Harnessing Sulforaphane Potential as a Chemosensitizing Agent: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Sulforaphane
Molecular Target/Anti-Cancer Effect of Sulforaphane
3. Chemosensitizing Action of Sulforaphane
3.1. Bladder Cancer
3.2. Brain Cancer
3.3. Breast Cancer
3.4. Colorectal Cancer
3.5. Lung Cancer
3.6. Ovarian Cancer
3.7. Pancreatic Cancer
3.8. Prostate Cancer
3.9. Skin Cancer
3.10. Other Cancers
4. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Bak1 | Bcl-2 homologous antagonist/killer |
Bax | Bcl-2-associated X protein |
Bcl-2 | B-cell lymphoma 2 |
CDK | Cyclin dependent kinase |
CHOP | C/EBP Homologous Protein |
cPARP | Cleaved Poly(ADP-ribose) polymerase |
EMT | Epithelial-mesenchymal transition (EMT) |
GLS | Glucosinolates |
IL | Interleukin |
LC3-II | Microtubule-associated protein 1A/1B-light chain 3-II |
NF-κB | Nuclear factor kappa B |
Nrf2 | NF-E2-related factor 2 |
ROS | Reactive oxygen species |
SFN | Sulforaphane |
TNF-α | Tumor necrosis factor-alpha |
VEGF | Vascular endothelial growth factor |
References
- Saini, A.; Kumar, M.; Bhatt, S.; Saini, V.; Malik, A. Cancer causes and treatments. Int. J. Pharm. Sci. Res. 2020, 11, 3121–3134. [Google Scholar]
- Khatoon, E.; Banik, K.; Harsha, C.; Sailo, B.L.; Thakur, K.K.; Khwairakpam, A.D.; Vikkurthi, R.; Devi, T.B.; Gupta, S.C.; Kunnumakkara, A.B. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin. Cancer Biol. 2022, 80, 306–339. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of Phytochemicals in Cancer Prevention. Int. J. Mol. Sci. 2019, 20, 4981. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer: The next generation. Cell 2011, 144, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef] [PubMed]
- Bordoloi, D.; Kunnumakkara, A.B. The potential of curcumin: A multitargeting agent in cancer cell chemosensitization. In Role of Nutraceuticals in Cancer Chemosensitization; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–60. [Google Scholar]
- Rizeq, B.; Gupta, I.; Ilesanmi, J.; AlSafran, M.; Rahman, M.M.; Ouhtit, A. The Power of Phytochemicals Combination in Cancer Chemoprevention. J. Cancer 2020, 11, 4521–4533. [Google Scholar] [CrossRef] [PubMed]
- Bordoloi, D.; Sailo, B.L.; Manteghi, N.; Padmavathi, G.; Kunnumakkara, A.B. Introduction and basic concepts of cancer. In Cancer Cell Chemoresistance and Chemosensitization; World Scientific: Singapore, 2018; pp. 1–13. [Google Scholar]
- Dogan, E.; Kara, H.G.; Kosova, B.; Cetintas, V.B. Targeting Apoptosis to Overcome Chemotherapy Resistance. In Metastasis; Sergi, C.M., Ed.; Exon Publications: Brisbane, Australia, 2022. [Google Scholar]
- Kim, M.; Bakyt, L.; Akhmetkaliyev, A.; Toktarkhanova, D.; Bulanin, D. Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int. J. Mol. Sci. 2023, 24, 2122. [Google Scholar] [CrossRef]
- Monisha, J.; Padmavathi, G.; Roy, N.K.; Deka, A.; Bordoloi, D.; Anip, A.; Kunnumakkara, A.B. NF-κB blockers gifted by mother nature: Prospectives in cancer cell chemosensitization. Curr. Pharm. Des. 2016, 22, 4173–4200. [Google Scholar] [CrossRef]
- Kannampuzha, S.; Gopalakrishnan, A.V. Cancer chemoresistance and its mechanisms: Associated molecular factors and its regulatory role. Med. Oncol. 2023, 40, 264. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.Y.; Zeng, Y.; Li, Y.J.; Huang, X.J.; Hu, N.; Yao, N.; Chen, M.F.; Yang, Z.G.; Chen, Z.S.; Zhang, D.M.; et al. Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance. Int. J. Oncol. 2017, 51, 257–268. [Google Scholar] [CrossRef]
- Hodges, L.M.; Markova, S.M.; Chinn, L.W.; Gow, J.M.; Kroetz, D.L.; Klein, T.E.; Altman, R.B. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet. Genom. 2011, 21, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Monisha, J.; Roy, N.K.; Sharma, A.; Banik, K.; Padmavathi, G.; Bordoloi, D.; Kunnumakkara, A.B. Chemoresistance and chemosensitization in Melanoma. In Cancer Cell Chemoresistance and Chemosensitization; World Scientific: Singapore, 2018; pp. 479–527. [Google Scholar]
- Sasaki, T.; Hankins, G.R.; Helm, G.A. Major vault protein/lung resistance-related protein (MVP/LRP) expression in nervous system tumors. Brain Tumor Pathol. 2002, 19, 59–62. [Google Scholar] [CrossRef]
- Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017, 8, 59950–59964. [Google Scholar] [CrossRef] [PubMed]
- Sampath, D.; Cortes, J.; Estrov, Z.; Du, M.; Shi, Z.; Andreeff, M.; Gandhi, V.; Plunkett, W. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood 2006, 107, 2517–2524. [Google Scholar] [CrossRef] [PubMed]
- Kaboli, P.J.; Imani, S.; Jomhori, M.; Ling, K.H. Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am. J. Cancer Res. 2021, 11, 5155–5183. [Google Scholar]
- Santarpia, L.; Lippman, S.M.; El-Naggar, A.K. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012, 16, 103–119. [Google Scholar] [CrossRef]
- Ishimura, N.; Yamasawa, K.; Karim Rumi, M.A.; Kadowaki, Y.; Ishihara, S.; Amano, Y.; Nio, Y.; Higami, T.; Kinoshita, Y. BRAF and K-ras gene mutations in human pancreatic cancers. Cancer Lett. 2003, 199, 169–173. [Google Scholar] [CrossRef]
- Oikonomou, E.; Koustas, E.; Goulielmaki, M.; Pintzas, A. BRAF vs RAS oncogenes: Are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget 2014, 5, 11752–11777. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, S.; Wang, Y.; Wu, H.; Frank, J.A.; Zhang, Z.; Luo, J. Role of p38gamma MAPK in regulation of EMT and cancer stem cells. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 3605–3617. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.E.; Yeh, P.Y.; Lu, Y.S.; Lai, G.M.; Liao, C.M.; Gao, M.; Cheng, A.L. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem. Pharmacol. 2002, 63, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Pavlasova, G.; Mraz, M. The regulation and function of CD20: An “enigma” of B-cell biology and targeted therapy. Haematologica 2020, 105, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Damia, G.; D’Incalci, M. Targeting DNA repair as a promising approach in cancer therapy. Eur. J. Cancer 2007, 43, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Oliver, T.G.; Mercer, K.L.; Sayles, L.C.; Burke, J.R.; Mendus, D.; Lovejoy, K.S.; Cheng, M.H.; Subramanian, A.; Mu, D.; Powers, S.; et al. Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes Dev. 2010, 24, 837–852. [Google Scholar] [CrossRef] [PubMed]
- Bordoloi, D.; Roy, N.K.; Monisha, J.; Padmavathi, G.; Kunnumakkara, A.B. Multi-Targeted Agents in Cancer Cell Chemosensitization: What We Learnt from Curcumin Thus Far. Recent Pat. Anticancer Drug Discov. 2016, 11, 67–97. [Google Scholar] [CrossRef]
- Szakacs, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234. [Google Scholar] [CrossRef]
- Sun, C.Y.; Zhang, Q.Y.; Zheng, G.J.; Feng, B. Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomed. Pharmacother. 2019, 110, 518–527. [Google Scholar] [CrossRef]
- Vinod, B.S.; Maliekal, T.T.; Anto, R.J. Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance. Antioxid. Redox Signal. 2013, 18, 1307–1348. [Google Scholar] [CrossRef]
- Verma, E.; Kumar, A.; Daimary, U.D.; Parama, D.; Girisa, S.; Sethi, G.; Kunnumakkara, A.B. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J. Funct. Foods 2021, 86, 104660. [Google Scholar] [CrossRef]
- Hegde, M.; Girisa, S.; Naliyadhara, N.; Kumar, A.; Alqahtani, M.S.; Abbas, M.; Mohan, C.D.; Warrier, S.; Hui, K.M.; Rangappa, K.S.; et al. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev. 2023, 42, 765–822. [Google Scholar] [CrossRef] [PubMed]
- Parama, D.; Girisa, S.; Khatoon, E.; Kumar, A.; Alqahtani, M.S.; Abbas, M.; Sethi, G.; Kunnumakkara, A.B. An overview of the pharmacological activities of scopoletin against different chronic diseases. Pharmacol. Res. 2022, 179, 106202. [Google Scholar] [CrossRef] [PubMed]
- Henamayee, S.; Banik, K.; Sailo, B.L.; Shabnam, B.; Harsha, C.; Srilakshmi, S.; Vgm, N.; Baek, S.H.; Ahn, K.S.; Kunnumakkara, A.B. Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties. Molecules 2020, 25, 2278. [Google Scholar] [CrossRef] [PubMed]
- Negrette-Guzman, M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur. J. Pharmacol. 2019, 859, 172513. [Google Scholar] [CrossRef] [PubMed]
- Otoo, R.A.; Allen, A.R. Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action. Molecules 2023, 28, 6902. [Google Scholar] [CrossRef] [PubMed]
- Asif Ali, M.; Khan, N.; Kaleem, N.; Ahmad, W.; Alharethi, S.H.; Alharbi, B.; Alhassan, H.H.; Al-Enazi, M.M.; Razis, A.F.A.; Modu, B.; et al. Anticancer properties of sulforaphane: Current insights at the molecular level. Front. Oncol. 2023, 13, 1168321. [Google Scholar] [CrossRef]
- Burnett, J.P.; Lim, G.; Li, Y.; Shah, R.B.; Lim, R.; Paholak, H.J.; McDermott, S.P.; Sun, L.; Tsume, Y.; Bai, S.; et al. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Lett. 2017, 394, 52–64. [Google Scholar] [CrossRef]
- Islam, S.S.; Mokhtari, R.B.; Akbari, P.; Hatina, J.; Yeger, H.; Farhat, W.A. Simultaneous Targeting of Bladder Tumor Growth, Survival, and Epithelial-to-Mesenchymal Transition with a Novel Therapeutic Combination of Acetazolamide (AZ) and Sulforaphane (SFN). Target Oncol. 2016, 11, 209–227. [Google Scholar] [CrossRef]
- Lan, F.; Pan, Q.; Yu, H.; Yue, X. Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/beta-catenin signaling in glioblastoma. J. Neurochem. 2015, 134, 811–818. [Google Scholar] [CrossRef]
- Meng, W.; Meng, J.; Zhang, F.; Jiang, H.; Feng, X.; Zhao, F.; Wang, K. Sulforaphane overcomes T790M-mediated gefitinib resistance in vitro through epithelial-mesenchymal transition. J. Physiol. Pharmacol. 2021, 72, 741–749. [Google Scholar] [CrossRef]
- Paul, B.; Li, Y.; Tollefsbol, T.O. The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation. Int. J. Mol. Sci. 2018, 19, 1754. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, S.; Horinaka, M.; Sakai, T. Sulforaphane enhances apoptosis induced by Lactobacillus pentosus strain S-PT84 via the TNFalpha pathway in human colon cancer cells. Oncol. Lett. 2019, 18, 4253–4261. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, A.; Sutaria, D.; Grandhi, B.K.; Wang, J.; Prabhu, S. The molecular mechanism of action of aspirin, curcumin and sulforaphane combinations in the chemoprevention of pancreatic cancer. Oncol. Rep. 2013, 29, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Lv, R.B.; Liu, Y.; Hao, Q.; Liu, S.J.; Zheng, Y.Y.; Li, C.; Zhu, C.; Wang, M. Salinomycin and Sulforaphane Exerted Synergistic Antiproliferative and Proapoptotic Effects on Colorectal Cancer Cells by Inhibiting the PI3K/Akt Signaling Pathway in vitro and in vivo. Onco Targets Ther. 2020, 13, 4957–4969. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, H.J.; Moon, D.O. Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-kappaB signaling pathway. Oncol. Lett. 2017, 13, 4427–4432. [Google Scholar] [CrossRef] [PubMed]
- Rakariyatham, K.; Yang, X.; Gao, Z.; Song, M.; Han, Y.; Chen, X.; Xiao, H. Synergistic chemopreventive effect of allyl isothiocyanate and sulforaphane on non-small cell lung carcinoma cells. Food Funct. 2019, 10, 893–902. [Google Scholar] [CrossRef]
- Royston, K.J.; Paul, B.; Nozell, S.; Rajbhandari, R.; Tollefsbol, T.O. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp. Cell Res. 2018, 368, 67–74. [Google Scholar] [CrossRef]
- Zhang, Y.; Talalay, P.; Cho, C.G.; Posner, G.H. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA 1992, 89, 2399–2403. [Google Scholar] [CrossRef]
- Pappa, G.; Strathmann, J.; Lowinger, M.; Bartsch, H.; Gerhauser, C. Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 2007, 28, 1471–1477. [Google Scholar] [CrossRef]
- Bansal, M.; Singh, N.; Pal, S.; Dev, I.; Ansari, K.M. Chemopreventive role of dietary phytochemicals in colorectal cancer. Adv. Mol. Toxicol. 2018, 12, 69–121. [Google Scholar]
- Jiang, X.; Liu, Y.; Ma, L.; Ji, R.; Qu, Y.; Xin, Y.; Lv, G. Chemopreventive activity of sulforaphane. Drug Des. Dev. Ther. 2018, 12, 2905–2913. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, B.M.; Weigert, A.; Brune, B.; Schumacher, M.; Wenzel, U.; Steinhilber, D.; Stein, J.; Ulrich, S. Sulforaphane potentiates oxaliplatin-induced cell growth inhibition in colorectal cancer cells via induction of different modes of cell death. Cancer Chemother. Pharmacol. 2011, 67, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hullar, M.A.; Beresford, S.A.; Lampe, J.W. Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. Br. J. Nutr. 2011, 106, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Spagnuolo, C.; Russo, G.L.; Skalicka-Wozniak, K.; Daglia, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Nabavi, S.M. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Crit. Rev. Food Sci. Nutr. 2018, 58, 1391–1405. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Wu, D.M.; Li, B.X.; Lu, Y.J.; Yang, B.F. Synergistic inhibitory effect of sulforaphane and 5-fluorouracil in high and low metastasis cell lines of salivary gland adenoid cystic carcinoma. Phytother. Res. 2009, 23, 303–307. [Google Scholar] [CrossRef]
- Danafar, H.; Sharafi, A.; Kheiri, S.; Kheiri Manjili, H. Co-delivery of Sulforaphane and Curcumin with PEGylated Iron Oxide-Gold Core Shell Nanoparticles for Delivery to Breast Cancer Cell Line. Iran. J. Pharm. Res. 2018, 17, 480–494. [Google Scholar]
- Jiang, H.; Shang, X.; Wu, H.; Huang, G.; Wang, Y.; Al-Holou, S.; Gautam, S.C.; Chopp, M. Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochem. Res. 2010, 35, 152–161. [Google Scholar] [CrossRef]
- Clarke, J.D.; Dashwood, R.H.; Ho, E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008, 269, 291–304. [Google Scholar] [CrossRef]
- Lan, F.; Yang, Y.; Han, J.; Wu, Q.; Yu, H.; Yue, X. Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-κB-dependent pathway downregulating MGMT expression. Int. J. Oncol. 2016, 48, 559–568. [Google Scholar] [CrossRef]
- Matsui, T.A.; Sowa, Y.; Yoshida, T.; Murata, H.; Horinaka, M.; Wakada, M.; Nakanishi, R.; Sakabe, T.; Kubo, T.; Sakai, T. Sulforaphane enhances TRAIL-induced apoptosis through the induction of DR5 expression in human osteosarcoma cells. Carcinogenesis 2006, 27, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Lew, K.L.; Xiao, H.; Herman-Antosiewicz, A.; Xiao, D.; Brown, C.K.; Singh, S.V. D,L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 2007, 28, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Atwell, L.L.; Zhang, Z.; Mori, M.; Farris, P.; Vetto, J.T.; Naik, A.M.; Oh, K.Y.; Thuillier, P.; Ho, E.; Shannon, J. Sulforaphane Bioavailability and Chemopreventive Activity in Women Scheduled for Breast Biopsy. Cancer Prev. Res. 2015, 8, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Heiss, E.; Herhaus, C.; Klimo, K.; Bartsch, H.; Gerhauser, C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J. Biol. Chem. 2001, 276, 32008–32015. [Google Scholar] [CrossRef]
- Biersack, B. Non-coding RNA/microRNA-modulatory dietary factors and natural products for improved cancer therapy and prevention: Alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins. Noncoding RNA Res. 2016, 1, 51–63. [Google Scholar] [CrossRef]
- Jin, C.Y.; Molagoda, I.M.N.; Karunarathne, W.; Kang, S.H.; Park, C.; Kim, G.Y.; Choi, Y.H. TRAIL attenuates sulforaphane-mediated Nrf2 and sustains ROS generation, leading to apoptosis of TRAIL-resistant human bladder cancer cells. Toxicol. Appl. Pharmacol. 2018, 352, 132–141. [Google Scholar] [CrossRef]
- Justin, S.; Rutz, J.; Maxeiner, S.; Chun, F.K.; Juengel, E.; Blaheta, R.A. Chronic Sulforaphane Administration Inhibits Resistance to the mTOR-Inhibitor Everolimus in Bladder Cancer Cells. Int. J. Mol. Sci. 2020, 21, 4026. [Google Scholar] [CrossRef]
- Gasparello, J.; Papi, C.; Zurlo, M.; Gambari, L.; Rozzi, A.; Manicardi, A.; Corradini, R.; Gambari, R.; Finotti, A. Treatment of Human Glioblastoma U251 Cells with Sulforaphane and a Peptide Nucleic Acid (PNA) Targeting miR-15b-5p: Synergistic Effects on Induction of Apoptosis. Molecules 2022, 27, 1299. [Google Scholar] [CrossRef]
- Lubecka-Pietruszewska, K.; Kaufman-Szymczyk, A.; Stefanska, B.; Cebula-Obrzut, B.; Smolewski, P.; Fabianowska-Majewska, K. Sulforaphane Alone and in Combination with Clofarabine Epigenetically Regulates the Expression of DNA Methylation-Silenced Tumour Suppressor Genes in Human Breast Cancer Cells. J. Nutr. Nutr. 2015, 8, 91–101. [Google Scholar] [CrossRef]
- Kaczynska, A.; Swierczynska, J.; Herman-Antosiewicz, A. Sensitization of HER2 Positive Breast Cancer Cells to Lapatinib Using Plants-Derived Isothiocyanates. Nutr. Cancer 2015, 67, 976–986. [Google Scholar] [CrossRef]
- Huang, J.; Tao, C.; Yu, Y.; Yu, F.; Zhang, H.; Gao, J.; Wang, D.; Chen, Y.; Gao, J.; Zhang, G. Simultaneous targeting of differentiated breast cancer cells and breast cancer stem cells by combination of docetaxel-and sulforaphane-loaded self-assembled poly (D, L-lactide-co-glycolide)/hyaluronic acid block copolymer-based nanoparticles. J. Biomed. Nanotechnol. 2016, 12, 1463–1477. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, A.; Slominska-Wojewodzka, M.; Herman-Antosiewicz, A. Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants. Eur. J. Nutr. 2016, 55, 1165–1180. [Google Scholar] [CrossRef] [PubMed]
- Lubecka, K.; Kaufman-Szymczyk, A.; Fabianowska-Majewska, K. Inhibition of breast cancer cell growth by the combination of clofarabine and sulforaphane involves epigenetically mediated CDKN2A upregulation. Nucleosides Nucleotides Nucleic Acids 2018, 37, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Bose, C.; Awasthi, S.; Sharma, R.; Benes, H.; Hauer-Jensen, M.; Boerma, M.; Singh, S.P. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS ONE 2018, 13, e0193918. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, F.; Liu, Y.; Wang, S.; Li, X.; Huang, Y.; Xia, Y.; Cao, C. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sci. 2018, 213, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Tollefsbol, T.O. Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition. Exp. Cell Res. 2022, 416, 113160. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Huang, L.; Yi, K.; Chen, H.; Liu, S.; Zhang, W.; Yuan, C.; Song, X.; Wang, F. Co-administration of sulforaphane and doxorubicin attenuates breast cancer growth by preventing the accumulation of myeloid-derived suppressor cells. Cancer Lett. 2020, 493, 189–196. [Google Scholar] [CrossRef]
- Pogorzelska, A.; Mazur, M.; Switalska, M.; Wietrzyk, J.; Sigorski, D.; Fronczyk, K.; Wiktorska, K. Anticancer effect and safety of doxorubicin and nutraceutical sulforaphane liposomal formulation in triple-negative breast cancer (TNBC) animal model. Biomed. Pharmacother. 2023, 161, 114490. [Google Scholar] [CrossRef]
- Xu, Y.; Han, X.; Li, Y.; Min, H.; Zhao, X.; Zhang, Y.; Qi, Y.; Shi, J.; Qi, S.; Bao, Y.; et al. Sulforaphane Mediates Glutathione Depletion via Polymeric Nanoparticles to Restore Cisplatin Chemosensitivity. ACS Nano 2019, 13, 13445–13455. [Google Scholar] [CrossRef]
- Keshandehghan, A.; Nikkhah, S.; Tahermansouri, H.; Heidari-Keshel, S.; Gardaneh, M. Co-Treatment with Sulforaphane and Nano-Metformin Molecules Accelerates Apoptosis in HER2+ Breast Cancer Cells by Inhibiting Key Molecules. Nutr. Cancer 2020, 72, 835–848. [Google Scholar] [CrossRef]
- Mielczarek, L.; Krug, P.; Mazur, M.; Milczarek, M.; Chilmonczyk, Z.; Wiktorska, K. In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes. Int. J. Pharm. 2019, 558, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Sharma, S.; Sharma, A.; Vora, J.; Shrivastava, N. Sulforaphane-cisplatin combination inhibits the stemness and metastatic potential of TNBCs via down regulation of sirtuins-mediated EMT signaling axis. Phytomedicine 2021, 84, 153492. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, Z.; Liu, L.; Li, Y.; Ni, X.; Yuan, H.; Wang, C. Redox homeostasis modulation using theranostic AIE nanoparticles results in positive-feedback drug accumulation and enhanced drug penetration to combat drug-resistant cancer. Mater Today Bio 2022, 16, 100396. [Google Scholar] [CrossRef] [PubMed]
- Bayat Mokhtari, R.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Sparaneo, A.; Muscarella, L.A.; Zhao, S.; Cheng, H.L.; Das, B.; Yeger, H. Human bronchial carcinoid tumor initiating cells are targeted by the combination of acetazolamide and sulforaphane. BMC Cancer 2019, 19, 864. [Google Scholar] [CrossRef] [PubMed]
- Rackauskas, R.; Zhou, D.; Uselis, S.; Strupas, K.; Herr, I.; Schemmer, P. Sulforaphane sensitizes human cholangiocarcinoma to cisplatin via the downregulation of anti-apoptotic proteins. Oncol. Rep. 2017, 37, 3660–3666. [Google Scholar] [CrossRef] [PubMed]
- Tomooka, F.; Kaji, K.; Nishimura, N.; Kubo, T.; Iwai, S.; Shibamoto, A.; Suzuki, J.; Kitagawa, K.; Namisaki, T.; Akahane, T.; et al. Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity. Cells 2023, 12, 687. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Priyani, A.; Sadrieh, L.; Brahmbhatt, K.; Ahmed, M.; Sharma, C. Concurrent sulforaphane and eugenol induces differential effects on human cervical cancer cells. Integr. Cancer Ther. 2012, 11, 154–165. [Google Scholar] [CrossRef]
- Svehlikova, V.; Wang, S.; Jakubikova, J.; Williamson, G.; Mithen, R.; Bao, Y. Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in CaCo-2 cells. Carcinogenesis 2004, 25, 1629–1637. [Google Scholar] [CrossRef]
- Nair, S.; Hebbar, V.; Shen, G.; Gopalakrishnan, A.; Khor, T.O.; Yu, S.; Xu, C.; Kong, A.N. Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm. Res. 2008, 25, 387–399. [Google Scholar] [CrossRef]
- Gasparello, J.; Gambari, L.; Papi, C.; Rozzi, A.; Manicardi, A.; Corradini, R.; Gambari, R.; Finotti, A. High Levels of Apoptosis Are Induced in the Human Colon Cancer HT-29 Cell Line by Co-Administration of Sulforaphane and a Peptide Nucleic Acid Targeting miR-15b-5p. Nucleic Acid Ther. 2020, 30, 164–174. [Google Scholar] [CrossRef]
- Langner, E.; Lemieszek, M.K.; Rzeski, W. Lycopene, sulforaphane, quercetin, and curcumin applied together show improved antiproliferative potential in colon cancer cells in vitro. J. Food Biochem. 2019, 43, e12802. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, S.; Rosencrans, W.M.; Cheng, K.W.; Stott, G.M.; Mroczkowski, B.; Chou, T.F. Sulforaphane is Synergistic with CB-5083 and Inhibits Colony Formation of CB-5083-Resistant HCT116 Cells. ChemMedChem 2022, 17, e202200030. [Google Scholar] [CrossRef] [PubMed]
- Cizauskaite, A.; Simcikas, D.; Schultze, D.; Kallifatidis, G.; Bruns, H.; Cekauskas, A.; Herr, I.; Bausys, A.; Strupas, K.; Schemmer, P. Sulforaphane has an additive anticancer effect to FOLFOX in highly metastatic human colon carcinoma cells. Oncol. Rep. 2022, 48, 205. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Frederick, A.M.; Jin, Y.; Guo, C.; Xiao, H.; Wood, R.J.; Liu, Z. The Prevention of a High Dose of Vitamin D or Its Combination with Sulforaphane on Intestinal Inflammation and Tumorigenesis in Apc(1638N) Mice Fed a High-Fat Diet. Mol. Nutr. Food Res. 2019, 63, e1800824. [Google Scholar] [CrossRef] [PubMed]
- Kerr, C.; Adhikary, G.; Grun, D.; George, N.; Eckert, R.L. Combination cisplatin and sulforaphane treatment reduces proliferation, invasion, and tumor formation in epidermal squamous cell carcinoma. Mol. Carcinog. 2018, 57, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Li, Z.; Liu, X.; Dai, S.; Li, S. Therapeutic Mechanism of Lapatinib Combined with Sulforaphane on Gastric Cancer. Evid. Based Complement. Altern. Med. 2021, 2021, 9933274. [Google Scholar] [CrossRef] [PubMed]
- Elkashty, O.A.; Tran, S.D. Broccoli extract increases drug-mediated cytotoxicity towards cancer stem cells of head and neck squamous cell carcinoma. Br. J. Cancer 2020, 123, 1395–1403. [Google Scholar] [CrossRef]
- Doudican, N.A.; Wen, S.Y.; Mazumder, A.; Orlow, S.J. Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways. Oncol. Rep. 2012, 28, 1851–1858. [Google Scholar] [CrossRef]
- Kim, H.; Kim, E.H.; Eom, Y.W.; Kim, W.H.; Kwon, T.K.; Lee, S.J.; Choi, K.S. Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res. 2006, 66, 1740–1750. [Google Scholar] [CrossRef]
- Li, Q.Q.; Xie, Y.K.; Wu, Y.; Li, L.L.; Liu, Y.; Miao, X.B.; Liu, Q.Z.; Yao, K.T.; Xiao, G.H. Sulforaphane inhibits cancer stem-like cell properties and cisplatin resistance through miR-214-mediated downregulation of c-MYC in non-small cell lung cancer. Oncotarget 2017, 8, 12067–12080. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Li, J.; Zhang, J.; Wang, X.; Wang, M. Sulforaphane reverses gefitinib tolerance in human lung cancer cells via modulation of sonic hedgehog signaling. Oncol. Lett. 2018, 15, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Lee, S.H. Pro-oxidant activity of sulforaphane and cisplatin potentiates apoptosis and simultaneously promotes autophagy in malignant mesothelioma cells. Mol. Med. Rep. 2017, 16, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Horwacik, I.; Gaik, M.; Durbas, M.; Boratyn, E.; Zajac, G.; Szychowska, K.; Szczodrak, M.; Koloczek, H.; Rokita, H. Inhibition of autophagy by 3-methyladenine potentiates sulforaphane-induced cell death of BE(2)-C human neuroblastoma cells. Mol. Med. Rep. 2015, 12, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Landen, C.N.; Li, Y.; Alvarez, R.D.; Tollefsbol, T.O. Enhancement of Cisplatin-Mediated Apoptosis in Ovarian Cancer Cells through Potentiating G2/M Arrest and p21 Upregulation by Combinatorial Epigallocatechin Gallate and Sulforaphane. J. Oncol. 2013, 2013, 872957. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Landen, C.N.; Li, Y.; Alvarez, R.D.; Tollefsbol, T.O. Epigallocatechin gallate and sulforaphane combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2 down-regulation. Exp. Cell Res. 2013, 319, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Hunakova, L.; Gronesova, P.; Horvathova, E.; Chalupa, I.; Cholujova, D.; Duraj, J.; Sedlak, J. Modulation of cisplatin sensitivity in human ovarian carcinoma A2780 and SKOV3 cell lines by sulforaphane. Toxicol. Lett. 2014, 230, 479–486. [Google Scholar] [CrossRef]
- Kan, S.F.; Wang, J.; Sun, G.X. Sulforaphane regulates apoptosis- and proliferation-related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer. Int. J. Mol. Med. 2018, 42, 2447–2458. [Google Scholar] [CrossRef]
- Gong, T.T.; Liu, X.D.; Zhan, Z.P.; Wu, Q.J. Sulforaphane enhances the cisplatin sensitivity through regulating DNA repair and accumulation of intracellular cisplatin in ovarian cancer cells. Exp. Cell Res. 2020, 393, 112061. [Google Scholar] [CrossRef]
- Tian, M.; Tian, D.; Qiao, X.; Li, J.; Zhang, L. Modulation of Myb-induced NF-kB -STAT3 signaling and resulting cisplatin resistance in ovarian cancer by dietary factors. J. Cell Physiol. 2019, 234, 21126–21134. [Google Scholar] [CrossRef]
- Rausch, V.; Liu, L.; Kallifatidis, G.; Baumann, B.; Mattern, J.; Gladkich, J.; Wirth, T.; Schemmer, P.; Buchler, M.W.; Zoller, M.; et al. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res. 2010, 70, 5004–5013. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Schwartz, S.J.; Sun, D. Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of Hsp90 chaperone function. Nutr. Cancer 2011, 63, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Sutaria, D.; Grandhi, B.K.; Thakkar, A.; Wang, J.; Prabhu, S. Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen. Int. J. Oncol. 2012, 41, 2260–2268. [Google Scholar] [CrossRef] [PubMed]
- Desai, P.; Thakkar, A.; Ann, D.; Wang, J.; Prabhu, S. Loratadine self-microemulsifying drug delivery systems (SMEDDS) in combination with sulforaphane for the synergistic chemoprevention of pancreatic cancer. Drug Deliv. Transl. Res. 2019, 9, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Appari, M.; Babu, K.R.; Kaczorowski, A.; Gross, W.; Herr, I. Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int. J. Oncol. 2014, 45, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Desai, P.; Wang, K.Z.; Ann, D.; Wang, J.; Prabhu, S. Efficacy and Pharmacokinetic Considerations of Loratadine Nanoformulations and its Combinations for Pancreatic Cancer Chemoprevention. Pharm. Res. 2020, 37, 21. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, A.; Desai, P.; Chenreddy, S.; Modi, J.; Thio, A.; Khamas, W.; Ann, D.; Wang, J.; Prabhu, S. Novel nano-drug combination therapeutic regimen demonstrates significant efficacy in the transgenic mouse model of pancreatic ductal adenocarcinoma. Am. J. Cancer Res. 2018, 8, 2005–2019. [Google Scholar]
- Labsch, S.; Liu, L.; Bauer, N.; Zhang, Y.; Aleksandrowicz, E.; Gladkich, J.; Schonsiegel, F.; Herr, I. Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. Int. J. Oncol. 2014, 44, 1470–1480. [Google Scholar] [CrossRef]
- Dogan Sigva, Z.O.; Balci Okcanoglu, T.; Biray Avci, C.; Yilmaz Susluer, S.; Kayabasi, C.; Turna, B.; Dodurga, Y.; Nazli, O.; Gunduz, C. Investigation of the synergistic effects of paclitaxel and herbal substances and endemic plant extracts on cell cycle and apoptosis signal pathways in prostate cancer cell lines. Gene 2019, 687, 261–271. [Google Scholar] [CrossRef]
- Tsaur, I.; Thomas, A.; Taskiran, E.; Rutz, J.; Chun, F.K.; Haferkamp, A.; Juengel, E.; Blaheta, R.A. Concomitant Use of Sulforaphane Enhances Antitumor Efficacy of Sunitinib in Renal Cell Carcinoma In Vitro. Cancers 2022, 14, 4643. [Google Scholar] [CrossRef]
- Pradhan, S.J.; Mishra, R.; Sharma, P.; Kundu, G.C. Quercetin and sulforaphane in combination suppress the progression of melanoma through the down-regulation of matrix metalloproteinase-9. Exp. Ther. Med. 2010, 1, 915–920. [Google Scholar] [CrossRef]
- Chiang, T.C.; Koss, B.; Su, L.J.; Washam, C.L.; Byrum, S.D.; Storey, A.; Tackett, A.J. Effect of Sulforaphane and 5-Aza-2′-Deoxycytidine on Melanoma Cell Growth. Medicines 2019, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Soni, K.; Mujtaba, A.; Akhter, M.H.; Zafar, A.; Kohli, K. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. J. Microencapsul. 2020, 37, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Serini, S.; Guarino, R.; Ottes Vasconcelos, R.; Celleno, L.; Calviello, G. The Combination of Sulforaphane and Fernblock((R)) XP Improves Individual Beneficial Effects in Normal and Neoplastic Human Skin Cell Lines. Nutrients 2020, 12, 1608. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.K.; Sharma, A.; Singh, A.K.; Bordoloi, D.; Sailo, B.L.; Monisha, J.; Kunnumakkara, A.B. Bladder cancer: Chemoresistance and chemosensitization. In Cancer Cell Chemoresistance and Chemosensitization; World Scientific: Singapore, 2018; pp. 51–80. [Google Scholar]
- Kumar, A.; Girisa, S.; Alqahtani, M.S.; Abbas, M.; Hegde, M.; Sethi, G.; Kunnumakkara, A.B. Targeting Autophagy Using Long Non-Coding RNAs (LncRNAs): New Landscapes in the Arena of Cancer Therapeutics. Cells 2023, 12, 810. [Google Scholar] [CrossRef] [PubMed]
- Khwairakpam, A.D.; Monisha, J.; Banik, K.; Choudhary, H.; Sharma, A.; Bordoloi, D.; Kunnumakkara, A.B. Chemoresistance in brain cancer and different chemosensitization approaches. In Cancer Cell Chemoresistance and Chemosensitization; World Scientific: Singapore, 2018; pp. 107–127. [Google Scholar]
- Maruthanila, V.; Elancheran, R.; Kunnumakkara, A.; Kabilan, S.; Kotoky, J. Recent development of targeted approaches for the treatment of breast cancer. Breast Cancer 2017, 24, 191–219. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Girisa, S.; Henamayee, S.; Parama, D.; Rana, V.; Dutta, U.; Kunnumakkara, A.B. Targeting Farnesoid X receptor (FXR) for developing novel therapeutics against cancer. Mol. Biomed. 2021, 2, 21. [Google Scholar] [CrossRef]
- Thakur, K.K.; Bordoloi, D.; Kunnumakkara, A.B. Alarming burden of triple-negative breast cancer in India. Clin. Breast Cancer 2018, 18, e393–e399. [Google Scholar] [CrossRef]
- Granados-Romero, J.J.; Valderrama-Treviño, A.I.; Contreras-Flores, E.H.; Barrera-Mera, B.; Herrera Enríquez, M.; Uriarte-Ruíz, K.; Ceballos-Villalba, J.C.; Estrada-Mata, A.G.; Alvarado Rodríguez, C.; Arauz-Peña, G. Colorectal cancer: A review. Int. J. Res. Med. Sci. 2017, 5, 4667. [Google Scholar] [CrossRef]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Quinn, B.J.; Dallos, M.; Kitagawa, H.; Kunnumakkara, A.B.; Memmott, R.M.; Hollander, M.C.; Gills, J.J.; Dennis, P.A. Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling. Cancer Prev. Res. 2013, 6, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Momenimovahed, Z.; Tiznobaik, A.; Taheri, S.; Salehiniya, H. Ovarian cancer in the world: Epidemiology and risk factors. Int. J. Womens Health 2019, 11, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Cabasag, C.J.; Fagan, P.J.; Ferlay, J.; Vignat, J.; Laversanne, M.; Liu, L.; van der Aa, M.A.; Bray, F.; Soerjomataram, I. Ovarian cancer today and tomorrow: A global assessment by world region and Human Development Index using GLOBOCAN 2020. Int. J. Cancer 2022, 151, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.X.; Zhao, C.F.; Chen, W.B.; Liu, Q.C.; Li, Q.W.; Lin, Y.Y.; Gao, F. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J. Gastroenterol. 2021, 27, 4298–4321. [Google Scholar] [CrossRef] [PubMed]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef]
- Thakur, K.K.; Bordoloi, D.; Prakash, J.; Javadi, M.; Roy, N.K.; Kunnumakkara, A.B. Different chemosensitization approaches for the effective management of HNSCC. In Cancer Cell Chemoresistance and Chemosensitization; World Scientific: Singapore, 2018; pp. 399–423. [Google Scholar]
- Choudhary, H.; Bordoloi, D.; Prakash, J.; Manteghi, N.; Padmavathi, G.; Monisha, J.; Kunnumakkara, A.B. Different chemosensitization approaches in gastric cancer. In Cancer Cell Chemoresistance and Chemosensitization; World Scientific: Singapore, 2018; pp. 267–319. [Google Scholar]
- Zraik, I.M.; Hess-Busch, Y. Management of chemotherapy side effects and their long-term sequelae. Urol. A 2021, 60, 862–871. [Google Scholar] [CrossRef]
- Liang, J.; Hansch, G.M.; Hubner, K.; Samstag, Y. Sulforaphane as anticancer agent: A double-edged sword? Tricky balance between effects on tumor cells and immune cells. Adv. Biol. Regul. 2019, 71, 79–87. [Google Scholar] [CrossRef]
Cancer | Sulforaphane in Combination with | In Vitro/In Vivo | Mechanism of Action/Anticancer Effect | Reference |
---|---|---|---|---|
ACC | 5-FU *A | In vitro | ↓NF-κB p65; ↓cell growth | [60] |
Bladder Cancer | AZ *A | In vitro | ↓Cell viability; ↓cell proliferation; ↓p-Akt; ↓colony formation; ↓Ki-67+ cells; ↓cyclin D1; ↓pHH3+ cells; ↓p-S6 ↓p-mTOR; ↓p-GSK-3-alpha/beta; ↑p21; ↑p27; ↑cleaved caspase-3; ↑cleaved PARP | [43] |
AZ *A | In vivo | ↓Tumor weight; ↓CA9; ↓E-cadherin; ↓N-cadherin; ↓vimentin | [43] | |
TRAIL *C | In vitro | ↓Procaspase-3, -8, -9; ↓Nrf 2 (nuclear); ↑DR5; ↑cleaved PARP; ↑cleaved Bid; ↑ΔΨm loss; ↑apoptosis; ↑ROS | [70] | |
Everolimus (long term) #A | In vitro | ↓Clone count; ↓CDK2; ↓p-CDK1; ↓cyclin B; ↓Raptor; ↓p-Rictor; ↓p-Akt; ↓cyclin A; ↓H3; ↑p19; ↓p27; ↑G0/G1 phase arrest; ↑CDK1; ↑Akt; ↑aH3; ↑aH4 | [71] | |
Bone Cancer | TRAIL *C | In vitro | ↑Apoptosis; ↑cleaved Bid; ↑cleaved caspase -3, -8, -9, -10; ↑DR5; ↑chromatin condensation | [65] |
Brain Cancer | Resveratrol *B | In vitro | ↓Colony formation; ↓p-Akt; ↓Akt; ↓cell migration; ↓PCNA; ↓cyclin D1; ↓cell viability; ↑Bax; ↑Cyt C; ↑cleaved caspase-3 | [62] |
TMZ #A | In vitro | ↓Bcl-2; ↑Bax; ↑apoptosis; ↑caspase 3/7 activity | [44] | |
TMZ #A | In vivo | ↓Tumor volume; ↓tumor weight; ↓Bcl-2; ↑Bax | [44] | |
TMZ #A | In vitro | ↓Cell invasion; ↓cell proliferation; ↓MGMT; ↓NF-kB; ↑apoptosis; ↑caspase 3/7 activity | [64] | |
TMZ #A | In vivo | ↓Tumor volume; ↓p65; ↓MGMT; ↓Ki-67; ↓MMP-2, -9; ↑caspase 3 | [64] | |
R8-PNAa15b *C | In vitro | ↓Cell proliferation; ↓miR-15b-5p; ↑apoptosis | [72] | |
Breast Cancer | ClF *A | In vitro | ↓Cell growth; ↑PTEN hypomethylation; ↑apoptosis; ↑p21; ↑RARβ-2 | [73] |
Lapatinib #A | In vitro | ↓Cell viability; ↓p-HER2, ↓p-Akt, ↓p-S6; ↑caspase-3; ↑cleaved PARP; ↑apoptosis | [74] | |
DTX-SFN-PLGA-b-HA #A | In vitro | ↓Cell viability; ↓β-catenin; ↓Cyclin D1 | [75] | |
DTX-SFN-PLGA-b-HA #A | In vivo | ↓Tumor volume, ↓tumor weight; ↓mammospheres; ↓β-catenin; ↓cyclin D1 | [75] | |
4-hydroxytamoxifen #A | In vitro | ↓Cell viability; ↓Bcl-2; ↓survivin; ↓colony formation; ↑ADRP; ↑cleaved PARP; ↑Bax; ↑LC3-II | [76] | |
Paclitaxel #A | In vitro | ↓Cell viability; ↓NF-κB; ↓p-Akt; ↓ΔΨm; ↓IκBα degradation; ↓p-IKK; ↑apoptosis; ↑cleaved caspase-3, -8, -9; ↑Cyt C | [50] | |
Paclitaxel/Docetaxel #A | In vitro | ↓IL-6, -8; ↓cyclin D1; ↓cell viability; ↓ALDH+ cells; ↓CD44+/CD24-/EpCAM+ cell; ↓primary and secondary mammospheres | [42] | |
Paclitaxel/Docetaxel #A | In vivo | ↓Tumor volume; ↓secondary tumor formation; ↓tumor initiation ability | [42] | |
ClF *A | In vitro | ↓Cell viability; ↑CDKN2A mRNA | [77] | |
DOX #A | In vitro | ↓DNMT; ↓HDAC; ↓ERα; ↑caspase-3 | [78] | |
DOX #A | In vivo | ↓Tumor volume | [78] | |
WA *B | In vitro | ↓Cyclin D1; ↓CDK4; ↓p-RB; ↑E2F; ↑p21; ↑G1 phase arrest; ↓HDAC2, 3; ↑global methylation | [52] | |
GEN *B | In vitro | ↓Cell viability; ↓KLF4; ↓cell density; ↓cell proliferation; ↓HDAC2; HDAC3; ↓HMTs; ↓hTERT; ↑G1 & G2/M phase arrest | [46] | |
GEN *B | In vivo | ↓Tumor volume; ↓tumor incidence | [46] | |
DOX #A | In vitro | ↓Cell growth | [79] | |
DOX #A | In vivo | ↓Tumor volume | [79] | |
NaB *B | In vitro | ↓Cell growth; ↓DNMT3A; ↓DNMT3B), ↓HDAC1; ↓HDAC6; ↓HDAC11, ↓EZH2; ↓SUV39H1; ↓GCN5; ↓PCAF; ↓P300; ↓CBP; ↑apoptosis | [80] | |
(GEN + NaB) *B | In vitro | ↓Cell viability; ↓DNMT3A, ↓DNMT3B; ↓HDAC 1, 6, 11; ↓EZH2; ↓SUV39H1; ↓GCN5; ↓PCAF; ↓P300; ↓CBP; ↓H3K9 me; ↓H3K27me; ↑HAT activity; ↑G2/M phase arrest; ↑apoptosis | [80] | |
DOX #A | In vitro | ↓PGE2; ↓Cox-2; ↓MDSCs accumulation; ↓CD11b+Gr-1+ MDSCs; ↑Nrf2; ↑HO-1; ↑GCLC; ↑CD8+ IFN-γ +T cells; ↑CD8+ granzyme+ T cells | [81] | |
DOX #A | In vivo | ↓Cox-2/PGE2; ↓tumor volume; ↓MDSCs accumulation | [81] | |
DOX-lip *A | In vitro | ↓Cell viability; ↓ROS; ↑DNA damage; ↑Nrf2 | [82] | |
DOX-lip #A | In vivo | ↓Tumor growth; ↓mitotic index; ↓inflammatory cell infiltration; ↓leukocyte; ↓CK; ↓CK-MB isoenzyme; ↓metastatic foci in lungs; ↑cytotoxicity; ↑granulocyte infiltration; ↑lymphocyte; ↑monocyte; ↑hemoglobin; ↑hematocrit; ↑RBC | [82] | |
SFN-CDDP-NPs #A | In vitro | ↓GSH; ↓cell viability; ↓Bcl-2; ↓PARP; ↑γ-H2AX; ↑p53; ↑cleaved PARP; ↑apoptosis | [83] | |
SFN-CDDP-NPs #A | In vivo | ↓GSH; ↓Bcl-2; ↓tumor growth; ↑p53; ↑cleaved PARP; ↑γ-H2AX; ↑apoptosis; ↑AST; ↑ALT | [83] | |
Nano-MTFN *A | In vitro | ↓WNT1; ↓β-catenin; ↓CD44; ↓cell survival; ↓Bcl-2; ↓Src; ↑apoptosis; ↑Bax | [84] | |
DOX #A | In vitro | ↓Cell viability | [85] | |
Cisplatin #A | In vitro | ↓Cell proliferation; ↓cell migration; ↓cell invasion; ↓chemotaxis; ↓N-cadherin; ↓vimentin; ↓β-catenin ↓Slug; ↓TCF8/ZEB1; ↓Snail; ↓MMP-2, -9; ↓SIRT-1, -2, -3, -5, -7; ↓colony formation; ↓mammospheres; ↑claudin-1; ↑ZO-1; ↑S phase arrest; ↑E-cadherin; ↑apoptosis | [86] | |
AT/DOX #A | In vitro | ↓Cell viability; ↓Bcl-2; ↑γ-H2AX; ↑Cyt-C; ↑cleaved PARP; ↑drug concentration; ↑cytotoxicity | [87] | |
AT/DOX #A | In vivo | ↓Tumor volume; ↓Ki-67; ↑drug penetration; ↑apoptosis | [87] | |
Bronchial Carcinoma | AZ #A | In vitro | ↓Cell viability | [88] |
AZ #A | In vivo | ↓Tumor volume; ↓cell proliferation; ↓Oct-4; ↓Sox2; ↓nanog; ↓tumor weight; ↓tumor cells | [88] | |
Cholangiocarcinoma | Cisplatin #A | In vitro | ↓Cell viability; ↑cleaved caspase-3, ↑cleaved PARP; ↓Bcl-2; ↓XIAP | [89] |
GEM #A | In vitro | ↓Cell viability; ↓p-Cdc25C; ↓Bcl-2; ↓cell invasion; ↓cell migration; ↓CDH2; ↓vimentin; ↓MMP2, 9; ↓VEGFA; ↓VEGFR2; ↓HIF-1A; ↓NOS3; ↑G2/M phase arrest; ↑cleaved caspase-3; ↑p21; ↑p-Chk2; ↑Bax; ↑p21; ↑CDKN1A; ↑CDH1; ↑KRT19 | [90] | |
GEM #A | In vivo | ↓Tumor growth; ↓Ki-67+ cells; ↓p-Cdc25C; ↓VEGFA; ↓VEGFR2; ↓CDH2; ↓ vimentin; ↓MMP2, 9; ↓CD34+; ↑p21; ↑p-Chk2; ↑CDH1; ↑KRT19; ↑apoptosis | [90] | |
Cervical Cancer | Eugenol *B | In vitro | ↓Cell viability; ↓Bcl-2; ↓Cox-2; ↓IL-β; ↑caspase-3 | [91] |
(Eugenol B + GEM A) * | In vitro | ↓Cell viability; ↑caspase-3 | [91] | |
Colorectal Cancer | Apigenin *B | In vitro | ↑UGT1A1 | [92] |
DIM *B | In vitro | ↓Cell proliferation; ↑G2/M arrest; ↑cleaved PARP | [54] | |
EGCG *B | In vitro | ↓Cell viability; ↓cellular senescence; ↓cyclin D1; ↑AP-1 | [93] | |
OX #A | In vitro | ↓Cell proliferation; ↓ATP; ↓procaspase-8; ↑cleaved caspase-3, -8; ↑cleaved PARP; ↑necrosis; ↑DNA fragmentation; ↑TRAIL; ↑mitochondrial membrane depolarization | [57] | |
Lactobacillus-treated PMBC *C | In vitro | ↓XIAP; ↓cIAP-1, -2; ↑apoptosis; ↑mitochondrial membrane depolarization; ↑TNF-α; ↑TNF-R1; ↑Bax | [47] | |
SAL *A | In vitro | ↓Cell viability; ↓cell proliferation; ↓p-Akt; ↓Bcl-2; ↓PI3K; ↓cell migration; ↓cell invasion; ↑p53; ↑Bax; ↑cleaved PARP; ↑apoptosis | [49] | |
SAL *A | In vivo | ↓Tumor growth, volume, weight | [49] | |
PNAs *C | In vitro | ↓Cell growth; ↑apoptosis; ↑caspase-3; ↑Bak1; ↑p53 | [94] | |
(Lycopene+ Quercetin+ Curcumin) *B | In vitro | ↓Cell proliferation; ↓DNA synthesis | [95] | |
(Lycopene B + Quercetin B + Curcumin B + 5-FU A) # | In vitro | ↓Cell proliferation | [95] | |
(Lycopene B + Quercetin B + Curcumin B + Cisplatin A) # | In vitro | ↓Cell proliferation | [95] | |
CB-5083 #A | In vitro | ↓Cell proliferation; ↓cell colonies | [96] | |
FOLFOX #A | In vitro | ↓ALDH1; ↓cell viability; ↓spheroid formation; ↑apoptosis | [97] | |
Vitamin D *C | In vivo | ↓Tumor size; ↓HDAC6; ↑LC3II | [98] | |
Epidermal Squamous Cell Carcinoma | Cisplatin #A | In vitro | ↓Spheroid formation; ↓cell invasion; ↓wound closure; ↓cell number; ↓p21cip1; ↓PARP; ↑cleaved caspase-3, -9; ↑cleaved PARP; ↑apoptosis | [99] |
Cisplatin #A | In vivo | ↓p21cip1; ↓tumor volume; ↑cleaved caspase-3; ↑cleaved PARP | [99] | |
Gastric Cancer | Lapatinib #A | In vitro | ↓Cell viability; ↓cell migration; ↓HER2; ↓p-HER2; ↓Akt; ↓p-Akt; ↓ERK; ↓p-ERK; ↑apoptosis; ↑G0/G1 phase arrest | [100] |
Head and Neck Cancer | Cisplatin #A | In vitro | ↓Spheroid formation; ↓BMI1; ↓cell viability; ↓OCT4; ↓Sox2; ↓Bcl-2; ↓ALDH1A1; ↓Notch1; ↓SMO; ↓GLI1; ↑caspase-3; ↑apoptosis | [101] |
Cisplatin #A | In vivo | ↓Tumor volume | [101] | |
5-FU #A | In vitro | ↓Spheroid formation; ↓BMI1; ↓Sox2; ↓Bcl-2; ↓ALDH1A1; ↓Notch1; ↓SMO; ↓GLI1; ↓cell viability; ↑caspase-3; ↑apoptosis | [101] | |
Multiple Myeloma | ATO #A | In vitro | ↓GSH; ↓secreted GLUC; ↓cell proliferation; ↓ARP1; ↓KMS11; ↑cleaved PARP; ↑cleaved caspase -3, -4; ↑ROS; ↑HSP90; ↑p-PERK; ↑p-eIF2; ↑CHOP; ↑spliced Xbp-1; ↑ER stress | [102] |
Liver Cancer | TRAIL *C | In vitro | ↓Cell viability; ↓XIAP; ↑ROS; ↑Bid; ↑cleaved PARP; ↑DR5; ↑apoptosis; ↑DNA fragmentation; ↑cleaved caspase-2, -3, -7, -8, -9 | [103] |
Lung Cancer | Cisplatin #A | In vitro | ↓Cell viability; ↑apoptosis; ↓c-Myc ↓spheroid formation | [104] |
Cisplatin #A | In vivo | ↓Tumor weight; ↓tumor volume; ↓c-Myc | [104] | |
DOX *A | In vitro | ↓c-Myc | [104] | |
Gefitinib #A | In vitro | ↓Cell proliferation; ↓GLI1; ↓SMO; ↓SHH; ↓CD44; ↓CD133 | [105] | |
Gefitinib #A | In vitro | ↓PI3/Akt; ↓cell proliferation; ↓cell survival; ↓vimentin; ↓EGFR; ↓p-EGFR; ↓p-Akt; ↓p-ERK; ↓N-cadherin; ↑E-cadherin; ↑claudin-1; ↑G1 phase arrest; ↑apoptosis | [45] | |
AITC *B | In vitro | ↓Survivin; ↓cyclin B1; ↓Cox-2; ↓cell viability; ↓MMP-9; ↓p-STAT3; ↑migration; ↑p53; ↑cleaved caspase-3; ↑cleaved PARP; ↑G2/M phase arrest; ↑p21; ↑ROS; ↑apoptosis | [51] | |
Mesothelioma | Cisplatin #A | In vitro | ↓Cell viability; ↓Bcl-2; ↓p-Akt; ↓p-mTOR; ↓cyclin D1; ↓GSH/GssG; ↑p53; ↑cleaved caspase-3; ↑cleaved PARP; ↑apoptosis; ↑Bax; ↑p-Cdc2tyr15; ↑ROS; ↑ΔΨm loss; ↑autophagy; ↑LC3B-II; ↑sub G1 arrest; ↑cyclin B1 | [106] |
Neuroblastoma | 3-MA *A | In vitro | ↓Cell viability; ↓LDH; ↓Bcl-2; ↑cell death; ↑LC3-I; ↑LC3-II; ↑ΔΨm loss | [107] |
Ovarian Cancer | (EGCG B + Cisplatin A) # | In vitro | ↓Cell viability; ↓cell proliferation; ↑G2/M phase arrest; ↑p21; ↑drug efficacy; ↑apoptosis | [108] |
EGCG *B | In vitro | ↓Cell viability; ↓hTERT; ↓DNMT1; ↓telomerase activity; ↑G2/M & S phase arrest; ↑apoptosis; ↑p-H2AX | [109] | |
(EGCG B+ Paclitaxel A) # | In vitro | ↓Cell viability; ↓cell proliferation; ↓colony formation; ↓hTERT; ↓DNMT1; ↓telomerase activity; ↑G2/M & S phase arrest; ↑apoptosis; ↑cleaved PARP; ↑p-H2AX | [109] | |
Cisplatin #A | In vitro | ↓GSH; ↑cytotoxicity; ↑apoptosis; ↑GCLC; ↑Nrf-2 | [110] | |
Cisplatin *A | In vitro | ↓Cell proliferation; ↓Bcl-2; ↓cyclin D1; ↓c-Myc; ↓colony formation; ↓cells in G2/M/S phase; ↑p53; ↑caspase 3 | [111] | |
Cisplatin #A | In vitro | ↓ERCC1; ↓ATP7A; ↑miR-30a-3p; ↑DNA damage; ↑cytotoxicity; ↑drug concentration | [112] | |
Cisplatin #A | In vivo | ↓Tumor volume; ↓ERCC1; ↓ATP7A; ↑miR-30a-3p | [112] | |
Cisplatin #A | In vitro | ↓c-Myb | [113] | |
Pancreatic Cancer | SO #A | In vitro | ↓NF-κB; ↓cIAP; ↓XIAP; ↓cFLIP; ↓colony & spheroid formation; ↓survival fraction; ↑cell death; ↑caspase- 3/7; ↑caspase-8, -9; ↑ALDH+ cells | [114] |
SO #A | In vivo | ↓Tumor growth; ↓Zeb-1; ↓Twist2; ↓vimentin; ↓HIF-1α | [114] | |
17-AAG #A | In vitro | ↓Cell viability; ↓Akt; ↓mut p53; ↓Raf-1; ↓CDK4; ↑caspase-3 | [115] | |
17-AAG #A | In vivo | ↓Tumor growth; ↓tumor weight; ↓tumor volume | [115] | |
(ASP A +CUR SLN B) * | In vitro | ↓Cell viability; ↑apoptosis | [116] | |
(ASP A +CUR B) * | In vitro | ↓Cell viability; ↓p-IκBα; ↓p-Akt; ↓survival fraction; ↓NF-κB activity; ↑apoptosis; ↑cleaved caspase-3; ↑p-ERK1/2; ↑p-c-Jun; ↑p-p53; ↑p-p38 MAPK; ↑cleaved PARP | [48] | |
LOR SMEDDS *A | In vitro | ↓Cell inhibition | [117] | |
GTC *A | In vitro | ↓Colony formation; ↓K-ras; ↓spheroid formation; ↓ALDH1+ cells; ↓cell viability; ↓cell migration; ↓MMP-2, -9; ↓survival fraction; ↑miR-let7-a; ↑apoptosis | [118] | |
LOR SMEDDS *A | In vitro | ↓Colony formation | [119] | |
(ASP A + CUR B) * | In vivo | ↓Tumor incidence; ↓tumor progression | [120] | |
Prostate Cancer | TRAIL *C | In vitro | ↓NF-κB; ↓survival fraction; ↓spheroid formation; ↓Nanog; ↓CXCR4; ↓jagged1; ↓CD44; ↓CD133; ↓CXCR4; ↓EpCAM; ↓c-Met; ↓Ki-67; ↓Notch 1; ↓Sox2; ↓ALDH1 activity; ↓cell differentiation; ↑cleaved caspase-3 | [121] |
TRAIL *C | In vivo | ↓Tumor growth; ↓CD44; ↓CD133; ↓Nanog; ↓CXCR4; ↓EpCAM; ↓c-Met; ↓ALDH1 activity; ↓Ki-67; ↑caspase-3 | [121] | |
Paclitaxel *A | In vitro | ↑Apoptosis | [122] | |
Renal Cell Carcinoma | Sunitinib *A | In vitro | ↓Cell growth; ↓CDK1; ↓p-CDK1; ↓CDK2; ↓p-CDK2; ↓clonogenic growth & proliferation; ↓cyclin A; ↓cyclin B; ↑drug efficacy; ↑G2/M phase arrest | [123] |
Skin Cancer | Quercetin *B | In vitro | ↓Cell viability; ↓cell migration | [124] |
Quercetin *B | In vivo | ↓Tumor volume; ↓MMP9 | [124] | |
DAC *A | In vitro | ↓Cell viability; ↓cell growth; ↑CCL5; ↑IL-33; ↑DUSP15; ↑CXCL10; ↑angiopoietin-2; ↑CD105; ↑VEGF; ↑CCN4 | [125] | |
Nano-CUR *B | In vitro | ↓Cell viability | [126] | |
FB *A | In vitro | ↓Cell growth; ↓MMP-1, -2, -3, -9; ↓Cell migration; ↓IL-1β; ↓VEGF; ↓NLRP3; ↓ASC; ↓cleaved caspase-1 | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sailo, B.L.; Liu, L.; Chauhan, S.; Girisa, S.; Hegde, M.; Liang, L.; Alqahtani, M.S.; Abbas, M.; Sethi, G.; Kunnumakkara, A.B. Harnessing Sulforaphane Potential as a Chemosensitizing Agent: A Comprehensive Review. Cancers 2024, 16, 244. https://doi.org/10.3390/cancers16020244
Sailo BL, Liu L, Chauhan S, Girisa S, Hegde M, Liang L, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing Sulforaphane Potential as a Chemosensitizing Agent: A Comprehensive Review. Cancers. 2024; 16(2):244. https://doi.org/10.3390/cancers16020244
Chicago/Turabian StyleSailo, Bethsebie Lalduhsaki, Le Liu, Suravi Chauhan, Sosmitha Girisa, Mangala Hegde, Liping Liang, Mohammed S. Alqahtani, Mohamed Abbas, Gautam Sethi, and Ajaikumar B. Kunnumakkara. 2024. "Harnessing Sulforaphane Potential as a Chemosensitizing Agent: A Comprehensive Review" Cancers 16, no. 2: 244. https://doi.org/10.3390/cancers16020244
APA StyleSailo, B. L., Liu, L., Chauhan, S., Girisa, S., Hegde, M., Liang, L., Alqahtani, M. S., Abbas, M., Sethi, G., & Kunnumakkara, A. B. (2024). Harnessing Sulforaphane Potential as a Chemosensitizing Agent: A Comprehensive Review. Cancers, 16(2), 244. https://doi.org/10.3390/cancers16020244