Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Expression of MAGEA Family in Bladder Cancer
3. Genomic Aberration of MAGEA Genes in Bladder Cancer
4. Gene Network and Signaling Pathways of MAGEA Family in Bladder Cancer
5. MAGEA Family as Diagnostic Biomarkers in Bladder Cancer
6. Prognostic Value of MAGEA Gene Family in Bladder Cancer
7. MAGEA Family as Therapeutic Target in Bladder Cancer
8. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Rumgay, H.; Li, M.; Yu, H.; Pan, H.; Ni, J. The global landscape of bladder cancer incidence and mortality in 2020 and projections to 2040. J. Glob. Health 2023, 13, 04109. [Google Scholar] [CrossRef] [PubMed]
- Schafer, E.J.; Jemal, A.; Wiese, D.; Sung, H.; Kratzer, T.B.; Islami, F.; Dahut, W.L.; Knudsen, K.E. Disparities and Trends in Genitourinary Cancer Incidence and Mortality in the USA. Eur. Urol. 2023, 84, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.; Xiao, J.F.; Agarwal, N.; Duex, J.E.; Theodorescu, D. Advances in bladder cancer biology and therapy. Nat. Rev. Cancer 2021, 21, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M.D. Bladder Cancer: A Review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; et al. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. J. Urol. 2017, 198, 552–559. [Google Scholar] [CrossRef]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Linares Espinós, E.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef]
- DeGeorge, K.C.; Holt, H.R.; Hodges, S.C. Bladder Cancer: Diagnosis and Treatment. Am. Fam. Physician 2017, 96, 507–514. [Google Scholar]
- Babatunde, K.A.; Najafi, A.; Salehipour, P.; Modarressi, M.H.; Mobasheri, M.B. Cancer/Testis genes in relation to sperm biology and function. Iran. J. Basic Med. Sci. 2017, 20, 967–974. [Google Scholar] [CrossRef]
- Kulkarni, P.; Shiraishi, T.; Rajagopalan, K.; Kim, R.; Mooney, S.M.; Getzenberg, R.H. Cancer/testis antigens and urological malignancies. Nature reviews. Urology 2012, 9, 386–396. [Google Scholar] [CrossRef]
- Whitehurst, A.W. Cause, and consequence of cancer/testis antigen activation in cancer. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 251–272. [Google Scholar] [CrossRef]
- Nin, D.S.; Deng, L.W. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023, 12, 926. [Google Scholar] [CrossRef] [PubMed]
- Jay, A.; Reitz, D.; Namekawa, S.H.; Heyer, W.D. Cancer testis antigens and genomic instability: More than immunology. DNA Repair 2021, 108, 103214. [Google Scholar] [CrossRef]
- Hikmet, F.; Rassy, M.; Backman, M.; Méar, L.; Mattsson, J.S.M.; Djureinovic, D.; Botling, J.; Brunnström, H.; Micke, P.; Lindskog, C. Expression of cancer–testis antigens in the immune microenvironment of non-small cell lung cancer. Mol. Oncol. 2023, 17, 2603–2617. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Uversky, V.N. Cancer/Testis Antigens: “Smart” Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. Int. J. Mol. Sci. 2017, 18, 740. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Caballero, O.L.; Yung, W.K.; Weinstein, J.N.; Riggins, G.J.; Strausberg, R.L.; Zhao, Q. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol. Res. 2014, 2, 371–379. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, Z.; Li, M.; Wang, D.; Guo, R.; Fang, X.; Chen, F. Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int. J. Oncol. 2023, 62, 71. [Google Scholar] [CrossRef]
- Gordeeva, O. Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Semin. Cancer Biol. 2018, 53, 75–89. [Google Scholar] [CrossRef]
- Hofmann, O.; Caballero, O.L.; Stevenson, B.J.; Chen, Y.T.; Cohen, T.; Chua, R.; Maher, C.A.; Panji, S.; Schaefer, U.; Kruger, A.; et al. Genome-wide analysis of cancer/testis gene expression. Proc. Natl. Acad. Sci. USA 2008, 105, 20422–20427. [Google Scholar] [CrossRef]
- Zendman, A.J.; Ruiter, D.J.; Van Muijen, G.N. Cancer/testis-associated genes: Identification, expression profile, and putative function. J. Cell. Physiol. 2003, 194, 272–288. [Google Scholar] [CrossRef]
- Sang, M.; Wang, L.; Ding, C.; Zhou, X.; Wang, B.; Wang, L.; Lian, Y.; Shan, B. Melanoma-associated antigen genes—An update. Cancer Lett. 2011, 302, 85–90. [Google Scholar] [CrossRef]
- Weon, J.L.; Potts, P.R. The MAGE protein family and cancer. Curr. Opin. Cell Biol. 2015, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Meng, L.; Ding, P.; Sang, M. Epigenetic regulation of MAGE family in human cancer progression-DNA methylation, histone modification, and non-coding RNAs. Clin. Epigenetics 2018, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Sang, M.; Lian, Y.; Zhou, X.; Shan, B. MAGE-A family: Attractive targets for cancer immunotherapy. Vaccine 2011, 29, 8496–8500. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Senapati, S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. Adv. Protein Chem. Struct. Biol. 2021, 125, 121–147. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.A.; Cooper, C.D.; Roos, A.K.; Aitkenhead, H.; Oppermann, U.C.; Cho, H.J.; Osman, R.; Gileadi, O. Structures of Two Melanoma-Associated Antigens Suggest Allosteric Regulation of Effector Binding. PLoS ONE 2016, 11, e0148762. [Google Scholar] [CrossRef] [PubMed]
- Muscatelli, F.; Walker, A.P.; De Plaen, E.; Stafford, A.N.; Monaco, A.P. Isolation, and characterization of a MAGE gene family in the Xp21.3 region. Proc. Natl. Acad. Sci. USA 1995, 92, 4987–4991. [Google Scholar] [CrossRef]
- Florke Gee, R.R.; Chen, H.; Lee, A.K.; Daly, C.A.; Wilander, B.A.; Fon Tacer, K.; Potts, P.R. Emerging roles of the MAGE protein family in stress response pathways. J. Biol. Chem. 2020, 295, 16121–16155. [Google Scholar] [CrossRef]
- Schäfer, P.; Paraschiakos, T.; Windhorst, S. Oncogenic activity and cellular functionality of melanoma associated antigen A3. Biochem. Pharmacol. 2021, 192, 114700. [Google Scholar] [CrossRef]
- Alsalloum, A.; Shevchenko, J.A.; Sennikov, S. The Melanoma-Associated Antigen Family A (MAGE-A): A Promising Target for Cancer Immunotherapy? Cancers 2023, 15, 1779. [Google Scholar] [CrossRef]
- Schooten, E.; Di Maggio, A.; van Bergen en Henegouwen, P.M.P.; Kijanka, M.M. MAGE-A antigens as targets for cancer immunotherapy. Cancer Treat. Rev. 2018, 67, 54–62. [Google Scholar] [CrossRef]
- Kufer, P.; Zippelius, A.; Lutterbüse, R.; Mecklenburg, I.; Enzmann, T.; Montag, A.; Weckermann, D.; Passlick, B.; Prang, N.; Reichardt, P.; et al. Heterogeneous expression of MAGE-A genes in occult disseminated tumor cells: A novel multimarker reverse transcription-polymerase chain reaction for diagnosis of micrometastatic disease. Cancer Res. 2002, 62, 251–261. [Google Scholar] [PubMed]
- De Plaen, E.; Arden, K.; Traversari, C.; Gaforio, J.J.; Szikora, J.P.; De Smet, C.; Brasseur, F.; van der Bruggen, P.; Lethé, B.; Lurquin, C.; et al. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 1994, 40, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Katsura, Y.; Satta, Y. Evolutionary history of the cancer immunity antigen MAGE gene family. PLoS ONE 2011, 6, e20365. [Google Scholar] [CrossRef]
- Sigalotti, L.; Covre, A.; Zabierowski, S.; Himes, B.; Colizzi, F.; Natali, P.G.; Herlyn, M.; Maio, M. Cancer testis antigens in human melanoma stem cells: Expression, distribution, and methylation status. J. Cell. Physiol. 2008, 215, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, M.K.; Traynor, S.; Stæhr, M.; Duijf, P.G.; Nielsen, A.Y.; Terp, M.G.; Pedersen, C.B.; Guldberg, P.; Ditzel, H.J.; Gjerstorff, M.F. The Cancer/Testis Antigen Gene VCX2 Is Rarely Expressed in Malignancies but Can Be Epigenetically Activated Using DNA Methyltransferase and Histone Deacetylase Inhibitors. Front. Oncol. 2020, 10, 584024. [Google Scholar] [CrossRef] [PubMed]
- Monte, M.; Simonatto, M.; Peche, L.Y.; Bublik, D.R.; Gobessi, S.; Pierotti, M.A.; Rodolfo, M.; Schneider, C. MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc. Natl. Acad. Sci. USA 2006, 103, 11160–11165. [Google Scholar] [CrossRef] [PubMed]
- Poojary, M.; Jishnu, P.V.; Kabekkodu, S.P. Prognostic Value of Melanoma-Associated Antigen-A (MAGE-A) Gene Expression in Various Human Cancers: A Systematic Review and Meta-analysis of 7428 Patients and 44 Studies. Mol. Diagn. Ther. 2020, 24, 537–555. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.J.; Garcia-Lezana, T.; Ruiz de Galarreta, M.; Villacorta-Martin, C.; Kozlova, E.G.; Martins-Filho, S.N.; von Felden, J.; Ahsen, M.E.; Bresnahan, E.; Hernandez-Meza, G.; et al. Transcriptomic characterization of cancer-testis antigens identifies MAGEA3 as a driver of tumor progression in hepatocellular carcinoma. PLoS Genet. 2021, 17, e1009589. [Google Scholar] [CrossRef]
- Gao, X.; Chen, G.; Cai, H.; Wang, X.; Song, K.; Liu, L.; Qiu, T.; He, Y. Aberrantly enhanced melanoma-associated antigen (MAGE)-A3 expression facilitates cervical cancer cell proliferation and metastasis via actuating Wnt signaling pathway. Biomed. Pharmacother. 2020, 122, 109710. [Google Scholar] [CrossRef]
- Müller-Richter, U.D.; Dowejko, A.; Reuther, T.; Kleinheinz, J.; Reichert, T.E.; Driemel, O. Analysis of expression profiles of MAGE-A antigens in oral squamous cell carcinoma cell lines. Head Face Med. 2009, 5, 10. [Google Scholar] [CrossRef]
- Sakurai, T.; Itoh, K.; Higashitsuji, H.; Nagao, T.; Nonoguchi, K.; Chiba, T.; Fujita, J. A cleaved form of MAGE-A4 binds to Miz-1 and induces apoptosis in human cells. J. Biol. Chem. 2004, 279, 15505–155014. [Google Scholar] [CrossRef] [PubMed]
- Pineda, C.T.; Ramanathan, S.; Fon Tacer, K.; Weon, J.L.; Potts, M.B.; Ou, Y.H.; White, M.A.; Potts, P.R. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 2015, 160, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.J. Tumor Metabolism: MAGE-A Proteins Help TRIM Turn Over AMPK. Curr. Biol. 2015, 25, R418–R420. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Chen, X.; Geng, J.; Minges, J.T.; Grossman, G.; Wilson, E.M. Melanoma antigen-A11 regulates substrate-specificity of Skp2-mediated protein degradation. Mol. Cell. Endocrinol. 2017, 439, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Caballero, O.L.; Zhao, Q.; Rimoldi, D.; Stevenson, B.J.; Svobodová, S.; Devalle, S.; Röhrig, U.F.; Pagotto, A.; Michielin, O.; Speiser, D.; et al. Frequent MAGE mutations in human melanoma. PLoS ONE 2010, 5, e12773, Erratum in PLoS ONE 2010, 5, 10.1371/annotation/3ee2788f-0c44-429f-85c3-d626c9fedc21. [Google Scholar] [CrossRef]
- Hagiwara, Y.; Sieverling, L.; Hanif, F.; Anton, J.; Dickinson, E.R.; Bui, T.T.; Andreeva, A.; Barran, P.E.; Cota, E.; Nikolova, P.V. Consequences of point mutations in melanoma-associated antigen 4 (MAGE-A4) protein: Insights from structural and biophysical studies. Sci. Rep. 2016, 6, 25182. [Google Scholar] [CrossRef]
- Park, T.S.; Groh, E.M.; Patel, K.; Kerkar, S.P.; Lee, C.C.; Rosenberg, S.A. Expression of MAGE-A and NY-ESO-1 in Primary and Metastatic Cancers. J. Immunother. 2016, 39, 1–7. [Google Scholar] [CrossRef]
- Xie, C.; Subhash, V.V.; Datta, A.; Liem, N.; Tan, S.H.; Yeo, M.S.; Tan, W.L.; Koh, V.; Yan, F.L.; Wong, F.Y.; et al. Melanoma associated antigen (MAGE)-A3 promotes cell proliferation and chemotherapeutic drug resistance in gastric cancer. Cell. Oncol. 2016, 39, 175–186. [Google Scholar] [CrossRef]
- Duan, Z.; Duan, Y.; Lamendola, D.E.; Yusuf, R.Z.; Naeem, R.; Penson, R.T.; Seiden, M.V. Overexpression of MAGE/GAGE genes in paclitaxel/doxorubicin-resistant human cancer cell lines. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2003, 9, 2778–2785. [Google Scholar]
- Marcar, L.; Ihrig, B.; Hourihan, J.; Bray, S.E.; Quinlan, P.R.; Jordan, L.B.; Thompson, A.M.; Hupp, T.R.; Meek, D.W. MAGE-A Cancer/Testis Antigens Inhibit MDM2 Ubiquitylation Function and Promote Increased Levels of MDM4. PLoS ONE 2015, 10, e0127713. [Google Scholar] [CrossRef]
- Nardiello, T.; Jungbluth, A.A.; Mei, A.; Diliberto, M.; Huang, X.; Dabrowski, A.; Andrade, V.C.; Wasserstrum, R.; Ely, S.; Niesvizky, R.; et al. MAGE-A inhibits apoptosis in proliferating myeloma cells through repression of Bax and maintenance of survivin. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 4309–4319. [Google Scholar] [CrossRef] [PubMed]
- Bujas, T.; Marusic, Z.; Peric Balja, M.; Mijic, A.; Kruslin, B.; Tomas, D. MAGE-A3/4 and NY-ESO-1 antigens expression in metastatic esophageal squamous cell carcinoma. Eur. J. Histochem. EJH 2011, 55, e7. [Google Scholar] [CrossRef] [PubMed]
- Patard, J.J.; Brasseur, F.; Gil-Diez, S.; Radvanyi, F.; Marchand, M.; François, P.; Abi-Aad, A.; Van Cangh, P.; Abbou, C.C.; Chopin, D.; et al. Expression of MAGE genes in transitional-cell carcinomas of the urinary bladder. Int. J. Cancer 1995, 64, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Picard, V.; Bergeron, A.; Larue, H.; Fradet, Y. MAGE-A9 mRNA and protein expression in bladder cancer. Int. J. Cancer 2007, 120, 2170–2177. [Google Scholar] [CrossRef]
- Bergeron, A.; Picard, V.; LaRue, H.; Harel, F.; Hovington, H.; Lacombe, L.; Fradet, Y. High frequency of MAGE-A4 and MAGE-A9 expression in high-risk bladder cancer. Int. J. Cancer 2009, 125, 1365–1371. [Google Scholar] [CrossRef]
- Xylinas, E.; Cha, E.K.; Khani, F.; Kluth, L.A.; Rieken, M.; Volkmer, B.G.; Hautmann, R.; Küfer, R.; Chen, Y.T.; Zerbib, M.; et al. Association of oncofetal protein expression with clinical outcomes in patients with urothelial carcinoma of the bladder. J. Urol. 2014, 191, 830–841. [Google Scholar] [CrossRef]
- Dyrskjøt, L.; Zieger, K.; Kissow Lildal, T.; Reinert, T.; Gruselle, O.; Coche, T.; Borre, M.; Ørntoft, T.F. Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma. Br. J. Cancer 2012, 107, 116–122. [Google Scholar] [CrossRef]
- Kocher, T.; Zheng, M.; Bolli, M.; Simon, R.; Forster, T.; Schultz-Thater, E.; Remmel, E.; Noppen, C.; Schmid, U.; Ackermann, D.; et al. Prognostic relevance of MAGE-A4 tumor antigen expression in transitional cell carcinoma of the urinary bladder: A tissue microarray study. Int. J. Cancer 2002, 100, 702–705. [Google Scholar] [CrossRef]
- Mengus, C.; Schultz-Thater, E.; Coulot, J.; Kastelan, Z.; Goluza, E.; Coric, M.; Spagnoli, G.C.; Hudolin, T. MAGE-A10 cancer/testis antigen is highly expressed in high-grade non-muscle-invasive bladder carcinomas. Int. J. Cancer 2013, 132, 2459–2463. [Google Scholar] [CrossRef]
- Mohsenzadegan, M.; Razmi, M.; Vafaei, S.; Abolhasani, M.; Madjd, Z.; Saeednejad Zanjani, L.; Sharifi, L. Co-expression of cancer-testis antigens of MAGE-A6 and MAGE-A11 is associated with tumor aggressiveness in patients with bladder cancer. Sci. Rep. 2022, 12, 599. [Google Scholar] [CrossRef]
- Lerut, E.; Van Poppel, H.; Joniau, S.; Gruselle, O.; Coche, T.; Therasse, P. Rates of MAGE-A3 and PRAME expressing tumors in FFPE tissue specimens from bladder cancer patients: Potential targets for antigen-specific cancer immunotherapeutics. Int. J. Clin. Exp. Pathol. 2015, 8, 9522–9532. [Google Scholar] [PubMed]
- Bar-Haim, E.; Paz, A.; Machlenkin, A.; Hazzan, D.; Tirosh, B.; Carmon, L.; Brenner, B.; Vadai, E.; Mor, O.; Stein, A.; et al. MAGE-A8 overexpression in transitional cell carcinoma of the bladder: Identification of two tumour-associated antigen peptides. Br. J. Cancer 2004, 91, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Shen, Y.; Wen, S.; Bajorin, D.F.; Reuter, V.E.; Old, L.J.; Jungbluth, A.A. Cancer-testis antigens: Expression and correlation with survival in human urothelial carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 5442–5447. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer genome landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Herlong, F.H.; Stroehlein, J.R.; Mishra, L. Mutations of Chromatin Structure Regulating Genes in Human Malignancies. Curr. Protein Pept. Sci. 2016, 17, 411–437. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.U.; Koo, S.H.; Jeong, T.E.; Kwon, K.C.; Park, J.W.; Jeon, C.H. Multitarget fluorescence in situ hybridization and melanoma antigen genes analysis in primary bladder carcinoma. Cancer Genet. Cytogenet. 2006, 164, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Karihtala, P.; Kilpivaara, O.; Porvari, K. Mutational signatures and their association with survival and gene expression in urological carcinomas. Neoplasia 2023, 44, 100933. [Google Scholar] [CrossRef]
- Jungbluth, A.A.; Busam, K.J.; Kolb, D.; Iversen, K.; Coplan, K.; Chen, Y.T.; Spagnoli, G.C.; Old, L.J. Expression of MAGE-antigens in normal tissues and cancer. Int. J. Cancer 2000, 85, 460–465. [Google Scholar] [CrossRef]
- Nasrah, S.; Radi, A.; Daberkow, J.K.; Hummler, H.; Weber, S.; Seaayfan, E.; Kömhoff, M. MAGED2 Depletion Promotes Stress-Induced Autophagy by Impairing the cAMP/PKA Pathway. Int. J. Mol. Sci. 2023, 24, 13433. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Ottaviani, S.; Colau, D.; van der Bruggen, P.; van der Bruggen, P. A new MAGE-4 antigenic peptide recognized by cytolytic T lymphocytes on HLA-A24 carcinoma cells. Cancer Immunol. Immunother. CII 2006, 55, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Pineda, C.T.; Potts, P.R. Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by ubiquitinating and degrading AMPK in cancer. Autophagy 2015, 11, 844–846. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wei, G.; Zhang, L.; Xu, Z. Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network. Mol. Med. Rep. 2019, 19, 4806–4818. [Google Scholar] [CrossRef] [PubMed]
- Yasar, O.; Akcay, T.; Obek, C.; Turegun, F.A. Significance of S100A8, S100A9 and calprotectin levels in bladder cancer. Scand. J. Clin. Lab. Investig. 2017, 77, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Shankar, E.; Lin, S.; Singh, V.; Chan, E.R.; Cao, S.; Fu, P.; MacLennan, G.T.; Ponsky, L.E.; Gupta, S. Identification of Key Genes Associated with Progression and Prognosis of Bladder Cancer through Integrated Bioinformatics Analysis. Cancers 2021, 13, 5931. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.T.; Kim, J.; Yan, C.; Jeong, P.; Choi, S.Y.; Lee, O.J.; Chae, Y.B.; Yun, S.J.; Lee, S.C.; Kim, W.J. S100A9 and EGFR gene signatures predict disease progression in muscle invasive bladder cancer patients after chemotherapy. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Atanackovic, D.; Hildebrandt, Y.; Jadczak, A.; Cao, Y.; Luetkens, T.; Meyer, S.; Kobold, S.; Bartels, K.; Pabst, C.; Lajmi, N.; et al. Cancer-testis antigens MAGE-C1/CT7 and MAGE-A3 promote the survival of multiple myeloma cells. Haematologica 2010, 95, 785–793. [Google Scholar] [CrossRef]
- de Carvalho, F.; Vettore, A.L.; Colleoni, G.W. Cancer/Testis Antigen MAGE-C1/CT7: New target for multiple myeloma therapy. Clin. Dev. Immunol. 2012, 2012, 257695. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, L. Expression of cancer-testis antigens in esophageal cancer and their progress in immunotherapy. J. Cancer Res. Clin. Oncol. 2019, 145, 281–291. [Google Scholar] [CrossRef]
- Srivastava, P.; Paluch, B.E.; Matsuzaki, J.; James, S.R.; Collamat-Lai, G.; Taverna, P.; Karpf, A.R.; Griffiths, E.A. Immunomodulatory action of the DNA methyltransferase inhibitor SGI-110 in epithelial ovarian cancer cells and xenografts. Epigenetics 2015, 10, 237–246. [Google Scholar] [CrossRef]
- Hartmann, S.; Brands, R.C.; Küchler, N.; Fuchs, A.; Linz, C.; Kübler, A.C.; Müller-Richter, U.D. Melanoma-associated antigen expression and the efficacy of tyrosine kinase inhibitors in head and neck cancer. Oncol. Lett. 2015, 10, 1211–1217. [Google Scholar] [CrossRef]
- Mitchell, G.; Pollack, S.M.; Wagner, M.J. Targeting cancer testis antigens in synovial sarcoma. J. Immunother. Cancer 2021, 9, e002072. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Sun, X.; Liu, Z.; He, Y. A novel era of cancer/testis antigen in cancer immunotherapy. Int. Immunopharmacol. 2021, 98, 107889. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, M.J.; Gure, A.O.; Jungbluth, A.A.; Old, L.J.; Chen, Y.T. Cancer/testis antigens: An expanding family of targets for cancer immunotherapy. Immunol. Rev. 2002, 188, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Duperret, E.K.; Liu, S.; Paik, M.; Trautz, A.; Stoltz, R.; Liu, X.; Ze, K.; Perales-Puchalt, A.; Reed, C.; Yan, J.; et al. A Designer Cross-reactive DNA Immunotherapeutic Vaccine that Targets Multiple MAGE-A Family Members Simultaneously for Cancer Therapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 6015–6027. [Google Scholar] [CrossRef] [PubMed]
- Colombel, M.; Heidenreich, A.; Martinez-Pineiro, L.; Babjuk, M.; Korneyev, I.; Surcel, C.; Yakovlev, P.; Colombo, R.; Radziszewski, P.; Witjes, F.; et al. Perioperative chemotherapy in muscle-invasive bladder cancer: Overview and the unmet clinical need for alternative adjuvant therapy as studied in the MAGNOLIA trial. Eur. Urol. 2014, 65, 509–511. [Google Scholar] [CrossRef] [PubMed]
- Derré, L.; Cesson, V.; Lucca, I.; Cerantola, Y.; Valerio, M.; Fritschi, U.; Vlamopoulos, Y.; Burruni, R.; Legris, A.S.; Dartiguenave, F.; et al. Intravesical Bacillus Calmette Guerin Combined with a Cancer Vaccine Increases Local T-Cell Responses in Non-muscle-Invasive Bladder Cancer Patients. Clin. Cancer Res. 2017, 23, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.A.; Dudley, M.E.; Yu, Y.Y.; Zheng, Z.; Robbins, P.F.; Theoret, M.R.; Wunderlich, J.R.; Hughes, M.S.; Restifo, N.P.; Rosenberg, S.A. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J. Immunol. 2003, 171, 3287–3295. [Google Scholar] [CrossRef]
- Johnson, L.A.; Morgan, R.A.; Dudley, M.E.; Cassard, L.; Yang, J.C.; Hughes, M.S.; Kammula, U.S.; Royal, R.E.; Sherry, R.M.; Wunderlich, J.R.; et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 2009, 114, 535–546. [Google Scholar] [CrossRef]
- Robbins, P.F.; Morgan, R.A.; Feldman, S.A.; Yang, J.C.; Sherry, R.M.; Dudley, M.E.; Wunderlich, J.R.; Nahvi, A.V.; Helman, L.J.; Mackall, C.L.; et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 2011, 29, 917–924. [Google Scholar] [CrossRef]
- Sanderson, J.P.; Crowley, D.J.; Wiedermann, G.E.; Quinn, L.L.; Crossland, K.L.; Tunbridge, H.M.; Cornforth, T.V.; Barnes, C.S.; Ahmed, T.; Howe, K.; et al. Preclinical evaluation of an affinity-enhanced MAGE-A4-specific T-cell receptor for adoptive T-cell therapy. Oncoimmunology 2019, 9, 1682381. [Google Scholar] [CrossRef] [PubMed]
- Marcar, L.; Maclaine, N.J.; Hupp, T.R.; Meek, D.W. Mage-A cancer/testis antigens inhibit p53 function by blocking its interaction with chromatin. Cancer Res. 2010, 70, 10362–10370. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.C.; Tian, Y.; Huang, Z.M.; Wang, J.X.; Fu, X.L.; Ni, B.; Wu, Y.Z. Identification of a new MAGE-A10 antigenic peptide presented by HLA-A*0201 on tumor cells. Cancer Biol. Ther. 2011, 11, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Roch, N.; Kutup, A.; Vashist, Y.; Yekebas, E.; Kalinin, V.; Izbicki, J.R. Coexpression of MAGE-A peptides, and HLA class I molecules in hepatocellular carcinoma. Anticancer Res. 2010, 30, 1617–1623. [Google Scholar] [PubMed]
- Chowdhury, S.M.; Du, X.; Tolić, N.; Wu, S.; Moore, R.J.; Mayer, M.U.; Smith, R.D.; Adkins, J.N. Identification of cross-linked peptides after click-based enrichment using sequential collision-induced dissociation and electron transfer dissociation tandem mass spectrometry. Anal. Chem. 2009, 81, 5524–5532. [Google Scholar] [CrossRef]
- Bhatia, N.; Yang, B.; Xiao, T.Z.; Peters, N.; Hoffmann, M.F.; Longley, B.J. Identification of novel small molecules that inhibit protein-protein interactions between MAGE and KAP-1. Arch. Biochem. Biophys. 2011, 508, 217–221. [Google Scholar] [CrossRef]
- Gjerstorff, M.F.; Harkness, L.; Kassem, M.; Frandsen, U.; Nielsen, O.; Lutterodt, M.; Møllgård, K.; Ditzel, H.J. Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation. Hum. Reprod. 2008, 23, 2194–2201. [Google Scholar] [CrossRef]
- Lifantseva, N.; Koltsova, A.; Krylova, T.; Yakovleva, T.; Poljanskaya, G.; Gordeeva, O. Expression patterns of cancer-testis antigens in human embryonic stem cells and their cell derivatives indicate lineage tracks. Stem Cells Int. 2011, 2011, 795239. [Google Scholar] [CrossRef]
SN | Clinical Trials | Trial Number | References |
---|---|---|---|
1 | Safety and efficacy study of MAGE-A3 + AS-15 in patients with muscle-invasive bladder cancer after cystectomy | NCT01435356 | [86] |
2 | Incidence of expression of tumor antigens in cancer tissue from patients with pathologically demonstrated bladder cancer. | NCT01706185 | [61] |
3 | BCG modulation of the recMAGE-A3 + AS15 ASCI response in the treatment of non-muscle invasive bladder cancer (NMIBC) patients | NCT01498172 | [87] |
4 | T cell receptor immunotherapy targeting MAGE-A3 for patients with metastatic cancer who are HLA-A*01 positive | NCT02153905 | [88,89,90] |
5 | MAGE-A4#1o32T for multi-tumor | NCT03132922 | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, S.; Swain, D.; Kushwaha, P.P.; Brahmbhatt, S.; Gupta, K.; Sundi, D.; Gupta, S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers 2024, 16, 246. https://doi.org/10.3390/cancers16020246
Verma S, Swain D, Kushwaha PP, Brahmbhatt S, Gupta K, Sundi D, Gupta S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers. 2024; 16(2):246. https://doi.org/10.3390/cancers16020246
Chicago/Turabian StyleVerma, Shiv, Diya Swain, Prem Prakash Kushwaha, Smit Brahmbhatt, Karishma Gupta, Debasish Sundi, and Sanjay Gupta. 2024. "Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer" Cancers 16, no. 2: 246. https://doi.org/10.3390/cancers16020246
APA StyleVerma, S., Swain, D., Kushwaha, P. P., Brahmbhatt, S., Gupta, K., Sundi, D., & Gupta, S. (2024). Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers, 16(2), 246. https://doi.org/10.3390/cancers16020246