Ke, Y.-Q.; Lu, G.-H.; Song, Z.-H.; Yu, L.; Xiao, S.; Sun, X.-L.; Jiang, X.-D.; Yang, Z.-L.; Hu, C.-C.; et al. Vasculogenic mimicry is a prognostic factor for postoperative survival in patients with glioblastoma. J. Neuro-Oncol. 2013, 112, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yan, D.; Ma, L.; Liu, X.; Luo, G.; Hu, Y.; Kou, X. ALKBH5 is a prognostic factor and promotes the angiogenesis of glioblastoma. Sci. Rep. 2024, 14, 1303. [Google Scholar] [CrossRef]
- Cohen, M.H.; Shen, Y.L.; Keegan, P.; Pazdur, R. FDA Drug Approval Summary: Bevacizumab (Avastin®) as Treatment of Recurrent Glioblastoma Multiforme. Oncologist 2009, 14, 1131–1138. [Google Scholar] [CrossRef]
- Piao, Y.; Liang, J.; Holmes, L.; Henry, V.; Sulman, E.; de Groot, J.F. Acquired Resistance to Anti-VEGF Therapy in Glioblastoma Is Associated with a Mesenchymal Transition. Clin. Cancer Res. 2013, 19, 4392–4403. [Google Scholar] [CrossRef] [PubMed]
- You, W.-C.; Lee, H.-D.; Pan, H.-C.; Chen, H.-C.; You, W.-C.; Lee, H.-D.; Pan, H.-C.; Chen, H.-C. Re-irradiation combined with bevacizumab for recurrent glioblastoma beyond bevacizumab failure: Survival outcomes and prognostic factors. Sci. Rep. 2023, 13, 9442. [Google Scholar] [CrossRef] [PubMed]
- Gramatzki, D.; Roth, P.; Rushing, E.J.; Weller, J.; Andratschke, N.; Hofer, S.; Korol, D.; Regli, L.; Pangalu, A.; Pless, M.; et al. Bevacizumab may improve quality of life, but not overall survival in glioblastoma: An epidemiological study. Ann. Oncol. 2018, 29, 1431–1436. [Google Scholar] [CrossRef]
- Nayak, L.; Molinaro, A.M.; Peters, K.; Clarke, J.L.; Jordan, J.T.; de Groot, J.; Nghiemphu, L.; Kaley, T.; Colman, H.; McCluskey, C.; et al. Randomized Phase II and Biomarker Study of Pembrolizumab plus Bevacizumab versus Pembrolizumab Alone for Patients with Recurrent Glioblastoma. Clin. Cancer Res. 2021, 27, 1048–1057. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel–Carboplatin Alone or with Bevacizumab for Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2006, 355, 2542–2550. [Google Scholar] [CrossRef]
- Minhajat, R.; Harjianti, T.; Islam, I.C.; Winarta, S.; Liyadi, Y.N.; Bamatraf, N.P.; Amanuddin, R. Bevacizumab side effects and adverse clinical complications in colorectal cancer patients: Review article. Ann. Med. Surg. 2023, 85, 3931–3937. [Google Scholar] [CrossRef]
- Brandes, A.A.; Bartolotti, M.; Tosoni, A.; Poggi, R.; Franceschi, E. Practical Management of Bevacizumab-Related Toxicities in Glioblastoma. Oncologist 2015, 20, 166–175. [Google Scholar] [CrossRef]
- Groot, J.F.D.; Cloughesy, T.F.; Pitz, M.W.; Narita, Y.; Nonomura, T. A randomized, multicenter phase 2 study of DSP-7888 dosing emulsion in combination with bevacizumab (Bev) versus Bev alone in patients with recurrent or progressive glioblastoma. J. Clin. Oncol. 2018, 36, 15. [Google Scholar] [CrossRef]
- Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef]
- Noorani, I.; Sidlauskas, K.; Pellow, S.; Savage, R.; Norman, J.L.; Chatelet, D.S.; Fabian, M.; Grundy, P.; Ching, J.; Nicoll, J.A.R.; et al. Clinical impact of anti-inflammatory microglia and macrophage phenotypes at glioblastoma margins. Brain Commun. 2023, 5, fcad176. [Google Scholar] [CrossRef] [PubMed]
- Scharping, N.E.; Rivadeneira, D.B.; Menk, A.V.; Vignali, P.D.A.; Ford, B.R.; Rittenhouse, N.L.; Peralta, R.; Wang, Y.; DePeaux, K.; Poholek, A.C.; et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 2021, 22, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Zhong, S.; Ma, Z.; Kong, H.; Medvec, A.; Ahmed, R.; Freeman, G.J.; Krogsgaard, M.; Riley, J.L. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc. Natl. Acad. Sci. USA 2013, 110, E2480–E2489. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Hu, M.; Iyer, V.; Yu, J. Blocking the PD-1/PD-L1 pathway in glioma: A potential new treatment strategy. J. Hematol. Oncol. 2017, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Chen, G.; Zhao, H.; Li, Y.; Chen, J.; Zhang, H.; Li, S.; Zhao, Y.; Chen, F.; Li, W.; et al. PD-L1 Expression in Glioblastoma, the Clinical and Prognostic Significance: A Systematic Literature Review and Meta-Analysis. Front. Oncol. 2020, 10, 1015. [Google Scholar] [CrossRef]
- Butte, M.J.; Keir, M.E.; Phamduy, T.B.; Sharpe, A.H.; Freeman, G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007, 27, 111–122. [Google Scholar] [CrossRef]
- Yang, T.; Kong, Z.; Ma, W. PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: Clinical studies, challenges and potential. Hum. Vaccines Immunother. 2021, 17, 546–553. [Google Scholar] [CrossRef]
- Frederico, S.C.; Darling, C.; Bielanin, J.P.; Dubinsky, A.C.; Zhang, X.; Hadjipanayis, C.G.; Kohanbash, G. Neoadjuvant immune checkpoint inhibition in the management of glioblastoma: Exploring a new frontier. Front. Immunol. 2023, 14, 1057567. [Google Scholar] [CrossRef]
- Mitsuiki, N.; Schwab, C.; Grimbacher, B. What did we learn from CTLA4 insufficiency on the human immune system? Immunol. Rev. 2019, 287, 33–49. [Google Scholar] [CrossRef]
- Sobhani, N.; Tardiel-Cyril, D.R.; Davtyan, A.; Generali, D.; Roudi, R.; Li, Y. CTLA4 in Regulatory T Cells for Cancer Immunotherapy. Cancers 2021, 13, 1440. [Google Scholar] [CrossRef]
- Liu, F.; Huang, J.; Liu, X.; Cheng, Q.; Luo, C.; Liu, Z. CTLA4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int. 2020, 20, 7. [Google Scholar] [CrossRef]
- Chen, D.; Varanasi, S.K.; Hara, T.; Traina, K.; Sun, M.; McDonald, B.; Farsakoglu, Y.; Clanton, J.; Xu, S.; Garcia-Rivera, L.; et al. CTLA4 blockade induces a microglia-Th1 cell partnership that stimulates microglia phagocytosis and anti-tumor function in glioblastoma. Immunity 2023, 56, 2086–2104.e8. [Google Scholar] [CrossRef] [PubMed]
- Alexander, W. The Checkpoint Immunotherapy Revolution: What Started as a Trickle Has Become a Flood, Despite Some Daunting Adverse Effects; New Drugs, Indications, and Combinations Continue to Emerge. Pharm. Ther. 2016, 41, 185–191. [Google Scholar]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.; Zhang, P.; Sloan, A.; Aldape, K.; Wu, J.; Rogers, L.; Wen, P.; Barani, I.; Iwamoto, F.; Raval, R.; et al. ATIM-29. NRG BN002: SAFETY DATA FROM A PHASE I STUDY OF IPILIMUMAB (IPI), NIVOLUMAB (NIVO), AND THE COMBINATION FOR NEWLY DIAGNOSED GLIOBLASTOMA (GBM). Neuro-Oncology 2018, 20 (Suppl. 6), vi7. [Google Scholar] [CrossRef]
- Duerinck, J.; Schwarze, J.K.; Awada, G.; Tijtgat, J.; Vaeyens, F.; Bertels, C.; Geens, W.; Klein, S.; Seynaeve, L.; Cras, L.; et al. Intracerebral administration of CTLA4 and PD-1 immune checkpoint blocking monoclonal antibodies in patients with recurrent glioblastoma: A phase I clinical trial. J. Immunother. Cancer 2021, 9, e002296. [Google Scholar] [CrossRef]
- Kawashima, S.; Inozume, T.; Kawazu, M.; Ueno, T.; Nagasaki, J.; Tanji, E.; Honobe, A.; Ohnuma, T.; Kawamura, T.; Umeda, Y.; et al. TIGIT/CD155 axis mediates resistance to immunotherapy in patients with melanoma with the inflamed tumor microenvironment. J. Immunother. Cancer 2021, 9, e003134. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zhang, H.; Han, F.; Chen, X.; Lin, R.; Wang, W.; Qiu, H.; Zhuang, Z.; Liao, Q.; Zhang, W.; et al. CD155T/TIGIT Signaling Regulates CD8+ T-cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer. Cancer Res. 2017, 77, 6375–6388. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Wang, X.; Dang, Z.; Jiang, Y.; Wang, X.; Kong, Y.; Yang, Z. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma. Cancer Immunol. Immunother. CII 2019, 68, 2041–2054. [Google Scholar] [CrossRef]
- Vincze, S.R.; Jaswal, A.P.; Frederico, S.C.; Nisnboym, M.; Li, B.; Xiong, Z.; Sever, R.E.; Sneiderman, C.T.; Rodgers, M.; Day, K.E.; et al. ImmunoPET imaging of TIGIT in the glioma microenvironment. Sci. Rep. 2024, 14, 5305. [Google Scholar] [CrossRef]
- Harjunpää, H.; Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 2020, 200, 108–119. [Google Scholar] [CrossRef]
- Worboys, J.D.; Vowell, K.N.; Hare, R.K.; Ambrose, A.R.; Bertuzzi, M.; Conner, M.A.; Patel, F.P.; Zammit, W.H.; Gali-Moya, J.; Hazime, K.S.; et al. TIGIT can inhibit T cell activation via ligation-induced nanoclusters, independent of CD226 co-stimulation. Nat. Commun. 2023, 14, 5016. [Google Scholar] [CrossRef] [PubMed]
- Raphael, I.; Kumar, R.; McCarl, L.H.; Shoger, K.; Wang, L.; Sandlesh, P.; Sneiderman, C.T.; Allen, J.; Zhai, S.; Campagna, M.L.; et al. TIGIT and PD-1 Immune Checkpoint Pathways Are Associated With Patient Outcome and Anti-Tumor Immunity in Glioblastoma. Front. Immunol. 2021, 12, 637146. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.L.; Maxwell, R.; Theodros, D.; Belcaid, Z.; Mathios, D.; Luksik, A.S.; Kim, E.; Wu, A.; Xia, Y.; Garzon-Muvdi, T.; et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. OncoImmunology 2018, 7, e1466769. [Google Scholar] [CrossRef]
- Yan, J.; Gabrusiewicz, K.; Xia, X.; Heimberger, A.B.; Li, S. FGL2 promotes tumor progression via inducing TIGIT expression on T cells in tumor microenvironment of glioma. J. Immunol. 2016, 196 (Suppl. 1), 72.10. [Google Scholar] [CrossRef]
- Hu, S.; Tao, Y.; Hu, F.; Liu, X. Diminished LAG3+ B cells correlate with exacerbated rheumatoid arthritis. Ann. Med. 2023, 55, 2208373. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.V.; Drake, C.G. LAG3 in Cancer Immunotherapy. Curr. Top. Microbiol. Immunol. 2011, 344, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin. Immunol. 2019, 42, 101305. [CrossRef]
- Shi, A.-P.; Tang, X.-Y.; Xiong, Y.-L.; Zheng, K.-F.; Liu, Y.-J.; Shi, X.-G.; Lv, Y.; Jiang, T.; Ma, N.; Zhao, J.-B. Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Front. Immunol. 2021, 12, 785091. [Google Scholar] [CrossRef]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Gutiérrez, E.C.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef]
- Mair, M.; Kiesel, B.; Feldmann, K.; Widhalm, G.; Dieckmann, K.; Woehrer, A.; Muellauer, L.; Preusser, M.; Berghoff, A.S. Lymphocyte-activation gene 3 (LAG3) expression in the inflammatory microenvironment of glioma. J. Clin. Oncol. 2020, 38, 2553. [Google Scholar] [CrossRef]
- Harris-Bookman, S.; Mathios, D.; Martin, A.M.; Xia, Y.; Kim, E.; Xu, H.; Belcaid, Z.; Polanczyk, M.; Barberi, T.; Theodros, D.; et al. Expression of LAG3 and efficacy of combination treatment with anti-LAG3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int. J. Cancer 2018, 143, 3201–3208. [Google Scholar] [CrossRef]
- Guo, W.; Peng, D.; Liao, Y.; Lou, L.; Guo, M.; Li, C.; Yu, W.; Tian, X.; Wang, G.; Lv, P.; et al. Upregulation of HLA-II related to LAG-3+CD4+ T cell infiltration is associated with patient outcome in human glioblastoma. Cancer Sci. 2024, 115, 1388–1404. [Google Scholar] [CrossRef]
- Lim, M.; Ye, X.; Piotrowski, A.F.; Desai, A.S.; Ahluwalia, M.S.; Walbert, T.; Fisher, J.D.; Desideri, S.; Belcaid, Z.; Jackson, C.; et al. Updated phase I trial of anti-LAG3 or anti-CD137 alone and in combination with anti-PD-1 in patients with recurrent GBM. J. Clin. Oncol. 2019, 37, 15. [Google Scholar] [CrossRef]
- Shafiei-Jahani, P.; Helou, D.G.; Hurrell, B.P.; Howard, E.; Quach, C.; Painter, J.D.; Galle-Treger, L.; Li, M.; Loh, Y.-H.E.; Akbari, O.; et al. CD200–CD200R immune checkpoint engagement regulates ILC2 effector function and ameliorates lung inflammation in asthma. Nat. Commun. 2021, 12, 2526. [Google Scholar] [CrossRef] [PubMed]
- Koning, N.; van Eijk, M.; Pouwels, W.; Brouwer, M.S.; Voehringer, D.; Huitinga, I.; Hoek, R.M.; Raes, G.; Hamann, J. Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J. Innate Immun. 2010, 2, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.J.; Cherwinski, H.; Foster-Cuevas, M.; Brooke, G.; Puklavec, M.J.; Bigler, M.; Song, Y.; Jenmalm, M.; Gorman, D.; McClanahan, T.; et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol. 2003, 171, 3034–3046. [Google Scholar] [CrossRef]
- Liu, J.-Q.; Hu, A.; Zhu, J.; Yu, J.; Talebian, F.; Bai, X.-F. CD200-CD200R pathway in the regulation of tumor immune microenvironment and immunotherapy. Adv. Exp. Med. Biol. 2020, 1223, 155–165. [Google Scholar] [CrossRef]
- Hoek, R.M.; Ruuls, S.R.; Murphy, C.A.; Wright, G.J.; Goddard, R.; Zurawski, S.M.; Blom, B.; Homola, M.E.; Streit, W.J.; Brown, M.H.; et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000, 290, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Neil, E.; Eaton, A.; Lunn, S.; Nelson, K.; Greengard, E.; Moertel, C.; Olin, M. Ctim-15. first-in-Human phase 1 study of Cd200 activation receptor-ligand (Cd200ar-l) and allogeneic tumor lysate vaccine immunotherapy for recurrent glioblastoma: Initial results from an ongoing clinical trial. Neuro-Oncology 2021, 23 (Suppl. 6), vi52–vi53. [Google Scholar] [CrossRef]
- Shah, P.; Stuehmer, T.; Haertle, L.; Bruennert, D.; Munawar, U.; Leich, E.; Kraus, S.; Hudecek, M.; Chatterjee, M.; Schlosser, A.; et al. Immune Checkpoint CD200/CD200R Decreases T Cell-Mediated Cytotoxicity Via Dok2 and Is Regulated By P53 in Multiple Myeloma. Blood 2022, 140 (Suppl. 1), 7076–7077. [Google Scholar] [CrossRef]
- Sharma, P.; Aaroe, A.; Liang, J.; Puduvalli, V.K. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neuro-Oncol. Adv. 2023, 5, vdad009. [Google Scholar] [CrossRef]
- Lin, H.; Liu, C.; Hu, A.; Zhang, D.; Yang, H.; Mao, Y. Understanding the immunosuppressive microenvironment of glioma: Mechanistic insights and clinical perspectives. J. Hematol. Oncol. 2024, 17, 31. [Google Scholar] [CrossRef]
- Frederico, S.C.; Hancock, J.C.; Brettschneider, E.E.S.; Ratnam, N.M.; Gilbert, M.R.; Terabe, M. Making a Cold Tumor Hot: The Role of Vaccines in the Treatment of Glioblastoma. Front. Oncol. 2021, 11, 672508. [Google Scholar] [CrossRef]
- Frederico, S.C.; Zhang, X.; Hu, B.; Kohanbash, G. Pre-clinical models for evaluating glioma targeted immunotherapies. Front. Immunol. 2023, 13, 1092399. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, N.K.; Gilbert, M.R. Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines 2022, 10, 427. [Google Scholar] [CrossRef] [PubMed]
- Blomquist, M.R.; Ensign, S.F.; D’Angelo, F.; Phillips, J.J.; Ceccarelli, M.; Peng, S.; Halperin, R.F.; Caruso, F.P.; Garofano, L.; Byron, S.A.; et al. Temporospatial genomic profiling in glioblastoma identifies commonly altered core pathways underlying tumor progression. Neuro-Oncol. Adv. 2020, 2, vdaa078. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Chanoch-Myers, R.; Mathewson, N.D.; Myskiw, C.; Atta, L.; Bussema, L.; Eichhorn, S.W.; Greenwald, A.C.; Kinker, G.S.; Rodman, C.; et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 2021, 39, 779–792.e11. [Google Scholar] [CrossRef]
- Neftel, C.; Laffy, J.; Filbin, M.G.; Hara, T.; Shore, M.E.; Rahme, G.J.; Richman, A.R.; Silverbush, D.; Shaw, M.L.; Hebert, C.M.; et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell 2019, 178, 835–849.e21. [Google Scholar] [CrossRef]
NCT Number | Other IDs | Cancer Type | Study Results | CAR-T | Phases | Study Status | Treatment |
---|---|---|---|---|---|---|---|
NCT02664363 | Pro00069444 | Newly Diagnosed GBM During Lymphopenia | Y | EGFRvIII CAR-T cells | PHASE 1 | T | EGFRvIII CAR-T cells |
NCT01454596 | 110266|11-C-0266 | Malignant Gliomas Expressing EGFRvIII | Y | EGFRvIII CAR-T cells | PHASE 1|PHASE 2 | C | 1/Phase I Arm: Escalating doses of EGFRvIII CAR-T cells transduced peripheral blood lymphocytes (PBL) 2/Phase II Arm: Maximum tolerated dose of anti-EGFRvIII CAR-T transduced PBL established in Phase 1 |
NCT06482905 | TX103T-RG008 | Recurrent or Progressive Grade 4 Glioma | N | B7-H3 CAR-T (TX103) | PHASE 1 | NR | Cohort A: Single delivery routes: Anti-B7-H3/TX103 CAR-T cells Cohort B: Dual delivery route: Anti-B7-H3/TX103 CAR-T cells |
NCT06186401 | 23704|5U19CA264338-03 | Newly diagnosed EGFRvIII+ Glioblastoma | N | EGFRvIII synNotch Receptor Induced Anti-EphA2/IL-13R alpha2 CAR (E-SYNC) T Cells | PHASE 1 | R | Cohort 1 Starting Dose: E-SYNC CAR-T cells Cohort 1 Dose-escalation: E-SYNC CAR-T cells Cohort 2 Tissue analysis cohort: EGFRvIII H-score of >=250: Maximum tolerated E-SYNC CAR-T cells dose EGFRvIII H-score of <250: Recommended E-SYNC CAR-T cells dose based on results from cohort 1 |
NCT05868083 | SNC-109-101 | Recurrent Glioblastoma | N | SNC-109 CAR-T cells | PHASE 1 | R | SNC-109 CAR-T cell therapy |
NCT05802693 | A03728 | Recurrent Glioblastoma | N | EGFRvIII CAR-T cells | EARLY PHASE 1 | NR | EGFRvIII CAR-T cell therapy |
NCT05660369 | 22-175 | Glioblastoma | N | CARv3-TEAM-E T Cells | PHASE 1 | R | Safety Run-In Phase: 1 infusion of CARv3-TEAM-E Arm 1 Recurrent GBM, EGFRvIII Positive: CARv3-TEAM-E Arm 2 Newly Diagnosed GBM, EGFRvIII Positive: CARv3-TEAM-E Arm 2 Newly Diagnosed GBM, EGFRvIII Negative: CARv3-TEAM-E |
NCT05627323 | CHM-1101-001 | MMP2+ Recurrent or Progressive Glioblastoma | N | CHM-1101 CAR-T cells | PHASE 1 | NR | Arm 1: Dose level 1 CHM-1101 CAR-T cells Arm 2: Dose level 2 CHM-1101 CAR-T cells |
NCT05577091 | TTSW2021-01 | Recurrent Glioblastoma | N | Autologous Tris-CAR-T cells | PHASE 1 | R | Autologous Tris-CAR-T cells |
NCT05474378 | IRB-65002|NCI-2022-06043 | Recurrent Glioblastoma | N | B7-H3 CAR-T cells | PHASE 1 | R | Arm 1 Dose escalation: B7-H3CAR-T Arm 2 Dose Expansion: B7-H3CAR-T |
NCT05366179 | LCCC2059-ATL | Recurrent or Refractory Glioblastoma | N | B7-H3 CAR-T cells | PHASE 1 | R | CAR.B7-H3T cells therapy |
NCT05353530 | IRB202200057 | CD70+ Adult GBM | N | 8R-70CAR-T cells | PHASE 1 | R | Single dose of 8R-70CAR-T cell therapy |
NCT05241392 | TX103T-IG005 | Recurrent Glioblastomas | N | B7-H3-targeting CAR-T cells | PHASE 1 | R | B7-H3-targeting CAR-T cell therapy |
NCT05131763 | Fudan-Changchun | Relapsed/Refractory NKG2DL+ Solid Tumors | N | NKG2D-based CAR-T cells | PHASE 1 | U | NKG2D-based CAR-T cell therapy |
NCT05063682 | 6678EGFRvIII | Leptomeningeal Glioblastoma | N | EGFRvIII-CAR-T cells | PHASE 1 | U | EGFRvIII-CAR-T cell therapy |
NCT04661384 | 19497|NCI-2020-06010|19497|P30CA033572 | Adult with Leptomeningeal Glioblastoma, Ependymoma or Medulloblastoma | N | IL13Ralpha2-CAR-T cells | PHASE 1 | R | IL13Ralpha2-CAR-T cells therapy |
NCT04385173 | SAHZJU-BP102 | Recurrent and Refractory Glioblastoma | N | B7-H3 CAR-T | PHASE 1 | R | B7-H3 CAR-T between cycles of Temozolomide treatment |
NCT04270461 | JiujiangUH | Relapsed/Refractory NKG2DL+ Solid Tumors | N | NKG2D-based CAR-T cells | PHASE 1 | W | NKG2D-based CAR-T cells therapy |
NCT04214392 | 19309|NCI-2019-08393|19309 | MMP2+ Recurrent or Progressive Glioblastoma | N | Chlorotoxin (EQ)-CD28-CD3zeta-CD19t-expressing CAR-T-lymphocytes | PHASE 1 | R | Arm 1: Chlorotoxin-CD28-CD3z-CD19t-expressing CAR-T cells, ICT delivery Arm 2: Chlorotoxin-CD28-CD3z-CD19t-expressing CAR-T cells, ICT/ICV dual delivery |
NCT04077866 | SAHZJU-RCT-BP102 | Recurrent or Refractory Glioblastoma | N | B7-H3 CAR-T | PHASE 1|PHASE 2 | R | Arm 1: Temozolomide alone Arm 2: Temozolomide + B7-H3 CAR-T therapy |
NCT04045847 | Chen Zhinan-2 | Recurrent Glioblastoma | N | CD147-CART | EARLY PHASE 1 | U | CD147-CAR-T therapy |
NCT04003649 | 18251|NCI-2018-02764|18251|R01CA236500 | Resectable Recurrent Glioblastoma | N | IL13Ralpha2 CAR-T cells | PHASE 1 | R | Arm I: Nivolumab + Ipilimumab + IL13Ralpha2 CAR-T cells Arm II: Nivolumab + IL13Ra2 CAR-T cells Arm III: IL13Ra2 CAR-T cells |
NCT03726515 | 831706, UPCC 13318 | Newly Diagnosed, MGMT-Unmethylated Glioblastoma | N | CART-EGFRvIII T cells | PHASE 1 | C | CART-EGFRvIII + Pembrolizumab |
NCT03283631 | Pro00083828|5P50CA190991-03 | Recurrent Glioblastoma | N | EGFRvIII-CARs | PHASE 1 | T | EGFRvIII-CARs therapy |
NCT03170141 | GIMI-IRB-17003 | Glioblastoma | N | Antigen-specific IgT cells | PHASE 1 | R | Antigen-specific IgT cells therapy |
NCT02937844 | SBNK-2016-016-01 | Recurrent Glioblastoma | N | Anti-PD-L1 CSR T cells | PHASE 1 | U | Anti-PD-L1 CAR-T cells therapy |
NCT02844062 | SBNK-2016-015-01 | Recurrent Glioblastoma | N | anti-EGFRvIII CAR-T cells | PHASE 1 | U | Anti-EGFRvIII CAR-T cells therapy |
NCT02209376 | UPCC 35313, 820381 | EGFRVIII+ Glioblastoma | N | CART-EGFRvIII T cells | PHASE 1 | T | CART-EGFRvIII T cells therapy |
NCT Number | Other IDs | Cancer Type | Study Results | Phases | Study Status | Treatment |
---|---|---|---|---|---|---|
NCT05235737 | PIRG | Newly Diagnosed Glioblastoma | N | PHASE 4 | R | Arm 1: Pembrolizumab as a neoadjuvant and adjuvant therapy to standard chemo-radiotherapy Arm 2: Pembrolizumab as a neoadjuvant therapy to standard chemo-radiotherapy Arm 3: Standard chemo-radiotherapy |
NCT02617589 | CheckMate 498 | Newly Diagnosed Adult Subjects with Unmethylated MGMT GBM | Y | PHASE 3 | C | Arm 1: Nivolumab + Radiation Arm 2: Temozolomide + Radiation |
NCT02017717 | CheckMate 143 | Recurrent Glioblastoma | Y | PHASE 3 | C | Arm 1: Nivolumab Arm 2: Bevacizumab |
NCT02667587 | CheckMate548 | Newly Diagnosed Adult Subjects with MGMT-Methylated GBM | Y | PHASE 3 | C | Arm 1: Nivolumab + Radiation + Temozolomide Arm 2: Placebo + Radiation + Temozolomide |
NCT06556563 | EF-41 | Newly Diagnosed Glioblastoma | N | PHASE 3 | NR | Arm 1: Optune® device + Temozolomide + Pembrolizumab Arm 2: Optune® device + Temozolomide + Placebo |
NCT04396860 | Newly Diagnosed Adult Subjects with MGMT-Methylated GBM | Y | PHASE 2|PHASE 3 | NR | Arm 1: Radiation therapy + Temozolomide Arm 2: Radiation therapy + Ipilimumab + Nivolumab | |
NCT03430791 | Recurrent Glioblastoma | Y | PHASE 2 | T | Arm 1: Nivolumab monotherapy Arm 2: Nivolumab + Ipilimumab | |
NCT02794883 | Recurrent Malignant Glioma | Y | PHASE 2 | C | Arm 1: Tremelimumab Only Arm 2: MEDI4736 Only Arm 3: Tremelimumab + MEDI4736 | |
NCT03018288 | Newly diagnosed GBM without MGMT-Methylation | Y | PHASE 2 | T | Arm 1: Vaccine Arm 2: Placebo Arm 3: Ancillary Treatment | |
NCT02337686 | Recurrent Malignant Glioma | Y | PHASE 2 | NR | Pembrolizumab + Surgery | |
NCT03661723 | Bevacizumab Naïve and Bevacizumab Resistant Recurrent Glioblastoma | Y | PHASE 2 | NR | Arm 1: COH A - Dose Level 0 (200 mg Pembrolizumab once every 3 Weeks + 2 Weeks of Radiation) Arm 2: COH B - Dose Level 0 (200 mg Pembrolizumab + 15 mg/kg Bevacizumab once every 3 Weeks + 2 Weeks of Radiation) | |
NCT02337491 | Recurrent Malignant Glioma | Y | PHASE 2 | C | Arm 1: Pembrolizumab + Bevacizumab Arm 2: Pembrolizumab | |
NCT03367715 | Newly Diagnosed, Unmethylated MGMT Glioblastoma | Y | PHASE 2 | C | Nivolumab + Ipilimumab + Short-course radiation therapy | |
NCT04013672 | Glioblastoma at First Recurrence | Y | PHASE 2 | C | Arm 1: Have not received immunotherapy Arm 2: Have failed prior anti-PD-1 therapy | |
NCT05879120 | Recurrent Glioblastoma | N | PHASE 2 | NR | Arm 1: Neoadjuvant Pembrolizumab Arm 2: Exablate MRgFUS + neoadjuvant Pembrolizumab | |
NCT05463848 | Recurrent Glioblastoma | N | PHASE 2 | R | Cohort 1 (Safety Lead In): Pembrolizumab plus Olaparib and Temozolomide Cohort 2 (Surgical Cohort): Arm A - Pembrolizumab plus Olaparib and Temozolomide Cohort 3 (Surgical Cohort): Arm B - Pembrolizumab monotherapy | |
NCT05909618 | 14 | Glioblastoma and Melanoma with Brain Metastases | N | PHASE 2 | R | Cohort 1: Crizanlizumab + Nivolumab in Metastatic melanoma with brain metastases who failed immunotherapy Cohort 2: Crizanlizumab + Nivolumab in Patients with recurrent or progressing Glioblastoma following radiation and Temozolomide Cohort 3: Crizanlizumab + Nivolumab in Patients with newly diagnosed Glioblastoma |
NCT03014804 | Recurrent Glioblastoma | N | PHASE 2 | W | Arm 1: DCVax-L Arm 2: DCVax-L + Nivolumab | |
NCT04225039 | Recurrent Glioblastoma | Y | PHASE 2 | NR | Arm 1: GITR + INCMGA00012 (anti-PD-1) + SRS Arm 2: GITR + INCMGA00012 (anti-PD-1) + SRS + Surgery Arm 3: GITR + INCMGA00012 (anti-PD-1) + Surgery | |
NCT06328036 | Recurrent Glioblastoma | N | PHASE 2 | NR | Arm 1: Neoadjuvant Atezolizumab + Tiragolumab Arm 2: Neoadjuvant Tiragolumab Arm 3: Neoadjuvant Atezolizumab Arm 4: No neoadjuvant drug | |
NCT04817254 | Newly Diagnosed Glioblastoma or Gliosarcoma | N | PHASE 2 | R | Arm 1: Nivolumab + Ipilimumab 1mg/kg + Temozolomide Arm 2: Nivolumab + Ipilimumab 3 mg/kg + Temozolomide | |
NCT03452579 | Recurrent Glioblastoma | N | PHASE 2 | NR | Arm 1: Nivolumab + Standard dose Bevacizumab 10 mg/kg Arm 2: Nivolumab + Low dose Bevacizumab 3 mg/kg | |
NCT06325683 | Recurrent Glioblastoma | N | PHASE 2 | NR | Arm 1: Nivolumab + Relatlimab Arm 2: Lomustine | |
NCT06558214 | OPTIMUS PRIME | Recurrent Glioblastoma | N | PHASE 2 | NR | Arm 1: Optune GIO® pre-MLA; MLA; followed by Optune GIO® + Pembrolizumab post MLA Arm 2: Optune GIO® + Pembrolizumab pre-MLA; MLA; followed by Optune GIO® + Pembrolizumab post MLA |
NCT04118036 | Recurrent Glioblastoma | N | PHASE 2 | W | Arm 1: Pembrolizumab + Abemaciclib + Surgery Arm 2: Pembrolizumab + Abemaciclib + non-surgery | |
NCT03797326 | Previously Treated Subjects with Selected Solid Tumors (LEAP-005) | N | PHASE 2 | NR | Arm 1: Pembrolizumab + Lenvatinib Arm 2: Lenvatinib monotherapy | |
NCT03197506 | Newly Diagnosed Glioblastoma | N | PHASE 2 | S | Arm 1: Pembrolizumab + Surgery + Temozolomide + Radiation Arm 2: Pembrolizumab + Temozolomide + Radiation therapy | |
NCT04195139 | NUTMEG | Newly Diagnosed Elderly Patients with Glioblastoma (NUTMEG) | N | PHASE 2 | NR | Arm 1: Radiotherapy + Nivolumab and Temozolomide Arm 2: Radiotherapy + Temozolomide |
NCT03743662 | Recurrent MGMT Methylated Glioblastoma | N | PHASE 2 | NR | Arm 1: Re-irradiation + Bevacizumab + Nivolumab + Recurrent Glioblastoma + No Surgery Arm 2: Re-irradiation + Bevacizumab + Nivolumab + Recurrent Glioblastoma + Surgery | |
NCT04729959 | Recurrent Glioblastoma | N | PHASE 2 | R | Arm 1: Tocilizumab + Atezolizumab + FSRadiation Arm 2: Tocilizumab + Atezolizumab + FSRadiation + surgery Arm 3: Tocilizumab + Atezolizumab + FSRadiation + surgery | |
NCT03890952 | Recurrent Glioblastoma | N | PHASE 2 | NR | Arm B: Nivolumab and Bevacizumab in patients not undergoing salvage surgery Arm A: Nivolumab and Bevacizumab in patients undergoing salvage surgery | |
NCT02798406 | CAPTIVE | Recurrent Glioblastoma or Gliosarcoma (CAPTIVE/KEYNOTE-192) | N | PHASE 2 | C | DNX-2401 + Pembrolizumab |
NCT05465954 | Recurrent Glioblastoma | N | PHASE 2 | R | Efineptakin alfa + Pembrolizumab before and after surgery | |
NCT03347617 | Glioblastoma | N | PHASE 2 | NR | Ferumoxytol MRI + Pembrolizumab | |
NCT05074992 | NeAT Glio | Newly Diagnosed Glioblastoma | N | PHASE 2 | T | Ipilimumab |
NCT04479241 | Recurrent Glioblastoma | N | PHASE 2 | NR | Lerapolturev + Pembrolizumab | |
NCT02550249 | Neo-Nivolumab | Glioblastoma | N | PHASE 2 | C | Nivolumab |
NCT04145115 | Somatically Hypermutated Recurrent WHO Grade 4 Glioma | N | PHASE 2 | S | Nivolumab + Ipilimumab | |
NCT03718767 | IDH-Mutant Gliomas with and without Hypermutator Phenotype | N | PHASE 2 | R | Nivolumab in IDH-mutant gliomas patients with and without HMP in response | |
NCT03899857 | PERGOLA | Newly Diagnosed Glioblastoma | N | PHASE 2 | NR | Pembrolizumab + Temozolomide-based chemoradiation |
NCT06069726 | MOAB | Recurrent Glioblastoma | N | PHASE 2 | R | Pre-Surgery Atezolizumab |
NCT03405792 | 2-THE-TOP | Newly Diagnosed Glioblastoma | Y | PHASE 2 | NR | Arm 1: Optune system combined with Temozolomide + Pembrolizumab Arm 2: Historical control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nader, N.E.; Frederico, S.C.; Miller, T.; Huq, S.; Zhang, X.; Kohanbash, G.; Hadjipanayis, C.G. Barriers to T Cell Functionality in the Glioblastoma Microenvironment. Cancers 2024, 16, 3273. https://doi.org/10.3390/cancers16193273
Nader NE, Frederico SC, Miller T, Huq S, Zhang X, Kohanbash G, Hadjipanayis CG. Barriers to T Cell Functionality in the Glioblastoma Microenvironment. Cancers. 2024; 16(19):3273. https://doi.org/10.3390/cancers16193273
Chicago/Turabian StyleNader, Noor E., Stephen C. Frederico, Tracy Miller, Sakibul Huq, Xiaoran Zhang, Gary Kohanbash, and Constantinos G. Hadjipanayis. 2024. "Barriers to T Cell Functionality in the Glioblastoma Microenvironment" Cancers 16, no. 19: 3273. https://doi.org/10.3390/cancers16193273
APA StyleNader, N. E., Frederico, S. C., Miller, T., Huq, S., Zhang, X., Kohanbash, G., & Hadjipanayis, C. G. (2024). Barriers to T Cell Functionality in the Glioblastoma Microenvironment. Cancers, 16(19), 3273. https://doi.org/10.3390/cancers16193273