First-Line Use of Daratumumab in Patients with Multiple Myeloma Shows Delayed Neutrophil and Platelet Engraftment after Autologous Stem Cell Transplantation: Results from a Real-Life Single-Center Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment
2.3. Endpoints
2.4. Statistical Analysis
3. Results
3.1. Analysis of Outcome Variables by Treatment
3.2. FN, Mucositis, and Diarrhea
3.3. Transfusions
3.4. Discharge
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ludwig, H.; Novis Durie, S.; Meckl, A.; Hinke, A.; Durie, B. Multiple Myeloma Incidence and Mortality Around the Globe; Interrelations between Health Access and Quality, Economic Resources, and Patient Empowerment. Oncologist 2020, 25, e1406–e1413. [Google Scholar] [CrossRef] [PubMed]
- Gulla, A.; Anderson, K.C. Multiple myeloma: The (r)evolution of current therapy and a glance into future. Haematologica 2020, 105, 2358–2367. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Callander, N.S.; Adekola, K.; Anderson, L.D., Jr.; Baljevic, M.; Baz, R.; Campagnaro, E.; Castillo, J.J.; Costello, C.; D’Angelo, C.; et al. Multiple Myeloma, Version 2.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 1281–1301. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Jin, S.Y. Meta-analysis of the efficacy and safety of daratumumab in the treatment of multiple myeloma. World J. Clin. Cases 2023, 11, 7091–7100. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, P.M.; Sborov, D.W.; Laubach, J.; Kaufman, J.L.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Addition of daratumumab to lenalidomide, bortezomib, and dexamethasone for transplantation-eligible patients with newly diagnosed multiple myeloma (GRIFFIN): Final analysis of an open-label, randomised, phase 2 trial. Lancet Haematol. 2023, 10, e825–e837. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38, Erratum in Lancet 2019, 404, E3. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Hulin, C.; Perrot, A.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Zweegman, S.; Caillon, H.; Caillot, D.; Avet-Loiseau, H.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab and followed by daratumumab maintenance or observation in transplant-eligible newly diagnosed multiple myeloma: Long-term follow-up of the CASSIOPEIA randomised controlled phase 3 trial. Lancet Oncol. 2024, 25, 1003–1014. [Google Scholar] [CrossRef]
- Chhabra, S.; Callander, N.; Watts, N.L.; Costa, L.J.; Thapa, B.; Kaufman, J.L.; Laubach, J.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; et al. Stem Cell Mobilization Yields with Daratumumab- and Lenalidomide-Containing Quadruplet Induction Therapy in Newly Diagnosed Multiple Myeloma: Findings from the MASTER and GRIFFIN Trials. Transplant. Cell. Ther. 2023, 29, 174.e1–174.e10. [Google Scholar] [CrossRef]
- Bigi, F.; Manzato, E.; Barbato, S.; Talarico, M.; Puppi, M.; Masci, S.; Sacchetti, I.; Restuccia, R.; Iezza, M.; Rizzello, I.; et al. Impact of Anti-CD38 Monoclonal Antibody Therapy on CD34+ Hematopoietic Stem Cell Mobilization, Collection, and Engraftment in Multiple Myeloma Patients—A Systematic Review. Pharmaceuticals 2024, 17, 944. [Google Scholar] [CrossRef]
- Luan, D.; Christos, P.J.; Ancharski, M.; Guarneri, D.; Pearse, R.; Rossi, A.C.; Shore, T.B.; Mayer, S.; Phillips, A.A.; Hsu, J.; et al. Timing of Daratumumab Administered Pre-Mobilization in Multiple Myeloma Impacts Pre-Harvest Peripheral Blood CD34+ Cell Counts and Plerixafor Use. Blood 2020, 136, 15–16. [Google Scholar] [CrossRef]
- Zappaterra, A.; Civettini, I.; Cafro, A.M.; Pezzetti, L.; Pierini, S.; Anghilieri, M.; Bellio, L.; Bertazzoni, P.; Grillo, G.; Minga, P.; et al. Anti-CD38 monoclonal antibody impairs CD34+ mobilization and affects clonogenic potential in multiple myeloma patients. Blood Transfus. 2024, 22, 328–337. [Google Scholar] [CrossRef]
- Bigi, F.; Tacchetti, P.; Giorgi, A.; Mazzocchetti, G.; Solli, V.; Barbato, S.; Sinigaglia, B.; Campanini, E.; Favero, E.; Talarico, M.; et al. Interference of daratumumab and efficacy of plerixafor on haematopoietic stem cells in Multiple Myeloma patients. Front. Haematol. 2024, 3, 1386973. [Google Scholar] [CrossRef]
- Venglar, O.; Kapustova, V.; AnilkumarSithara, A.; Zihala, D.; Muronova, L.; Sevcikova, T.; Vrana, J.; Vdovin, A.; Radocha, J.; Krhovska, P.; et al. Insight into the mechanism of CD34+ cell mobilisation impairment in multiple myeloma patients treated with anti-CD38 therapy. Br. J. Haematol. 2023, 204, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Hulin, C.; Offner, F.; Moreau, P.; Roussel, M.; Belhadj, K.; Benboubker, L.; Caillot, D.; Facon, T.; Garderet, L.; Kuhnowski, F.; et al. Stem cell yield and transplantation in transplant-eligible newly diagnosed multiple myeloma patients receiving daratumumab + bortezomib/thalidomide/dexamethasone in the phase 3 CASSIOPEIA study. Haematologica 2021, 106, 2257–2260. [Google Scholar] [CrossRef] [PubMed]
- Eleutherakis Papaiakovou, E.; Terpos, E.; Kanellias, N.; Migkou, M.; Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Fotiou, D.; Malandrakis, P.; Theodorakakou, F.; Spiliopoulou, V.; et al. Impact of daratumumab on stem cell mobilization and collection, engraftment and early post-transplant complications among multiple myeloma patients undergoing autologous stem cell transplantation. Leuk. Lymphoma 2023, 64, 2140–2147. [Google Scholar] [CrossRef]
- Cavallaro, G.; Galli, M.; Paris, L.; Stefanoni, P.; Pavoni, C.; Mangiacavalli, S.; Masoni, V.; Palumbo, M.; Pompa, A.; Cafro, A.M.; et al. Impact of the Addition of Daratumumab to the Standard Bortezomib-Thalidomide-Dexamethasone Regimen on Hematopoietic Stem Cell Mobilization and Collection, Post-Transplant Engraftment and Infectious Complications: A Case-Control Multicentre Real-Life Analysis. Blood 2023, 142, 4706. [Google Scholar] [CrossRef]
- Fazio, F.; Passucci, M.; Micozzi, J.; Sorella, S.; Lisi, C.; Fanciullo, D.; Piciocchi, A.; Bafti, M.S.; Martelli, M.; Gozzer, M.; et al. Autologous STEM Cell Collection after Daratumumab, Bortezomib, Thalidomide and Dexamethasone versus Bortezomib, Thalidomide and Dexamethasone in NEWLY Diagnosed Multiple Myeloma: A Real-Life Monocentric Italian Experience. Blood 2023, 142, 6651. [Google Scholar] [CrossRef]
- Manjappa, S.; Fox, R.; Reese, J.; Firoozamand, A.; Schmikla, H.; Nall, S.; Kolk, M.; Caimi, P.F.; Driscoll, J.J.; de Lima, M.; et al. Impact of Daratumumab on Stem Cell Collection, Graft Composition and Engraftment among Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplant. Blood 2020, 136, 35–37. [Google Scholar] [CrossRef]
- Al Saleh, A.S.; Sidiqi, M.H.; Gertz, M.A.; Muchtar, E.; Lacy, M.Q.; Warsame, R.M.; Gonsalves, W.I.; Kourelis, T.V.; Hogan, W.J.; Hayman, S.R.; et al. Delayed neutrophil engraftment in patients receiving Daratumumab as part of their first induction regimen for multiple myeloma. Am. J. Hematol. 2020, 95, E8–E10. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Valcárcel, D.; Sureda, A. Graft Failure. In The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies [Internet], 7th ed.; Carreras, E., Dufour, C., Mohty, M., Kröger, N., Eds.; Springer: Cham, Switzerland, 2019; Chapter 41. [Google Scholar] [CrossRef]
- Carreras, E.; Dufour, C.; Mohty, M.; Kröger, N. (Eds.) The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies [Internet], 7th ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 2021, 32, 309–322, Erratum in Ann. Oncol. 2022, 33, 117. [Google Scholar] [CrossRef]
- Passweg, J.R.; Baldomero, H.; Ciceri, F.; de la Cámara, R.; Glass, B.; Greco, R.; Hazenberg, M.D.; Kalwak, K.; McLornan, D.P.; Neven, B.; et al. Hematopoietic cell transplantation and cellular therapies in Europe 2022. CAR-T activity continues to grow; transplant activity has slowed: A report from the EBMT. Bone Marrow Transplant. 2024, 59, 803–812. [Google Scholar] [CrossRef]
- Attal, M.; Lauwers-Cances, V.; Hulin, C.; Leleu, X.; Caillot, D.; Escoffre, M.; Arnulf, B.; Macro, M.; Belhadj, K.; Garderet, L.; et al. Lenalidomide, Bortezomib, and Dexamethasone with Transplantation for Myeloma. N. Engl. J. Med. 2017, 376, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Gay, F.; Musto, P.; Rota-Scalabrini, D.; Bertamini, L.; Belotti, A.; Galli, M.; Offidani, M.; Zamagni, E.; Ledda, A.; Grasso, M.; et al. Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (FORTE): A randomised, open-label, phase 2 trial. Lancet Oncol. 2021, 22, 1705–1720. [Google Scholar] [CrossRef]
- Cavo, M.; Gay, F.; Beksac, M.; Pantani, L.; Petrucci, M.T.; Dimopoulos, M.A.; Dozza, L.; van der Holt, B.; Zweegman, S.; Oliva, S.; et al. Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): A multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020, 7, e456–e468. [Google Scholar] [CrossRef] [PubMed]
- Parrondo, R.D.; Ailawadhi, S.; Sher, T.; Chanan-Khan, A.A.; Roy, V. Autologous Stem-Cell Transplantation for Multiple Myeloma in the Era of Novel Therapies. JCO Oncol. Pract. 2020, 16, 56–66. [Google Scholar] [CrossRef]
- Morè, S.; Corvatta, L.; Manieri, V.M.; Saraceni, F.; Scortechini, I.; Mancini, G.; Fiorentini, A.; Olivieri, A.; Offidani, M. Autologous Stem Cell Transplantation in Multiple Myeloma: Where Are We and Where Do We Want to Go? Cells 2022, 11, 606. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2024, 390, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma (MASTER): Final report of the multicentre, single-arm, phase 2 trial. Lancet Haematol. 2023, 10, e890–e901. [Google Scholar] [CrossRef]
- Leypoldt, L.B.; Tichy, D.; Besemer, B.; Hanel, M.; Raab, M.S.; Mann, C.; Munder, M.; Reinhardt, H.C.; Nogai, A.; Gorner, M.; et al. Isatuximab, Carfilzomib, Lenalidomide, and Dexamethasone for the Treatment of High-Risk Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2024, 42, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Oza, S.; Slotky, R.; Vissa, P.; Phull, P.; Kaur, S.; Suh, H.C.; Donato, M.L.; Rowley, S.D.; Biran, N.; Vesole, D.H.; et al. Effect of Daratumumab on Stem Cell Mobilization and Engraftment Kinetics Post Autologous Stem Cell Transplantation in Patients with Newly Diagnosed Multiple Myeloma. Blood 2022, 140 (Suppl. S1), 10441–10442. [Google Scholar] [CrossRef]
- de la Cámara, R.; Meisel, R. Vaccinations. In The EBMT Handbook; Sureda, A., Corbacioglu, S., Greco, R., Kröger, N., Carreras, E., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Martino, M.; Russo, L.; Martinello, T.; Gallo, G.A.; Fedele, R.; Moscato, T.; Console, G.; Vincelli, D.I.; Ronco, F.; Postorino, M.; et al. A home-care, early discharge model after autografting in multiple myeloma: Results of a three-arm prospective, non-randomized study. Leuk. Lymphoma 2015, 56, 801–804. [Google Scholar] [CrossRef] [PubMed]
- Martino, M.; Paviglianiti, A.; Memoli, M.; Martinelli, G.; Cerchione, C. Multiple Myeloma Outpatient Transplant Program in the Era of Novel Agents: State-of-the-Art. Front. Oncol. 2020, 10, 592487. [Google Scholar] [CrossRef] [PubMed]
- Martino, M.; Console, G.; Russo, L.; Meliado’, A.; Meliambro, N.; Moscato, T.; Irrera, G.; Messina, G.; Pontari, A.; Morabito, F. Autologous Stem Cell Transplantation in Patients with Multiple Myeloma: An Activity-based Costing Analysis, Comparing a Total Inpatient Model versus an Early Discharge Model. Clin. Lymphoma Myeloma Leuk. 2017, 17, 506–512. [Google Scholar] [CrossRef]
All (n 140) | Vtd (n 80) | D-VTd (n 60) | p Value | |
---|---|---|---|---|
Gender (male), n (%) | 75 (53.6) | 42 (52.5) | 33 (55) | 0.769 |
Age at transplant, mean (SD) | 58.5 (7.7) | 59 (7.9) | 57.8 (7.5) | 0.254 |
Myeloma type | ||||
IgG, n (%) | 98 (70) | 52 (65) | 46 (76.7) | 0.322 |
IgA, n (%) | 26 (18.6) | 17 (21.3) | 9 (15) | |
Micromolecular, n (%) | 16 (11.4) | 11 (13.8) | 5 (8.3) | 0.424 |
Disease status at transplant | ||||
CR/VGPR, n (%) | 51 (83.57) | 28 (83.75) | 23 (83.33) | 0.95 |
PR, n (%) | 23 (16.43) | 13 (16.25) | 10 (16.67) | |
ISS classification | ||||
I stage, n (%) | 33 (23.6) | 18 (22.5) | 15 (25) | 0.63 |
II stage, n (%) | 74 (52.9) | 45 (56.3) | 29 (48.3) | |
III stage, n (%) | 33 (23.6) | 17 (21.3) | 16 (26.7) | |
No. of PLT, median (IQR) | 189,000 (156,000–222,000) | 189,000 (156,000– 221,000) | 189,000 (155,000–230,000) | 0.98 |
No. of WBC, median (IQR) | 5200 (4500–6000) | 5100 (4500–6000) | 5300 (4500–6000) | 0.99 |
CD34+ infused | ||||
Median (IQR) | 4.7 (3.6–5.6) | 4.9 (4–6) | 4.6 (3.3–5.3) | 0.008 |
CD34 < 4, n (%) | 43 (30.7) | 19 (23.8) | 24 (40) | 0.039 |
All | VTd | D-VTd | p Value | |
---|---|---|---|---|
Febrile neutropenia, no. patients (%) | 64 (45.7) | 30 (37.5) | 34 (56.7) | 0.024 |
Fever, WHO grade | ||||
1, n (%) | 47 (73.4) | 18 (60) | 29 (85.3) | 0.022 |
≥2, n (%) | 17 (26.6) | 12 (40) | 5 (14.7) | |
Cause of fever | ||||
FUO, n (%) | 43 (67.2) | 18 (60) | 25 (73.5) | 0.25 |
Documented, n (%) | 21 (32.8) | 12 (40) | 9 (26.5) | |
Median (IQR), days of fever | 2 (1–2.5) | 2 (1–2) | 2 (1–3) | 0.972 |
Mucositis, WHO grade | ||||
0–1, n (%) | 120 (85.7) | 72 (90) | 48 (80) | 0.094 |
≥2, n (%) | 20 (14.3) | 8 (10) | 12 (20) | |
Diarrhea, WHO grade | ||||
0–1, n (%) | 118 (84.3) | 76 (95) | 42 (70) | <0.001 |
≥2, n (%) | 22 (15.7) | 4 (5) | 18 (30) | |
Nausea, WHO grade | ||||
0, n (%) | 100 (71.4) | 59 (73.8) | 41 (68.3) | 0.349 |
1, n (%) | 29 (20.7) | 17 (21.3) | 12 (20) | |
≥2, n (%) | 11 (7.9) | 4 (5) | 7 (11.7) | |
Vomiting, WHO grade | ||||
0, n (%) | 136 (97.1) | 80 (100) | 56 (93.3) | 0.019 |
≥1, n (%) | 4 (2.9) | 0 (0) | 4 (6.7) | |
Patients who required RBC transfusion | 26 (18.6) | 14 (17.5) | 12 (20) | 0.707 |
No. of RBC transfusions, median (IQR) | 1 (1–2) | 1.5 (1–2) | 1 (1–3) | 0.899 |
Patients who required PLT transfusion, n (%) | 69 (49.3) | 33 (41.3) | 36 (60) | 0.028 |
No. of PLT transfusions, median (IQR) | 1 (1–1) | 1 (1–1) | 1 (1–2) | 0.129 |
Median (IQR) days to neutrophil engraftment (ANC ≥ 0.5 × 109/L) | 10 (10–11) | 10 (9–11) | 11 (10–11) | <0.001 |
Median (IQR) days to reach PLT count ≥20 × 109/L | 12 (11–14) | 12 (11–14) | 13 (11.5–14) | 0.02 |
Median (IQR) days to discharge | 13 (12–14) | 13 (12–14) | 13 (12–15) | 0.236 |
Median (IQR) days with neutrophil <100 | 3 (2–4) | 3 (2–3) | 3 (2–4) | 0.017 |
Median (IQR) days with neutrophil <500 | 4 (3–5) | 4 (3–5) | 5 (3.5–5.5) | 0.001 |
Median (IQR) days with neutrophil <1000 | 5 (4–6) | 4 (4–5) | 6 (5–7) | <0.001 |
(a) Univariable Cox Analysis. | ||
HR (95% CI) | p | |
Gender (M vs. F) | 1.09 (0.78–1.52) | 0.617 |
Age at transplant | 1.02 (1–1.04) | 0.110 |
Disease status at transplant PR vs. CR/VGPR | 0.67 (0.43–1.06) | 0.088 |
CD34+ ≥4 vs. <4 | 1.40 (0.97–2.01) | 0.071 |
D-VTd vs. VTD | 0.58 (0.41–0.82) | 0.002 |
(b) Multivariable Cox Analysis. | ||
HR (95% CI) | p | |
Gender (M vs. F) | 1.02 (0.72–1.43) | 0.928 |
Age at transplant | 1.01 (0.99–1.04) | 0.299 |
Disease status at transplant PR vs. CR/VGPR | 0.74 (0.45–1.19) | 0.215 |
CD34+ ≥4 vs. <4 | 1.17 (0.80–1.71) | 0.420 |
D-VTd vs. VTD | 0.59 (0.41–0.84) | 0.003 |
(a) Univariable Cox Analysis. | ||
HR (95% CI) | p | |
Gender (male vs. female) | 1.03 (0.73–1.46) | 0.871 |
Age at transplant | 1 (0.98–1.03) | 0.902 |
Myeloma IgA vs. IgG | 0.96 (0.62–1.5) | 0.859 |
Myeloma micromolecular vs. IgG | 0.46 (0.25–0.83) | 0.010 |
Disease status at transplant PR vs. CR/VGPR | 1.11 (0.68–1.78) | 0.683 |
CD34+ ≥4 vs. <4 | 1.54 (1.04–2.27) | 0.031 |
D-VTd versus VTd | 0.62 (0.43–0.89) | 0.010 |
(b) Multivariable Cox Analysis. | ||
HR (95% CI) | p | |
Gender (M vs. F) | 0.89 (0.61–1.28) | 0.522 |
Age at transplant | 0.99 (0.97–1.02) | 0.530 |
Myeloma IgA vs. IgG | 0.92 (0.58–1.45) | 0.721 |
Micromolecular vs. IgG | 0.43 (0.23–0.79) | 0.007 |
CD34+ ≥4 vs. <4 | 1.36 (0.89–2.06) | 0.153 |
D-VTd versus VTd | 0.63 (0.44–0.92) | 0.017 |
All | No FN | FN | p Value | |
---|---|---|---|---|
Gender male n (%) | 75 (53.6) | 39 (51.3) | 36 (56.3) | 0.56 |
Age at transplant mean (SD) | 58.5 (7.7) | 58.1 (7.5) | 59 (8.1) | 0.297 |
CD34+ < 4 | 43 (30.7) | 22 (28.9) | 21 (32.8) | 0.621 |
Mucositis ≥ 2 grade | 20 (14.3) | 9 (11.8) | 11 (17.2) | 0.368 |
Diarrhea ≥ 2 grade n (%) | 22 (15.7) | 5 (6.6) | 17 (26.6) | 0.001 |
Nausea 0 grade n (%) | 100 (71.4) | 53 (69.7) | 47 (73.4) | 0.793 |
Nausea 1 grade n (%) | 29 (20.7) | 16 (21.1) | 13 (20.3) | |
Nausea ≥ 2 grade n (%) | 11 (7.9) | 7 (9.2) | 4 (6.3) |
(a) Univariable Logistic Analysis. | ||
Univariate | ||
OR (95% CI) | p value | |
Gender (M vs. F) | 1.22 (0.63–2.38) | 0.56 |
Age at transplant | 1.02 (0.97–1.06) | 0.47 |
CD34+ ≥4 vs. <4 | 0.83 (0.41–1.71) | 0.62 |
D-VTd vs. VTd | 2.18 (1.1–4.31) | 0.03 |
(b) Multivariable Logistic Analysis. | ||
Multivariable | ||
OR (95% CI) | p value | |
Gender (male vs. female) | 1.19 (0.6–2.35) | 0.62 |
Age at transplant | 1.02 (0.98–1.07) | 0.37 |
D-VTd vs. VTd | 2.24 (1.12–4.47) | 0.02 |
(a) Univariable Logistic Analysis | ||
Univariable | ||
OR (95% CI) | p value | |
Gender (male vs. female) | 0.68 (0.27–1.7) | 0.407 |
Age at transplant | 1.01 (0.95–1.08) | 0.691 |
D-VTd vs. VTd | 8.14 (2.59–25.64) | 0.000 |
CD34+ ≥4 vs. <4 | 0.47 (0.18–1.18) | 0.108 |
(b) Multivariable Logistic Analysis. | ||
Multivariable | ||
OR (95% CI) | p value | |
Gender (male vs. female) | 0.59 (0.22–1.59) | 0.300 |
Age at transplant | 1.03 (0.96–1.1) | 0.399 |
D-VTd vs. VTd | 8.81 (2.75–28.25) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martino, M.; Gori, M.; Porto, G.; Policastro, G.; Pitea, M.; Sgarlata, A.; Delfino, I.M.; Cogliandro, F.; Scopelliti, A.; Utano, G.; et al. First-Line Use of Daratumumab in Patients with Multiple Myeloma Shows Delayed Neutrophil and Platelet Engraftment after Autologous Stem Cell Transplantation: Results from a Real-Life Single-Center Study. Cancers 2024, 16, 3307. https://doi.org/10.3390/cancers16193307
Martino M, Gori M, Porto G, Policastro G, Pitea M, Sgarlata A, Delfino IM, Cogliandro F, Scopelliti A, Utano G, et al. First-Line Use of Daratumumab in Patients with Multiple Myeloma Shows Delayed Neutrophil and Platelet Engraftment after Autologous Stem Cell Transplantation: Results from a Real-Life Single-Center Study. Cancers. 2024; 16(19):3307. https://doi.org/10.3390/cancers16193307
Chicago/Turabian StyleMartino, Massimo, Mercedes Gori, Gaetana Porto, Giorgia Policastro, Martina Pitea, Annalisa Sgarlata, Ilaria Maria Delfino, Francesca Cogliandro, Anna Scopelliti, Giovanna Utano, and et al. 2024. "First-Line Use of Daratumumab in Patients with Multiple Myeloma Shows Delayed Neutrophil and Platelet Engraftment after Autologous Stem Cell Transplantation: Results from a Real-Life Single-Center Study" Cancers 16, no. 19: 3307. https://doi.org/10.3390/cancers16193307
APA StyleMartino, M., Gori, M., Porto, G., Policastro, G., Pitea, M., Sgarlata, A., Delfino, I. M., Cogliandro, F., Scopelliti, A., Utano, G., Pellicano, M., Idato, A., Vincelli, I. D., Marafioti, V., Micò, M. C., Lazzaro, G., Loteta, B., Alati, C., Leanza, G., ... Pitino, A. (2024). First-Line Use of Daratumumab in Patients with Multiple Myeloma Shows Delayed Neutrophil and Platelet Engraftment after Autologous Stem Cell Transplantation: Results from a Real-Life Single-Center Study. Cancers, 16(19), 3307. https://doi.org/10.3390/cancers16193307