A Proteomic Analysis of Nasopharyngeal Carcinoma in a Moroccan Subpopulation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation
2.3. LC-MS/MS Analysis
2.4. Bioinformatics and Data Analysis
2.4.1. Protein Identification and Quantification
2.4.2. Differential Expression Analysis
2.4.3. Pathway Analysis
2.4.4. Statistical Analysis
3. Results
3.1. Proteomic Analysis
3.2. Determination of Proteomically Defined Patient Groups
3.3. Examination of Stage-Dependent Differences in NPC
3.4. Examination of Sex-Dependent Differences in NPC
3.5. Examination of Tumor-Specific Differences in Proteomics Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badoual, C. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Oropharynx and Nasopharynx. Head Neck Pathol. 2022, 16, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Dubrulle, F.; Souillard, R.; Hermans, R. Extension Patterns of Nasopharyngeal Carcinoma. Eur. Radiol. 2007, 17, 2622–2630. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Pineros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Cancer Today. Available online: https://gco.iarc.who.int/today/ (accessed on 3 April 2024).
- Reffai, A.; Mesmoudi, M.; Derkaoui, T.; Ghailani Nourouti, N.; Barakat, A.; Sellal, N.; Mallick, P.; Bennani Mechita, M. Epidemiological Profile and Clinicopathological, Therapeutic, and Prognostic Characteristics of Nasopharyngeal Carcinoma in Northern Morocco. Cancer Control 2021, 28, 10732748211050587. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Qu, J.; Peng, Q.; Gan, R. Molecular Mechanisms of EBV-Driven Cell Cycle Progression and Oncogenesis. Med. Microbiol. Immunol. 2019, 208, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.M.; Lui, V.W.Y.; Bruce, J.P.; Pugh, T.J.; Lo, K.W. Translational Genomics of Nasopharyngeal Cancer. Semin. Cancer Biol. 2020, 61, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.C.W.; Hui, E.P.; Lo, K.-W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.-F.; King, A.D.; et al. Nasopharyngeal Carcinoma: An Evolving Paradigm. Nat. Rev. Clin. Oncol. 2021, 18, 679–695. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.Y.; Siak, P.Y.; Leong, C.-O.; Cheah, S.-C. Nasopharyngeal Carcinoma and Its Microenvironment: Past, Current, and Future Perspectives. Front. Oncol. 2022, 12, 840467. [Google Scholar] [CrossRef]
- Tan, G.W.; Visser, L.; Tan, L.P.; van den Berg, A.; Diepstra, A. The Microenvironment in Epstein–Barr Virus-Associated Malignancies. Pathogens 2018, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Luo, W. Nasopharyngeal Carcinoma Ecology Theory: Cancer as Multidimensional Spatiotemporal “Unity of Ecology and Evolution” Pathological Ecosystem. Theranostics 2023, 13, 1607–1631. [Google Scholar] [CrossRef]
- Ellis, M.J.; Gillette, M.; Carr, S.A.; Paulovich, A.G.; Smith, R.D.; Rodland, K.K.; Townsend, R.R.; Kinsinger, C.; Mesri, M.; Rodriguez, H.; et al. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 2013, 3, 1108–1112. [Google Scholar] [CrossRef]
- Mertins, P.; Mani, D.R.; Ruggles, K.V.; Gillette, M.A.; Clauser, K.R.; Wang, P.; Wang, X.; Qiao, J.W.; Cao, S.; Petralia, F.; et al. Proteogenomics Connects Somatic Mutations to Signalling in Breast Cancer. Nature 2016, 534, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Corbo, C.; Cevenini, A.; Salvatore, F. Biomarker Discovery by Proteomics-Based Approaches for Early Detection and Personalized Medicine in Colorectal Cancer. Proteom. Clin. Appl. 2017, 11, 1600072. [Google Scholar] [CrossRef] [PubMed]
- Fredolini, C.; Pathak, K.V.; Paris, L.; Chapple, K.M.; Tsantilas, K.A.; Rosenow, M.; Tegeler, T.J.; Garcia-Mansfield, K.; Tamburro, D.; Zhou, W.; et al. Shotgun Proteomics Coupled to Nanoparticle-Based Biomarker Enrichment Reveals a Novel Panel of Extracellular Matrix Proteins as Candidate Serum Protein Biomarkers for Early-Stage Breast Cancer Detection. Breast Cancer Res. 2020, 22, 135. [Google Scholar] [CrossRef] [PubMed]
- Hughes, N.P.; Xu, L.; Nielsen, C.H.; Chang, E.; Hori, S.S.; Natarajan, A.; Lee, S.; Kjær, A.; Kani, K.; Wang, S.X.; et al. A Blood Biomarker for Monitoring Response to Anti-EGFR Therapy. Cancer Biomark. 2018, 22, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Chen, Z. Deciphering Nasopharyngeal Carcinoma Pathogenesis via Proteomics. Expert. Rev. Proteom. 2019, 16, 475–485. [Google Scholar] [CrossRef]
- Li, Z.; Li, N.; Shen, L.; Fu, J. Quantitative Proteomic Analysis Identifies MAPK15 as a Potential Regulator of Radioresistance in Nasopharyngeal Carcinoma Cells. Front. Oncol. 2018, 8, 548. [Google Scholar] [CrossRef]
- Rong, D.; Lin, X.; Luo, Y.; Mok, T.S.; Wang, Q.; Wang, H.; Zhang, T. Identification of the Differentially Expressed Proteins in Nasopharyngeal Carcinoma by Proteomics. Transl. Cancer Res. 2020, 9, 21–29. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant Computational Platform for Mass Spectrometry-Based Shotgun Proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- Fu, Y.; Liang, X.; Yang, X.; Liu, J.; Huang, H.; Zhang, P.; Li, S.; Zhu, D.; Zhang, Y.; Peng, F.; et al. Proteomics Profiling Reveals the Molecular Signatures and Potential Therapeutic Targets of Human Nasopharyngeal Carcinoma. Mol. Cell. Proteom. 2023, 22, 100567. [Google Scholar] [CrossRef]
- Kohler, D.; Staniak, M.; Tsai, T.-H.; Huang, T.; Shulman, N.; Bernhardt, O.M.; MacLean, B.X.; Nesvizhskii, A.I.; Reiter, L.; Sabido, E.; et al. MSstats Version 4.0: Statistical Analyses of Quantitative Mass Spectrometry-Based Proteomic Experiments with Chromatography-Based Quantification at Scale. J. Proteome Res. 2023, 22, 1466–1482. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Tian, Q.; Gao, H.; Wu, K.; Wang, B.; Ge, G.; Jiang, S.; Wang, K.; Zhou, C.; He, J.; et al. PROX1 Promotes Breast Cancer Invasion and Metastasis through WNT/β-Catenin Pathway via Interacting with hnRNPK. Int. J. Biol. Sci. 2022, 18, 2032–2046. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.-C.; Chen, L.-C.; Chung, A.-K.; Chao, M.; Huang, H.-Y.; Hsueh, C.; Tsang, N.-M.; Chang, K.-P.; Liang, Y.; Li, H.-P.; et al. Matrix Metalloproteinase 12 Is Induced by Heterogeneous Nuclear Ribonucleoprotein K and Promotes Migration and Invasion in Nasopharyngeal Carcinoma. BMC Cancer 2014, 14, 348. [Google Scholar] [CrossRef]
- Choudhury, R.; Roy, S.G.; Tsai, Y.S.; Tripathy, A.; Graves, L.M.; Wang, Z. The Splicing Activator DAZAP1 Integrates Splicing Control into MEK/Erk-Regulated Cell Proliferation and Migration. Nat. Commun. 2014, 5, 3078. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.J.; Li, G.P.; Lu, W.; Yan, Z.; Wang, Y. DAZAP1 Overexpression Promotes Growth of HCC Cell Lines: A Primary Study Using CEUS. Clin. Transl. Oncol. 2022, 24, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Bei, J.-X.; Li, Y.; Jia, W.-H.; Feng, B.-J.; Zhou, G.; Chen, L.-Z.; Feng, Q.-S.; Low, H.-Q.; Zhang, H.; He, F.; et al. A Genome-Wide Association Study of Nasopharyngeal Carcinoma Identifies Three New Susceptibility Loci. Nat. Genet. 2010, 42, 599–603. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Q.; Liu, Y. E2F3 Renders an Immunosuppressive Tumor Microenvironment in Nasopharyngeal Carcinoma: Involvements of the Transcription Activation of PRC1 and BIRC5. Immun. Inflamm. Dis. 2023, 11, e987. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chen, M.-S.; Lee, T.-Y.; Huang, T.-S.; Cho, D.-Y.; Chen, J.-Y. Epstein-Barr Virus BRLF1 Induces PD-L1 Expression in Nasopharyngeal Carcinoma Cells. Viral Immunol. 2024, 37, 115–123. [Google Scholar] [CrossRef]
- Berntsson, J.; Nodin, B.; Eberhard, J.; Micke, P.; Jirström, K. Prognostic Impact of Tumour-Infiltrating B Cells and Plasma Cells in Colorectal Cancer. Int. J. Cancer 2016, 139, 1129–1139. [Google Scholar] [CrossRef]
- Schmidt, M.; Hellwig, B.; Hammad, S.; Othman, A.; Lohr, M.; Chen, Z.; Boehm, D.; Gebhard, S.; Petry, I.; Lebrecht, A.; et al. A Comprehensive Analysis of Human Gene Expression Profiles Identifies Stromal Immunoglobulin κ C as a Compatible Prognostic Marker in Human Solid Tumors. Clin. Cancer Res. 2012, 18, 2695–2703. [Google Scholar] [CrossRef]
- Cao, D.; Xue, J.; Huang, G.; An, J.; An, W. The Role of Splicing Factor PRPF8 in Breast Cancer. Technol. Health Care 2022, 30, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Blázquez-Encinas, R.; García-Vioque, V.; Caro-Cuenca, T.; Moreno-Montilla, M.T.; Mangili, F.; Alors-Pérez, E.; Ventura, S.; Herrera-Martínez, A.D.; Moreno-Casado, P.; Calzado, M.A.; et al. Altered Splicing Machinery in Lung Carcinoids Unveils NOVA1, PRPF8 and SRSF10 as Novel Candidates to Understand Tumor Biology and Expand Biomarker Discovery. J. Transl. Med. 2023, 21, 879. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.G.; Lai, P.B.S.; Chan, P.K.S.; Chak, E.C.W.; Yip, J.H.Y.; Ho, R.L.K.; Leung, B.C.S.; Lau, W.Y. Decreased Expression of Bid in Human Hepatocellular Carcinoma Is Related to Hepatitis B Virus X Protein. Eur. J. Cancer 2001, 37, 1695–1702. [Google Scholar] [CrossRef] [PubMed]
- Sivaprasad, U.; Shankar, E.; Basu, A. Downregulation of Bid Is Associated with PKCɛ-Mediated TRAIL Resistance. Cell Death Differ. 2007, 14, 851–860. [Google Scholar] [CrossRef]
- Xie, S.-H.; Yu, I.T.-S.; Tse, L.-A.; Mang, O.W.; Yue, L. Sex Difference in the Incidence of Nasopharyngeal Carcinoma in Hong Kong 1983–2008: Suggestion of a Potential Protective Role of Oestrogen. Eur. J. Cancer 2013, 49, 150–155. [Google Scholar] [CrossRef]
- Dong, W.; Peng, Q.; Liu, Z.; Xie, Z.; Guo, X.; Li, Y.; Chen, C. Estrogen Plays an Important Role by Influencing the NLRP3 Inflammasome. Biomed. Pharmacother. 2023, 167, 115554. [Google Scholar] [CrossRef]
- Cui, L.; Chen, Z.; Zeng, F.; Jiang, X.; Han, X.; Yuan, X.; Wu, S.; Feng, H.; Lin, D.; Lu, W.; et al. Impact of Sex on Treatment-Related Adverse Effects and Prognosis in Nasopharyngeal Carcinoma. BMC Cancer 2023, 23, 1146. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Xie, S.-H.; Yu, I.T.-S.; Tse, L.A.; Au, J.S.K.; Lau, J.S.M. Occupational Risk Factors for Nasopharyngeal Carcinoma in Hong Kong Chinese: A Case-Referent Study. Int. Arch. Occup. Environ. Health 2017, 90, 443–449. [Google Scholar] [CrossRef]
- Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; et al. High Frequency of Mutations of the PIK3CA Gene in Human Cancers. Science 2004, 304, 554. [Google Scholar] [CrossRef]
- Karakas, B.; Bachman, K.E.; Park, B.H. Mutation of the PIK3CA Oncogene in Human Cancers. Br. J. Cancer 2006, 94, 455–459. [Google Scholar] [CrossRef]
- Tharin, Z.; Richard, C.; Derangère, V.; Ilie, A.; Arnould, L.; Ghiringhelli, F.; Boidot, R.; Ladoire, S. PIK3CA and PIK3R1 Tumor Mutational Landscape in a Pan-Cancer Patient Cohort and Its Association with Pathway Activation and Treatment Efficacy. Sci. Rep. 2023, 13, 4467. [Google Scholar] [CrossRef] [PubMed]
- Fendri, A.; Khabir, A.; Mnejja, W.; Sellami-Boudawara, T.; Daoud, J.; Frikha, M.; Ghorbel, A.; Gargouri, A.; Mokdad-Gargouri, R. PIK3CA Amplification Is Predictive of Poor Prognosis in Tunisian Patients with Nasopharyngeal Carcinoma. Cancer Sci. 2009, 100, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Yip, W.K.; He, P.Y.; Abdullah, M.A.; Yusoff, S.; Seow, H.F. Increased Expression of Phosphatidylinositol 3-Kinase P110α and Gene Amplification of PIK3CA in Nasopharyngeal Carcinoma. Pathol. Oncol. Res. 2016, 22, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Verret, B.; Cortes, J.; Bachelot, T.; Andre, F.; Arnedos, M. Efficacy of PI3K Inhibitors in Advanced Breast Cancer. Ann. Oncol. 2019, 30 (Suppl. S10), x12–x20. [Google Scholar] [CrossRef] [PubMed]
- Baugher, P.J.; Krishnamoorthy, L.; Price, J.E.; Dharmawardhane, S.F. Rac1 and Rac3 Isoform Activation Is Involved in the Invasive and Metastatic Phenotype of Human Breast Cancer Cells. Breast Cancer Res. 2005, 7, R965–R974. [Google Scholar] [CrossRef]
- Haga, R.B.; Ridley, A.J. Rho GTPases: Regulation and Roles in Cancer Cell Biology. Small GTPases 2016, 7, 207–221. [Google Scholar] [CrossRef]
- Qi, Y.; Huang, B.; Yu, L.; Wang, Q.; Lan, G.; Zhang, Q. Prognostic Value of Tiam1 and Rac1 Overexpression in Nasopharyngeal Carcinoma. ORL J. Otorhinolaryngol. Relat. Spec. 2009, 71, 163–171. [Google Scholar] [CrossRef]
- Knight, T.; Luedtke, D.; Edwards, H.; Taub, J.W.; Ge, Y. A Delicate Balance—The BCL-2 Family and Its Role in Apoptosis, Oncogenesis, and Cancer Therapeutics. Biochem. Pharmacol. 2019, 162, 250–261. [Google Scholar] [CrossRef]
- Chen, M.-K.; Yang, S.-F.; Lai, J.-C.; Yeh, K.-T.; Yang, J.-S.; Chen, L.-S.; Chen, H.-C. Expression of Bcl-2 Correlates with Poor Prognosis and Modulates Migration of Nasopharyngeal Carcinoma Cells. Clin. Chim. Acta 2010, 411, 400–405. [Google Scholar] [CrossRef]
- García-Hernández, L.; García-Ortega, M.B.; Ruiz-Alcalá, G.; Carrillo, E.; Marchal, J.A.; García, M.Á. The P38 MAPK Components and Modulators as Biomarkers and Molecular Targets in Cancer. Int. J. Mol. Sci. 2022, 23, 370. [Google Scholar] [CrossRef] [PubMed]
- Farhat, F.; Daulay, E.R.; Chrestella, J.; Asnir, R.A.; Yudhistira, A.; Susilo, R.R. Correlation of P38 Mitogen-Activated Protein Kinase Expression to Clinical Stage in Nasopharyngeal Carcinoma. Open Access Maced. J. Med. Sci. 2018, 6, 1982–1985. [Google Scholar] [CrossRef] [PubMed]
- Pua, L.J.W.; Mai, C.-W.; Chung, F.F.-L.; Khoo, A.S.-B.; Leong, C.-O.; Lim, W.-M.; Hii, L.-W. Functional Roles of JNK and P38 MAPK Signaling in Nasopharyngeal Carcinoma. Int. J. Mol. Sci. 2022, 23, 1108. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.A.; Achong, B.G.; Barr, Y.M. VIRUS PARTICLES IN CULTURED LYMPHOBLASTS FROM BURKITT’S LYMPHOMA. Lancet 1964, 1, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.Y.; Siak, P.Y.; Leong, C.-O.; Cheah, S.-C. The Role of Epstein–Barr Virus in Nasopharyngeal Carcinoma. Front. Microbiol. 2023, 14, 1116143. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, Y.; Wang, C.; Gan, R. Signaling Pathways of EBV-Induced Oncogenesis. Cancer Cell Int. 2021, 21, 93. [Google Scholar] [CrossRef]
- Tay, J.K.; Zhu, C.; Shin, J.H.; Zhu, S.X.; Varma, S.; Foley, J.W.; Vennam, S.; Yip, Y.L.; Goh, C.K.; Wang, D.Y.; et al. The Microdissected Gene Expression Landscape of Nasopharyngeal Cancer Reveals Vulnerabilities in FGF and Noncanonical NF-κB Signaling. Sci. Adv. 2022, 8, eabh2445. [Google Scholar] [CrossRef]
- Chou, J.; Lin, Y.-C.; Kim, J.; You, L.; Xu, Z.; He, B.; Jablons, D.M. Nasopharyngeal Carcinoma—Review of the Molecular Mechanisms of Tumorigenesis. Head Neck 2008, 30, 946–963. [Google Scholar] [CrossRef]
- Jin, Z.G.; Lungu, A.O.; Xie, L.; Wang, M.; Wong, C.; Berk, B.C. Cyclophilin A Is a Proinflammatory Cytokine That Activates Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1186–1191. [Google Scholar] [CrossRef]
- Wei, Y.; Jinchuan, Y.; Yi, L.; Jun, W.; Zhongqun, W.; Cuiping, W. Antiapoptotic and Proapoptotic Signaling of Cyclophilin A in Endothelial Cells. Inflammation 2013, 36, 567–572. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.; Zhao, R.; Peng, S.; Luo, Z.; Li, X.; Cao, L.; Tang, K.; Ma, J.; Xiong, W.; et al. Identification of Candidate Biomarkers for the Early Detection of Nasopharyngeal Carcinoma by Quantitative Proteomic Analysis. J. Proteom. 2014, 109, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Liu, L.; Li, Y.; Yang, J.; Zuo, L.; Cao, P.; Yan, Q.; Li, S.; Yang, L.; Cui, T.; et al. Cyclophilin A Binds to AKT1 and Facilitates the Tumorigenicity of Epstein-Barr Virus by Mediating the Activation of AKT/mTOR/NF-κB Positive Feedback Loop. Virol. Sin. 2022, 37, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Miao, X.-P.; Huang, M.-Y.; Deng, L.; Hu, L.-F.; Ernberg, I.; Zeng, Y.-X.; Lin, D.-X.; Shao, J.-Y. Polymorphisms of XRCC1 Genes and Risk of Nasopharyngeal Carcinoma in the Cantonese Population. BMC Cancer 2006, 6, 167. [Google Scholar] [CrossRef]
- Jia, W.-H.; Pan, Q.-H.; Qin, H.-D.; Xu, Y.-F.; Shen, G.-P.; Chen, L.; Chen, L.-Z.; Feng, Q.-S.; Hong, M.-H.; Zeng, Y.-X.; et al. A Case–Control and a Family-Based Association Study Revealing an Association between CYP2E1 Polymorphisms and Nasopharyngeal Carcinoma Risk in Cantonese. Carcinogenesis 2009, 30, 2031–2036. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.-M.; Zhu, X.-W.; Zhao, M.; Zuo, X.-B.; Huang, Z.-X.; Liu, X.; Jiang, T.; Yang, X.-X.; Li, X.; Long, X.-B.; et al. A Regulatory Mutant on TRIM26 Conferring the Risk of Nasopharyngeal Carcinoma by Inducing Low Immune Response. Cancer Med. 2018, 7, 3848–3861. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Liu, B.; Cao, Y.; Sun, T.; Li, Y. Unveiling the Molecular Structure and Role of RBBP4/7: Implications for Epigenetic Regulation and Cancer Research. Front. Mol. Biosci. 2023, 10, 1276612. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Yu, X.-P.; Bai, X.-H.; Zhang, W.-F.; Zhang, Y.; Zhao, W.-M.; Jia, J.-H.; Tang, W.; Zhou, Y.-B.; Liu, C. RbAp48 Is a Critical Mediator Controlling the Transforming Activity of Human Papillomavirus Type 16 in Cervical Cancer. J. Biol. Chem. 2007, 282, 26381–26391. [Google Scholar] [CrossRef]
- Wheeler, L.J.; Watson, Z.L.; Qamar, L.; Yamamoto, T.M.; Sawyer, B.T.; Sullivan, K.D.; Khanal, S.; Joshi, M.; Ferchaud-Roucher, V.; Smith, H.; et al. Multi-Omic Approaches Identify Metabolic and Autophagy Regulators Important in Ovarian Cancer Dissemination. iScience 2019, 19, 474–491. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, H.; Zhang, J.; Wang, Y.; Liu, P.; Xuan, X.; Li, Q.; Du, Y. Identification of Key Gene Modules and Genes in Colorectal Cancer by Co-Expression Analysis Weighted Gene Co-Expression Network Analysis. Biosci. Rep. 2020, 40, BSR20202044. [Google Scholar] [CrossRef]
- Mertsch, S.; Becker, M.; Lichota, A.; Paulus, W.; Senner, V. Vesicle Amine Transport Protein-1 (VAT-1) Is Upregulated in Glioblastomas and Promotes Migration. Neuropathol. Appl. Neurobiol. 2009, 35, 342–352. [Google Scholar] [CrossRef]
- Heng, W.; Wei, F.; Li, W.; Li, Q.; Xiong, D.-L.; Ma, Y.-Y.; Zhang, D.-H. Expression of VAT1 in Hepatocellular Carcinoma and Its Clinical Significance. Neoplasma 2021, 68, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Liu, L. Downregulation of MARC2 Promotes Immune Escape and Is Associated With Immunosuppression of Hepatocellular Carcinoma. Front. Genet. 2022, 12, 790093. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Shah, S.G.; Verma, T.; Chaudhary, N.; Rauniyar, S.; Patel, V.B.; Gera, P.B.; Smoot, D.; Ashaktorab, H.; Dalal, S.N.; et al. Tumor-Specific Overexpression of Histone Gene, H3C14 in Gastric Cancer Is Mediated through EGFR-FOXC1 Axis. Biochim. Biophys. Acta Gene Regul. Mech. 2021, 1864, 194703. [Google Scholar] [CrossRef] [PubMed]
Condition | Samples | DEPs | Up-Regulated Proteins | Down-Regulated Proteins |
---|---|---|---|---|
NPC cluster 1 vs. 2 | 41 | 153 | 129 | 24 |
NPC cluster 1 vs. 3 | 41 | 544 | 468 | 76 |
NPC cluster 2 vs. 3 | 41 | 475 | 29 | 446 |
NPC vs. control | 62 | 1507 | 1408 | 99 |
Male vs. female | 41 | 59 | 30 | 29 |
Early vs. advanced stage of NPC | 22 | 27 | 9 | 17 |
DEPs | Cluster Comparisons | Log2FC | p-Value |
---|---|---|---|
RBBP7 | 1 vs. 2 | −6.76 | 6.07 × 10−8 |
SRSF10 | 1 vs. 2 | 2.75 | 3.12 × 10−6 |
FKBP4 | 1 vs. 2 | 3.81 | 1.01 × 10−4 |
HCFC1 | 1 vs. 2 | −1.03 | 3.07 × 10−4 |
MBNL1 | 1 vs. 2 | −2.35 | 4.1 × 10−4 |
AASDHPPT | 1 vs. 2 | 2.08 | 4.8 × 10−4 |
GBP5 | 1 vs. 2 | 3.65 | 4.8 × 10−4 |
PSMA5 | 1 vs. 2 | 2.18 | 5.05 × 10−4 |
CNP | 1 vs. 2 | 3.02 | 6.01 × 10−4 |
ACADVL | 1 vs. 2 | 2.27 | 9.31 × 10−4 |
HNRNPA2B1 | 1 vs. 3 and 2 vs. 3 | 2.89 and −4.02 | 2.66 × 10−14 and 2.17 × 10−9 |
HNRNPK | 1 vs. 3 | 2.95 | 9.32 × 10−12 |
H2BC21 | 1 vs. 3 and 2 vs. 3 | 3.62 and −5.67 | 9.86 × 10−12 and 3.31 × 10−9 |
CPSF6 | 1 vs. 3 and 2 vs. 3 | 2.03 and −2.90 | 1.16 × 10−11 and 2.55 × 10−8 |
MACROH2A1 | 1 vs. 3 and 2 vs. 3 | 2.49 and −3.67 | 1.22 × 10−11 and 3.64 × 10−8 |
PPIA | 1 vs. 3 and 2 vs. 3 | 1.92 and −2.75 | 1.41 × 10−11 and 1.28 × 10−7 |
RPS3 | 1 vs. 3 | 1.89 | 2.19 × 10−11 |
DDX39B | 1 vs. 3 and 2 vs. 3 | 6.86 and −6.97 | 5.91 × 10−11 and 6.01 × 10−10 |
DAZAP1 | 1 vs. 3 | 2.15 | 6.74 × 10−11 |
UBA1 | 1 vs. 3 and 2 vs. 3 | 2.32 and −3.66 | 6.76 × 10−11 and 6.92 × 10−8 |
ILF2 | 2 vs. 3 | −3.25 | 6.-36 × 10−9 |
HSP90AB1 | 2 vs. 3 | −5.73 | 7.76 × 10−8 |
RBM39 | 2 vs. 3 | −2.95 | 1.29 × 10−7 |
DEPs | Log2FC | p-Value | adj-p-Value |
---|---|---|---|
Ribosomal_uL29 | 3.9609439 | 2.22 × 10−16 | 8.67 × 10−15 |
MAPK14 | 7.99893619 | 2.22 × 10−16 | 8.67 × 10−15 |
LRRC59 | 4.44564909 | 2.22 × 10−16 | 8.67 × 10−15 |
ADH7 | 11.069019 | 2.22 × 10−16 | 8.67 × 10−15 |
KIF2A | 4.01748049 | 2.22 × 10−16 | 8.67 × 10−15 |
PPIA | −4.298877 | 2.22 × 10−16 | 8.67 × 10−15 |
HEXB | 14.2337803 | 4.44 × 10−16 | 1.64 × 10−14 |
FAH | 6.91773695 | 4.44 × 10−16 | 1.64 × 10−14 |
CYB5R1 | 5.68420721 | 4.44 × 10−16 | 1.64 × 10−14 |
COPS3 | 3.70358234 | 4.44 × 10−16 | 1.64 × 10−14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reffai, A.; Hori, M.; Adusumilli, R.; Bermudez, A.; Bouzoubaa, A.; Pitteri, S.; Bennani Mechita, M.; Mallick, P. A Proteomic Analysis of Nasopharyngeal Carcinoma in a Moroccan Subpopulation. Cancers 2024, 16, 3282. https://doi.org/10.3390/cancers16193282
Reffai A, Hori M, Adusumilli R, Bermudez A, Bouzoubaa A, Pitteri S, Bennani Mechita M, Mallick P. A Proteomic Analysis of Nasopharyngeal Carcinoma in a Moroccan Subpopulation. Cancers. 2024; 16(19):3282. https://doi.org/10.3390/cancers16193282
Chicago/Turabian StyleReffai, Ayman, Michelle Hori, Ravali Adusumilli, Abel Bermudez, Abdelilah Bouzoubaa, Sharon Pitteri, Mohcine Bennani Mechita, and Parag Mallick. 2024. "A Proteomic Analysis of Nasopharyngeal Carcinoma in a Moroccan Subpopulation" Cancers 16, no. 19: 3282. https://doi.org/10.3390/cancers16193282
APA StyleReffai, A., Hori, M., Adusumilli, R., Bermudez, A., Bouzoubaa, A., Pitteri, S., Bennani Mechita, M., & Mallick, P. (2024). A Proteomic Analysis of Nasopharyngeal Carcinoma in a Moroccan Subpopulation. Cancers, 16(19), 3282. https://doi.org/10.3390/cancers16193282