Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Molecular Genetic Abnormalities and Corresponding Transcriptome Changes Specific to Liposarcomas and Their Possible Role as Therapeutic Targets
2.1. Well-Differentiated Liposarcoma (WDLPS) and Dedifferentiated Liposarcoma (DDLSP): 12q13-15-Associated Chromosomal Aberrations as Major Driver of Pathogenesis
2.2. Myxoid and Round-Cell Liposarcoma (MLPS): DNA Damage-Associated Gene CHOP and Its Translocation Partners
2.3. Pleomorphic Liposarcoma (PLPS) and Myxoid Pleomorphic Liposarcoma (MPLPS): Complex Karyotype and Poor Prognosis
2.4. Conclusion on Liposarcoma Genetics
3. Epigenetic Markers of Liposarcoma
3.1. Mutations in the Genes of Epigenetic Regulators and the Whole Set of Differentially Expressed miRNAs in WDLPS and DDLSP
3.2. MLPS: FUS-CHOP-Associated Chromatin Remodeling and Changes in Specific miRNA Expression
3.3. Conclusions of Liposarcoma Epigenetics
4. Changes in Signaling and Therapeutic Approaches
4.1. MDM2/p53 and CDK4 Signaling Aberrations as Well as Activation Mutations in Multiple Growth Factors in WDLPS and DDLPS
4.2. FUS-CHOP-Associated Abnormalities of PI3K/Akt/mTOR and Other Proliferative Signaling in MLPS
4.3. PLPS and MPLPS: No Specific Targets
4.4. Perspectives of Targeted Therapy for Liposarcomas
5. Conclusions/Future Direction in Therapy
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACACB | Acetyl-Coa Carboxylase |
ADRB2 | Adrenoceptor Beta 2 |
Akt | AKT Serine/Threonine Kinase |
ALDH1A3 | Aldehyde Dehydrogenase 1 Family Member A3 |
APC | Adenomatous Polyposis Coli |
APP | Amyloid Beta (A4) Precursor Protein |
AQP7 | Aquaporin-7 |
ARID1A | At-Rich Interaction Domain 1a |
ASK1 | Apoptosis Signal-Regulating Kinase 1 |
ATM | Ataxia Telangiectasia Mutated |
ATRX | ATP-Dependent Helicase |
AXL | Axl Receptor Tyrosine Kinase |
BARD1 | BRCA1 Associated RING Domain 1 |
BCL2 | B-Cell Lymphoma 2 |
BMI1 | BMI1 Proto-Oncogene, Polycomb Ring Finger |
BUB1B | Mitotic Checkpoint Serine/Threonine-Protein Kinase BUB1 Beta |
CALR | Calreticulin |
CAV1 | Caveolin 1 |
CCNA | Cyclin A |
CCND1 | Cyclin D1 |
CDC20 | Cell Division Cycle Protein 20 |
CDH1 | E-Cadherin |
CDK | Cyclin-Dependent Kinase |
CDKN | Cyclin Dependent Kinase Inhibitor 2a |
CEBPA | CCAAT/Enhancer Binding Protein Alpha |
CENPF | Centromere Protein F |
CHEK1 | Checkpoint Kinase 1 |
CHOP | C/EBP Homologous Protein Alpha |
CpG | CG-Dinucleotides |
CPM | Carboxypeptidase M |
CTAG | Cancer/Testis Antigen |
CTNNB1 | Catenin Beta 1 |
DAXX | Death-Associated Protein 6 |
DDIT3 | DNA Damage-Inducible Transcript 3, |
DDLPS | Dedifferentiated Liposarcoma, |
DDR2 | Discoidin Domain Receptor Tyrosine Kinase 2 |
E2F1 | E2f Transcription Factor 1 |
EGF | Epidermal Growth Factor |
EGFR | Epidermal Growth Factor Receptor |
EPHA1 | Ephrin Type-A Receptor 1 |
ERBB3 | Human Epidermal Growth Factor Receptor 3 |
EWS | Ewing Sarcoma Protein |
FBXW7 | F-Box and WD Repeat Domain Containing 7 |
FGF | Fibroblast Growth Factor |
FGFR | Fibroblast Growth Factor Receptor |
FLT1 | FMS-Like Tyrosine Kinase 1 |
FRS2 | Fibroblast Growth Factor Receptor Substrate 2 |
FUS | Fused In Sarcoma |
FZD4 | Frizzled Class Receptor 4 |
GPD1 | Glycerol-3-Phosphate Dehydrogenase 1 (Soluble) |
HDAC | Histone Deacetylase |
HMGA | High-Mobility Group A |
IGF | Insulin-Like Growth Factor |
IGFR | Insulin-Like Growth Factor |
INSM1 | Insm Transcriptional Repressor 1 |
KLF4 | Kruppel Like Factor 4 |
KRT8 | Keratin 8 |
LEP | Leptin |
LGALS3 | Galectin-3 |
LGR5 | Leucine-Rich Repeat Containing G Protein-Coupled Receptor 5 |
lncRNA | Long Non-Coding RNA |
LPS | Liposarcoma |
MDM2 | Murin Double Minute 2 |
miRNA | Microrna |
MAGEA9 | Melanoma-Associated Antigen 9 |
MAP3K5 | Mitogen-Activated Protein Kinase Kinase Kinase 5 |
MAPK | Mitogen-Activated Protein Kinase |
MAZ | MYC-Associated Zinc Finger Protein |
MCL1 | Myeloid Leukemia and Chlamydia 1 |
MET | MET Proto-Oncogene, Receptor Tyrosine Kinase |
MGMT | O6-Methylguanine DNA Methyltransferase |
MLLT10 | Myeloid/Lymphoid or Mixed-Lineage Leukemia (Trithorax Homolog, Drosophila); Translocated To 10 |
MLPS | Myxoid/Round-Cell Liposarcoma, |
MMP2 | Matrix Metalloproteinase 2 |
MPLPS | Myxoid Pleomorphic Liposarcoma |
MST1 | Mammalian Sterile 20-Like 1 Kinase |
MT1G | Metallothionein 1G |
mTOR | Mammalian Target of Rapamycin |
NEBL | Nebulette |
PCNA | Proliferating Cell Nuclear Antigen |
PD-1 | Programmed Cell Death Protein 1 |
PD-L1 | Programmed Death Ligand 1 |
PDGF | Platelet-Derived Growth Factor |
PDGFR | Platelet-Derived Growth Factor Receptor |
PGF | Placental Growth Factor |
PGFR | Placental Growth Factor Receptor |
PI3K | Phosphatidylinositol 3-Kinase |
PLPS | Pleomorphic Liposarcoma |
PPAR | Peroxisome Proliferator-Activated Receptor |
PRAME | Preferentially Expressed Antigen in Melanoma |
PRC2 | Polycomb Repressive Complex 2 |
PTEN | Phosphatase and Tensin Homolog |
PTK7 | Protein Tyrosine Kinase 7 |
RASSF1A | Ras-Association Domain Family 1 Isoform A |
REST | Re1 Silencing Transcription Factor |
RET | Rearranged During Transfection |
ROS1 | ROS Proto-Oncogene 1, Receptor Tyrosine Kinase |
RUNX3 | Runt-Related Transcription Factor 3 |
SAS | Stranded At Second |
SIAH2 | Seven In Absentia Homolog (SIAH) 2 |
SMAD4 | Similar To The Gene Products Of The Drosophila Gene Mothers Against Decapentaplegic 4 |
SORBS1 | Sorbin and SH3 Domain-Containing Protein 1 |
SPIN1 | Spindlin 1 |
STAT6 | Signal Transducer and Activator Of Transcription 6 |
STS | Soft-Tissue Sarcoma |
SWI/SNF | Switch/Sucrose Non-Fermentable |
TBX3 | T-Box Transcription Factor 3 |
TERT | Telomerase Reverse Transcriptase |
TGF | Transforming Growth Factor |
THBS2 | Thrombospondin 2 |
TKT | Transketolase |
TOP2A | DNA Topoisomerase II Alpha |
TSPAN31 | Tetraspanin 31 |
VEGF | Vascular Endothelial Growth Factor |
VEGFR | Vascular Endothelial Growth Factor Receptor |
WDLPS | Well-Differentiated Liposarcoma |
YAP1 | Yes-Associated Protein 1 |
YEATS4 | YEATS Domain Containing 4 |
References
- Sbaraglia, M.; Bellan, E.; Dei Tos, A.P. The 2020 WHO Classification of Soft Tissue Tumours: News and Perspectives. Pathologica 2021, 113, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Dodd, L.G. Update on Liposarcoma: A Review for Cytopathologists. Diagn. Cytopathol. 2012, 40, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.W.; Silva, T.M.; Bovée, J.V.M.G. New Molecular Entities of Soft Tissue and Bone Tumors. Curr. Opin. Oncol. 2022, 34, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, I.-M.; Gronchi, A. WHO Pathology: Highlights of the 2020 Sarcoma Update. Surg. Oncol. Clin. N. Am. 2022, 31, 321–340. [Google Scholar] [CrossRef] [PubMed]
- Singer, S.; Antonescu, C.R.; Riedel, E.; Brennan, M.F. Histologic Subtype and Margin of Resection Predict Pattern of Recurrence and Survival for Retroperitoneal Liposarcoma. Ann. Surg. 2003, 238, 358–370, discussion 370–371. [Google Scholar] [CrossRef]
- Lahat, G.; Anaya, D.A.; Wang, X.; Tuvin, D.; Lev, D.; Pollock, R.E. Resectable Well-Differentiated versus Dedifferentiated Liposarcomas: Two Different Diseases Possibly Requiring Different Treatment Approaches. Ann. Surg. Oncol. 2008, 15, 1585–1593. [Google Scholar] [CrossRef]
- Zhou, M.Y.; Bui, N.Q.; Charville, G.W.; Ganjoo, K.N.; Pan, M. Treatment of De-Differentiated Liposarcoma in the Era of Immunotherapy. Int. J. Mol. Sci. 2023, 24, 9571. [Google Scholar] [CrossRef]
- Ghadimi, M.P.; Al-Zaid, T.; Madewell, J.; Peng, T.; Colombo, C.; Hoffman, A.; Creighton, C.J.; Zhang, Y.; Zhang, A.; Lazar, A.J.; et al. Diagnosis, Management, and Outcome of Patients with Dedifferentiated Liposarcoma Systemic Metastasis. Ann. Surg. Oncol. 2011, 18, 3762–3770. [Google Scholar] [CrossRef]
- Hoffman, A.; Lazar, A.J.; Pollock, R.E.; Lev, D. New Frontiers in the Treatment of Liposarcoma, a Therapeutically Resistant Malignant Cohort. Drug Resist. Updates 2011, 14, 52–66. [Google Scholar] [CrossRef]
- Ho, T.P. Myxoid Liposarcoma: How to Stage and Follow. Curr. Treat. Options Oncol. 2023, 24, 292–299. [Google Scholar] [CrossRef]
- Fiore, M.; Grosso, F.; Lo Vullo, S.; Pennacchioli, E.; Stacchiotti, S.; Ferrari, A.; Collini, P.; Lozza, L.; Mariani, L.; Casali, P.G.; et al. Myxoid/Round Cell and Pleomorphic Liposarcomas: Prognostic Factors and Survival in a Series of Patients Treated at a Single Institution. Cancer 2007, 109, 2522–2531. [Google Scholar] [CrossRef] [PubMed]
- De Vreeze, R.S.; De Jong, D.; Tielen, I.H.; Ruijter, H.J.; Nederlof, P.M.; Haas, R.L.; Van Coevorden, F. Primary Retroperitoneal Myxoid/Round Cell Liposarcoma Is a Nonexisting Disease: An Immunohistochemical and Molecular Biological Analysis. Mod. Pathol. 2009, 22, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Fisher, C.; Al-Muderis, O.; Judson, I.R. Differential Sensitivity of Liposarcoma Subtypes to Chemotherapy. Eur. J. Cancer 2005, 41, 2853–2860. [Google Scholar] [CrossRef] [PubMed]
- Hornick, J.L.; Bosenberg, M.W.; Mentzel, T.; McMenamin, M.E.; Oliveira, A.M.; Fletcher, C.D.M. Pleomorphic Liposarcoma: Clinicopathologic Analysis of 57 Cases. Am. J. Surg. Pathol. 2004, 28, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Ghadimi, M.P.; Liu, P.; Peng, T.; Bolshakov, S.; Young, E.D.; Torres, K.E.; Colombo, C.; Hoffman, A.; Broccoli, D.; Hornick, J.L.; et al. Pleomorphic Liposarcoma: Clinical Observations and Molecular Variables. Cancer 2011, 117, 5359–5369. [Google Scholar] [CrossRef]
- Creytens, D.; Folpe, A.L.; Koelsche, C.; Mentzel, T.; Ferdinande, L.; van Gorp, J.M.; Van der Linden, M.; Raman, L.; Menten, B.; Fritchie, K.; et al. Myxoid Pleomorphic Liposarcoma-a Clinicopathologic, Immunohistochemical, Molecular Genetic and Epigenetic Study of 12 Cases, Suggesting a Possible Relationship with Conventional Pleomorphic Liposarcoma. Mod. Pathol. 2021, 34, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Gobble, R.M.; Qin, L.-X.; Brill, E.R.; Angeles, C.V.; Ugras, S.; O’Connor, R.B.; Moraco, N.H.; DeCarolis, P.L.; Antonescu, C.; Singer, S. Expression Profiling of Liposarcoma Yields a Multigene Predictor of Patient Outcome and Identifies Genes That Contribute to Liposarcomagenesis. Cancer Res. 2011, 71, 2697–2705. [Google Scholar] [CrossRef] [PubMed]
- Saponara, M.; Stacchiotti, S.; Gronchi, A. Pharmacological Therapies for Liposarcoma. Expert Rev. Clin. Pharmacol. 2017, 10, 361–377. [Google Scholar] [CrossRef]
- Li, X.-Q.; Hisaoka, M.; Hashimoto, H. Expression of Estrogen Receptors α and β in Soft Tissue Sarcomas: Immunohistochemical and Molecular Analysis: ERα and ERβ in Soft Tissue Sarcomas. Pathol. Int. 2003, 53, 671–679. [Google Scholar] [CrossRef]
- Willmer, T.; Cooper, A.; Sims, D.; Govender, D.; Prince, S. The T-Box Transcription Factor 3 Is a Promising Biomarker and a Key Regulator of the Oncogenic Phenotype of a Diverse Range of Sarcoma Subtypes. Oncogenesis 2016, 5, e199. [Google Scholar] [CrossRef]
- Lee, A.T.J.; Thway, K.; Huang, P.H.; Jones, R.L. Clinical and Molecular Spectrum of Liposarcoma. J. Clin. Oncol. 2018, 36, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Pedeutour, F.; Maire, G.; Pierron, A.; Thomas, D.M.; Garsed, D.W.; Bianchini, L.; Duranton-Tanneur, V.; Cortes-Maurel, A.; Italiano, A.; Squire, J.A.; et al. A Newly Characterized Human Well-Differentiated Liposarcoma Cell Line Contains Amplifications of the 12q12-21 and 10p11-14 Regions. Virchows Arch. 2012, 461, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Campos Gudiño, R.; McManus, K.J.; Hombach-Klonisch, S. Aberrant HMGA2 Expression Sustains Genome Instability That Promotes Metastasis and Therapeutic Resistance in Colorectal Cancer. Cancers 2023, 15, 1735. [Google Scholar] [CrossRef]
- Carmagnani Pestana, R.; Moyers, J.T.; Roszik, J.; Sen, S.; Hong, D.S.; Naing, A.; Herzog, C.E.; Fu, S.; Piha-Paul, S.A.; Rodon, J.; et al. Impact of Biomarker-Matched Therapies on Outcomes in Patients with Sarcoma Enrolled in Early-Phase Clinical Trials (SAMBA 101). Clin. Cancer Res. 2023, 29, 1708–1718. [Google Scholar] [CrossRef] [PubMed]
- Saâda-Bouzid, E.; Burel-Vandenbos, F.; Ranchère-Vince, D.; Birtwisle-Peyrottes, I.; Chetaille, B.; Bouvier, C.; Château, M.-C.; Peoc’h, M.; Battistella, M.; Bazin, A.; et al. Prognostic Value of HMGA2, CDK4, and JUN Amplification in Well-Differentiated and Dedifferentiated Liposarcomas. Mod. Pathol. 2015, 28, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Dei Tos, A.P. Liposarcomas: Diagnostic Pitfalls and New Insights. Histopathology 2014, 64, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Oda, Y.; Yamamoto, H.; Kohashi, K.; Yamada, Y.; Iura, K.; Ishii, T.; Maekawa, A.; Bekki, H. Soft Tissue Sarcomas: From a Morphological to a Molecular Biological Approach. Pathol. Int. 2017, 67, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Takashima, Y.; Komatsu, S.; Ohashi, T.; Kiuchi, J.; Kamiya, H.; Shimizu, H.; Arita, T.; Konishi, H.; Shiozaki, A.; Kubota, T.; et al. Overexpression of Tetraspanin31 Contributes to Malignant Potential and Poor Outcomes in Gastric Cancer. Cancer Sci. 2022, 113, 1984–1998. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Li, D.; Sun, X.; Deng, Y.; Zhao, Q. TSPAN 31 Is a Critical Regulator on Transduction of Survival and Apoptotic Signals in Hepatocellular Carcinoma Cells. FEBS Lett. 2017, 591, 2905–2918. [Google Scholar] [CrossRef]
- Kanojia, D.; Nagata, Y.; Garg, M.; Lee, D.H.; Sato, A.; Yoshida, K.; Sato, Y.; Sanada, M.; Mayakonda, A.; Bartenhagen, C.; et al. Genomic Landscape of Liposarcoma. Oncotarget 2015, 6, 42429–42444. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Yang, H.; Jin, Q.; Wang, X.; Fu, Y.; Luan, Y.; Wang, Q.; Youngblood, M.W.; Lu, X.; et al. Enhancer Coamplification and Hijacking Promote Oncogene Expression in Liposarcoma. Cancer Res. 2023, 83, 1517–1530. [Google Scholar] [CrossRef] [PubMed]
- Louis-Brennetot, C.; Coindre, J.-M.; Ferreira, C.; Pérot, G.; Terrier, P.; Aurias, A. The CDKN2A/CDKN2B/CDK4/CCND1 Pathway Is Pivotal in Well-Differentiated and Dedifferentiated Liposarcoma Oncogenesis. An Analysis of 104 Tumors. Genes. Chromosomes Cancer 2011, 50, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Ouchida, M.; Lee, L.; Gatalica, Z.; Rao, V.N.; Reddy, E.S. The EWS Gene, Involved in Ewing Family of Tumors, Malignant Melanoma of Soft Parts and Desmoplastic Small Round Cell Tumors, Codes for an RNA Binding Protein with Novel Regulatory Domains. Oncogene 1994, 9, 3087–3097. [Google Scholar] [PubMed]
- Xiang, H.; Wang, J.; Hisaoka, M.; Zhu, X. Characteristic Sequence Motifs Located at the Genomic Breakpoints of the Translocation t(12;16) and t(12;22) in Myxoid Liposarcoma. Pathology 2008, 40, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Powers, M.P.; Wang, W.-L.; Hernandez, V.S.; Patel, K.S.; Lev, D.C.; Lazar, A.J.; López-Terrada, D.H. Detection of Myxoid Liposarcoma-Associated FUS-DDIT3 Rearrangement Variants Including a Newly Identified Breakpoint Using an Optimized RT-PCR Assay. Mod. Pathol. 2010, 23, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Kunieda, J.; Yamashita, K.; Togashi, Y.; Baba, S.; Sakata, S.; Inamura, K.; Ae, K.; Matsumoto, S.; Machinami, R.; Kitagawa, M.; et al. High Prevalence of TERT Aberrations in Myxoid Liposarcoma: TERT Reactivation May Play a Crucial Role in Tumorigenesis. Cancer Sci. 2022, 113, 1078–1089. [Google Scholar] [CrossRef]
- Nezu, Y.; Hagiwara, K.; Yamamoto, Y.; Fujiwara, T.; Matsuo, K.; Yoshida, A.; Kawai, A.; Saito, T.; Ochiya, T. miR-135b, a Key Regulator of Malignancy, Is Linked to Poor Prognosis in Human Myxoid Liposarcoma. Oncogene 2016, 35, 6177–6188. [Google Scholar] [CrossRef]
- Paulien, S.; Turc-Carel, C.; Dal Cin, P.; Jani-Sait, S.; Sreekantaiah, C.; Leong, S.P.; Vogelstein, B.; Kinzler, K.W.; Sandberg, A.A.; Gemmill, R.M. Myxoid Liposarcoma with t(12;16) (Q13;P11) Contains Site-Specific Differences in Methylation Patterns Surrounding a Zinc-Finger Gene Mapped to the Breakpoint Region on Chromosome 12. Cancer Res. 1990, 50, 7902–7907. [Google Scholar]
- Sievers, S.; Fritzsch, C.; Lehnhardt, M.; Zahn, S.; Kutzner, N.; Kuhnen, C.; Müller, O. Hypermethylation of the APC Promoter but Lack of APC Mutations in Myxoid/Round-Cell Liposarcoma. Int. J. Cancer 2006, 119, 2347–2352. [Google Scholar] [CrossRef]
- Bennani-Baiti, I.M. Epigenetic and Epigenomic Mechanisms Shape Sarcoma and Other Mesenchymal Tumor Pathogenesis. Epigenomics 2011, 3, 715–732. [Google Scholar] [CrossRef]
- Taylor, B.S.; Barretina, J.; Socci, N.D.; DeCarolis, P.; Ladanyi, M.; Meyerson, M.; Singer, S.; Sander, C. Functional Copy-Number Alterations in Cancer. PLoS ONE 2008, 3, e3179. [Google Scholar] [CrossRef] [PubMed]
- Guillou, L.; Aurias, A. Soft Tissue Sarcomas with Complex Genomic Profiles. Virchows Arch. 2010, 456, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dong, Y.; Zhou, M.; Guo, Y.; Lou, L.; Qu, Z.; Zheng, Y.; Duan, Y. INSM1 Expression in Mesenchymal Tumors and Its Clinicopathological Significance. BioMed Res. Int. 2022, 2022, 1580410. [Google Scholar] [CrossRef]
- Shannon, N.B.; Tan, Q.X.; Tan, J.W.-S.; Hendrikson, J.; Ng, W.H.; Ng, G.; Liu, Y.; Tan, G.H.C.; Wong, J.S.M.; Soo, K.C.; et al. Gene Expression Changes Associated with Dedifferentiation in Liposarcoma Predict Overall Survival. Cancers 2021, 13, 3049. [Google Scholar] [CrossRef] [PubMed]
- Bill, K.L.J.; Casadei, L.; Prudner, B.C.; Iwenofu, H.; Strohecker, A.M.; Pollock, R.E. Liposarcoma: Molecular Targets and Therapeutic Implications. Cell. Mol. Life Sci. 2016, 73, 3711–3718. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.U.; Din, N.U.; Abdul-Ghafar, J.; Park, Y.-K. The Many Faces of Solitary Fibrous Tumor; Diversity of Histological Features, Differential Diagnosis and Role of Molecular Studies and Surrogate Markers in Avoiding Misdiagnosis and Predicting the Behavior. Diagn. Pathol. 2021, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pei, D.; Chen, L.; Zhou, X.; Zhu, H. Identification of Key Genes and Molecular Mechanisms Associated with Dedifferentiated Liposarcoma Based on Bioinformatic Methods. OncoTargets Ther. 2017, 10, 3017–3027. [Google Scholar] [CrossRef] [PubMed]
- Hirata, M.; Asano, N.; Katayama, K.; Yoshida, A.; Tsuda, Y.; Sekimizu, M.; Mitani, S.; Kobayashi, E.; Komiyama, M.; Fujimoto, H.; et al. Integrated Exome and RNA Sequencing of Dedifferentiated Liposarcoma. Nat. Commun. 2019, 10, 5683. [Google Scholar] [CrossRef]
- Dang, T.N.; Tiongco, R.P.; Brown, L.M.; Taylor, J.L.; Lyons, J.M.; Lau, F.H.; Floyd, Z.E. Expression of the Preadipocyte Marker ZFP423 Is Dysregulated between Well-Differentiated and Dedifferentiated Liposarcoma. BMC Cancer 2022, 22, 300. [Google Scholar] [CrossRef]
- Lee, J.-C.; Jeng, Y.-M.; Liau, J.-Y.; Tsai, J.-H.; Hsu, H.-H.; Yang, C.-Y. Alternative Lengthening of Telomeres and Loss of ATRX Are Frequent Events in Pleomorphic and Dedifferentiated Liposarcomas. Mod. Pathol. 2015, 28, 1064–1073. [Google Scholar] [CrossRef]
- Gatalica, Z.; Snyder, C.; Maney, T.; Ghazalpour, A.; Holterman, D.A.; Xiao, N.; Overberg, P.; Rose, I.; Basu, G.D.; Vranic, S.; et al. Programmed Cell Death 1 (PD-1) and Its Ligand (PD-L1) in Common Cancers and Their Correlation with Molecular Cancer Type. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2965–2970. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lian, Y.; Zhao, B.; Han, J.; Li, X.; Wu, J.; Hou, M.; Yue, M.; Zhang, K.; Liu, G.; et al. Deciphering the Prognostic and Therapeutic Significance of Cell Cycle Regulator CENPF: A Potential Biomarker of Prognosis and Immune Microenvironment for Patients with Liposarcoma. Int. J. Mol. Sci. 2023, 24, 7010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chu, K.; Wu, X.; Gao, H.; Wang, J.; Yuan, Y.-C.; Loera, S.; Ho, K.; Wang, Y.; Chow, W.; et al. Amplification of FRS2 and Activation of FGFR/FRS2 Signaling Pathway in High-Grade Liposarcoma. Cancer Res. 2013, 73, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Shen, Y.; Ren, Y.; Liu, W.; Li, M.; Liang, W.; Liu, C.; Li, F. Oncogene Mutation Profiling Reveals Poor Prognosis Associated with FGFR1/3 Mutation in Liposarcoma. Hum. Pathol. 2016, 55, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Dadone-Montaudié, B.; Laroche-Clary, A.; Mongis, A.; Chamorey, E.; Mauro, I.D.; Chaire, V.; Finetti, P.; Schiappa, R.; Le Loarer, F.; Birtwisle-Peyrottes, I.; et al. Novel Therapeutic Insights in Dedifferentiated Liposarcoma: A Role for FGFR and MDM2 Dual Targeting. Cancers 2020, 12, 3058. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhang, N.; Zhao, G.; Xu, L.; Yang, Y.; Xu, X.; Chen, M.; Wang, H.; Zheng, S.X.; Li, X. MT1G Is Silenced by DNA Methylation and Contributes to the Pathogenesis of Hepatocellular Carcinoma. J. Cancer 2018, 9, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Chang, R.; Dai, C.; Wu, Y.; Guo, J.; Qi, M.; Zhou, W.; Zhan, L. SORBS1 Suppresses Tumor Metastasis and Improves the Sensitivity of Cancer to Chemotherapy Drug. Oncotarget 2017, 8, 9108–9122. [Google Scholar] [CrossRef] [PubMed]
- Crozat, A.; Åman, P.; Mandahl, N.; Ron, D. Fusion of CHOP to a Novel RNA-Binding Protein in Human Myxoid Liposarcoma. Nature 1993, 363, 640–644. [Google Scholar] [CrossRef]
- Ferreira, M.S.V.; Crysandt, M.; Braunschweig, T.; Jost, E.; Voss, B.; Bouillon, A.-S.; Knuechel, R.; Brümmendorf, T.H.; Beier, F. Presence of TERT Promoter Mutations Is a Secondary Event and Associates with Elongated Telomere Length in Myxoid Liposarcomas. Int. J. Mol. Sci. 2018, 19, 608. [Google Scholar] [CrossRef]
- Bettegowda, C.; Yip, S.; Jiang, B.; Wang, W.-L.; Clarke, M.J.; Lazary, A.; Gambarotti, M.; Zhang, M.; Sciubba, D.M.; Wolinsky, J.-P.; et al. Prognostic Significance of Human Telomerase Reverse Transcriptase Promoter Region Mutations C228T and C250T for Overall Survival in Spinal Chordomas. Neuro-Oncol. 2019, 21, 1005–1015. [Google Scholar] [CrossRef]
- Hemminger, J.A.; Toland, A.E.; Scharschmidt, T.J.; Mayerson, J.L.; Guttridge, D.C.; Iwenofu, O.H. Expression of Cancer-Testis Antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in Myxoid and Round Cell Liposarcoma. Mod. Pathol. 2014, 27, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Momose, T.; Yoshimura, Y.; Harumiya, S.; Isobe, K.; Kito, M.; Fukushima, M.; Kato, H.; Nakayama, J. Chondroitin Sulfate Synthase 1 Expression Is Associated with Malignant Potential of Soft Tissue Sarcomas with Myxoid Substance. Hum. Pathol. 2016, 50, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Kanojia, D.; Kirtonia, A.; Srujana, N.S.V.; Jeevanandan, S.P.; Shyamsunder, P.; Sampath, S.S.; Dakle, P.; Mayakonda, A.; Kaur, H.; Yanyi, J.; et al. Transcriptome Analysis Identifies TODL as a Novel lncRNA Associated with Proliferation, Differentiation, and Tumorigenesis in Liposarcoma through FOXM1. Pharmacol. Res. 2022, 185, 106462. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Bai, J.; Jiang, R.; Wu, J.; Yang, W. MicroRNA-215-5p Promotes Proliferation, Invasion, and Inhibits Apoptosis in Liposarcoma Cells by TargetingMDM2. Cancer Med. 2023, 12, 13455–13470. [Google Scholar] [CrossRef] [PubMed]
- Lauinger, L.; Kaiser, P. Sensing and Signaling of Methionine Metabolism. Metabolites 2021, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Yamamoto, J.; Tome, Y.; Hamada, K.; Masaki, N.; Inubushi, S.; Tashiro, Y.; Bouvet, M.; Endo, I.; Nishida, K.; et al. Over-Methylation of Histone H3 Lysines Is a Common Molecular Change Among the Three Major Types of Soft-Tissue Sarcoma in Patient-Derived Xenograft (PDX) Mouse Models. Cancer Genom.-Proteom. 2021, 18, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Abeshouse, A.; Adebamowo, C.; Adebamowo, S.N.; Akbani, R.; Akeredolu, T.; Ally, A.; Anderson, M.L.; Anur, P.; Appelbaum, E.L.; Armenia, J.; et al. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 2017, 171, 950–965.e28. [Google Scholar] [CrossRef] [PubMed]
- Nacev, B.A.; Jones, K.B.; Intlekofer, A.M.; Yu, J.S.E.; Allis, C.D.; Tap, W.D.; Ladanyi, M.; Nielsen, T.O. The Epigenomics of Sarcoma. Nat. Rev. Cancer 2020, 20, 608–623. [Google Scholar] [CrossRef]
- Meltzer, P.S.; Helman, L.J. Genomic Investigation of Dedifferentiated Liposarcoma Suggests a Role for Therapeutic Targeting of the Tumor Epigenome. Cancer Discov. 2011, 1, 555–556. [Google Scholar] [CrossRef]
- Taylor, B.S.; DeCarolis, P.L.; Angeles, C.V.; Brenet, F.; Schultz, N.; Antonescu, C.R.; Scandura, J.M.; Sander, C.; Viale, A.J.; Socci, N.D.; et al. Frequent Alterations and Epigenetic Silencing of Differentiation Pathway Genes in Structurally Rearranged Liposarcomas. Cancer Discov. 2011, 1, 587–597. [Google Scholar] [CrossRef]
- Renner, M.; Wolf, T.; Meyer, H.; Hartmann, W.; Penzel, R.; Ulrich, A.; Lehner, B.; Hovestadt, V.; Czwan, E.; Egerer, G.; et al. Integrative DNA Methylation and Gene Expression Analysis in High-Grade Soft Tissue Sarcomas. Genome Biol. 2013, 14, r137. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Aisner, S.; Benevenia, J.; Patterson, F.; Harrison, L.E.; Hameed, M. Epigenetic Alteration of p16INK4a Gene in Dedifferentiation of Liposarcoma. Pathol.-Res. Pract. 2009, 205, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Bill, K.; Liu, J.; Young, E.; Peng, T.; Bolshakov, S.; Hoffman, A.; Song, Y.; Demicco, E.G.; Terrada, D.L.; et al. MiR-155 Is a Liposarcoma Oncogene That Targets Casein Kinase-1α and Enhances β-Catenin Signaling. Cancer Res. 2012, 72, 1751–1762. [Google Scholar] [CrossRef]
- Boro, A.; Bauer, D.; Born, W.; Fuchs, B. Plasma Levels of miRNA-155 as a Powerful Diagnostic Marker for Dedifferentiated Liposarcoma. Am. J. Cancer Res. 2016, 6, 544–552. [Google Scholar] [PubMed]
- Vincenzi, B.; Iuliani, M.; Zoccoli, A.; Pantano, F.; Fioramonti, M.; De Lisi, D.; Frezza, A.M.; Rabitti, C.; Perrone, G.; Muda, A.O.; et al. Deregulation of Dicer and Mir-155 Expression in Liposarcoma. Oncotarget 2015, 6, 10586–10591. [Google Scholar] [CrossRef] [PubMed]
- Mazzu, Y.Z.; Hu, Y.; Soni, R.K.; Mojica, K.M.; Qin, L.-X.; Agius, P.; Waxman, Z.M.; Mihailovic, A.; Socci, N.D.; Hendrickson, R.C.; et al. miR-193b–Regulated Signaling Networks Serve as Tumor Suppressors in Liposarcoma and Promote Adipogenesis in Adipose-Derived Stem Cells. Cancer Res. 2017, 77, 5728–5740. [Google Scholar] [CrossRef] [PubMed]
- Mazzu, Y.Z.; Hu, Y.; Shen, Y.; Tuschl, T.; Singer, S. miR-193b Regulates Tumorigenesis in Liposarcoma Cells via PDGFR, TGFβ, and Wnt Signaling. Sci. Rep. 2019, 9, 3197. [Google Scholar] [CrossRef]
- Vos, M.; Boers, R.; Vriends, A.L.M.; Boers, J.; van Kuijk, P.F.; van Houdt, W.J.; van Leenders, G.J.L.H.; Wagrodzki, M.; van IJcken, W.F.J.; Gribnau, J.; et al. MicroRNA Expression and DNA Methylation Profiles Do Not Distinguish between Primary and Recurrent Well-Differentiated Liposarcoma. PLoS ONE 2020, 15, e0228014. [Google Scholar] [CrossRef]
- Ugras, S.; Brill, E.; Jacobsen, A.; Hafner, M.; Socci, N.D.; Decarolis, P.L.; Khanin, R.; O’Connor, R.; Mihailovic, A.; Taylor, B.S.; et al. Small RNA Sequencing and Functional Characterization Reveals MicroRNA-143 Tumor Suppressor Activity in Liposarcoma. Cancer Res. 2011, 71, 5659–5669. [Google Scholar] [CrossRef]
- Gits, C.M.M.; Van Kuijk, P.F.; Jonkers, M.B.E.; Boersma, A.W.M.; Smid, M.; Van Ijcken, W.F.; Coindre, J.-M.; Chibon, F.; Verhoef, C.; Mathijssen, R.H.J.; et al. MicroRNA Expression Profiles Distinguish Liposarcoma Subtypes and Implicate miR-145 and miR-451 as Tumor Suppressors: MiRNA Expression Profiling of Liposarcoma Subtypes. Int. J. Cancer 2014, 135, 348–361. [Google Scholar] [CrossRef]
- Yu, P.Y.; Lopez, G.; Braggio, D.; Koller, D.; Bill, K.L.J.; Prudner, B.C.; Zewdu, A.; Chen, J.L.; Iwenofu, O.H.; Lev, D.; et al. miR-133a Function in the Pathogenesis of Dedifferentiated Liposarcoma. Cancer Cell Int. 2018, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Huang, Y.; Tan, R.; Liu, T.; Zhuang, R.; Zhu, M.; Han, W.; Hou, Y.; Liu, J.; et al. Liposarcoma miRNA Signatures Identified from Genome-Wide miRNA Expression Profiling. Future Oncol. 2014, 10, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.Y.; Balkhi, M.Y.; Ladner, K.J.; Alder, H.; Yu, L.; Mo, X.; Kraybill, W.G.; Guttridge, D.C.; Hans Iwenofu, O. A Selective Screening Platform Reveals Unique Global Expression Patterns of microRNAs in a Cohort of Human Soft-Tissue Sarcomas. Lab. Investig. 2016, 96, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.M.; Cheng, H.; Tang, Y.C.; Leong, S.M.; Teo, P.Y.; Lee, C.K.; Lee, V.K.M.; Hue, S.S.-S. MicroRNAs as Potential Biomarkers in the Differential Diagnosis of Lipomatous Tumors and Their Mimics. Int. J. Mol. Sci. 2022, 23, 7804. [Google Scholar] [CrossRef] [PubMed]
- Fricke, A.; Cimniak, A.F.V.; Ullrich, P.V.; Becherer, C.; Bickert, C.; Pfeifer, D.; Heinz, J.; Stark, G.B.; Bannasch, H.; Braig, D.; et al. Whole Blood miRNA Expression Analysis Reveals miR-3613-3p as a Potential Biomarker for Dedifferentiated Liposarcoma. Cancer Biomark. 2018, 22, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Kohama, I.; Asano, N.; Matsuzaki, J.; Yamamoto, Y.; Yamamoto, T.; Takahashi, R.-U.; Kobayashi, E.; Takizawa, S.; Sakamoto, H.; Kato, K.; et al. Comprehensive Serum and Tissue microRNA Profiling in Dedifferentiated Liposarcoma. Oncol. Lett. 2021, 22, 623. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.S.E.; Colborne, S.; Hughes, C.S.; Morin, G.B.; Nielsen, T.O. The FUS-DDIT3 Interactome in Myxoid Liposarcoma. Neoplasia 2019, 21, 740–751. [Google Scholar] [CrossRef]
- Lindén, M.; Thomsen, C.; Grundevik, P.; Jonasson, E.; Andersson, D.; Runnberg, R.; Dolatabadi, S.; Vannas, C.; Luna Santamarίa, M.; Fagman, H.; et al. FET Family Fusion Oncoproteins Target the SWI / SNF Chromatin Remodeling Complex. EMBO Rep. 2019, 20, e45766. [Google Scholar] [CrossRef]
- Zullow, H.J.; Sankar, A.; Ingram, D.R.; Samé Guerra, D.D.; D’Avino, A.R.; Collings, C.K.; Lazcano, R.; Wang, W.-L.; Liang, Y.; Qi, J.; et al. The FUS::DDIT3 Fusion Oncoprotein Inhibits BAF Complex Targeting and Activity in Myxoid Liposarcoma. Mol. Cell 2022, 82, 1737–1750.e8. [Google Scholar] [CrossRef]
- Franz, H.; Greschik, H.; Willmann, D.; Ozretić, L.; Jilg, C.A.; Wardelmann, E.; Jung, M.; Buettner, R.; Schüle, R. The Histone Code Reader SPIN1 Controls RET Signaling in Liposarcoma. Oncotarget 2015, 6, 4773–4789. [Google Scholar] [CrossRef]
- Marcato, P.; Dean, C.A.; Pan, D.; Araslanova, R.; Gillis, M.; Joshi, M.; Helyer, L.; Pan, L.; Leidal, A.; Gujar, S.; et al. Aldehyde Dehydrogenase Activity of Breast Cancer Stem Cells Is Primarily Due to Isoform ALDH1A3 and Its Expression Is Predictive of Metastasis. Stem Cells 2011, 29, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Lohberger, B.; Rinner, B.; Stuendl, N.; Absenger, M.; Liegl-Atzwanger, B.; Walzer, S.M.; Windhager, R.; Leithner, A. Aldehyde Dehydrogenase 1, a Potential Marker for Cancer Stem Cells in Human Sarcoma. PLoS ONE 2012, 7, e43664. [Google Scholar] [CrossRef] [PubMed]
- En-lin, S.; Sheng-guo, C.; Hua-qiao, W. The Expression of EFEMP1 in Cervical Carcinoma and Its Relationship with Prognosis. Gynecol. Oncol. 2010, 117, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Timpl, R.; Sasaki, T.; Kostka, G.; Chu, M.-L. Fibulins: A Versatile Family of Extracellular Matrix Proteins. Nat. Rev. Mol. Cell Biol. 2003, 4, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Hou, Y.; Yu, S.; Chen, S.; Huang, J.; Luo, T.; Kong, L.; Xu, J.; Wang, H. EFEMP1 Expression Promotes Angiogenesis and Accelerates the Growth of Cervical Cancer In Vivo. Gynecol. Oncol. 2011, 121, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Renner, M.; Czwan, E.; Hartmann, W.; Penzel, R.; Brors, B.; Eils, R.; Wardelmann, E.; Büttner, R.; Lichter, P.; Schirmacher, P.; et al. MicroRNA Profiling of Primary High-Grade Soft Tissue Sarcomas. Genes. Chromosomes Cancer 2012, 51, 982–996. [Google Scholar] [CrossRef]
- Borjigin, N.; Ohno, S.; Wu, W.; Tanaka, M.; Suzuki, R.; Fujita, K.; Takanashi, M.; Oikawa, K.; Goto, T.; Motoi, T.; et al. TLS-CHOP Represses miR-486 Expression, Inducing Upregulation of a Metastasis Regulator PAI-1 in Human Myxoid Liposarcoma. Biochem. Biophys. Res. Commun. 2012, 427, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.T.; Agresta, S.; Vigil, C.E.; Zhao, X.; Han, G.; D’Amato, G.; Calitri, C.E.; Dean, M.; Garrett, C.; Schell, M.J.; et al. Phase II Study of Sunitinib Malate, a Multitargeted Tyrosine Kinase Inhibitor in Patients with Relapsed or Refractory Soft Tissue Sarcomas. Focus on Three Prevalent Histologies: Leiomyosarcoma, Liposarcoma and Malignant Fibrous Histiocytoma. Int. J. Cancer 2011, 129, 1963–1969. [Google Scholar] [CrossRef]
- Samuels, B.L.; Chawla, S.P.; Somaiah, N.; Staddon, A.P.; Skubitz, K.M.; Milhem, M.M.; Kaiser, P.E.; Portnoy, D.C.; Priebat, D.A.; Walker, M.S.; et al. Results of a Prospective Phase 2 Study of Pazopanib in Patients with Advanced Intermediate-grade or High-grade Liposarcoma. Cancer 2017, 123, 4640–4647. [Google Scholar] [CrossRef]
- Dickson, M.A.; Koff, A.; D’Angelo, S.P.; Gounder, M.M.; Keohan, M.L.; Kelly, C.M.; Chi, P.; Antonescu, C.R.; Landa, J.; Qin, L.-X.; et al. Phase 2 Study of the CDK4 Inhibitor Abemaciclib in Dedifferentiated Liposarcoma. J. Clin. Oncol. 2019, 37, 11004. [Google Scholar] [CrossRef]
- Riedel, R.F.; Ballman, K.V.; Lu, Y.; Attia, S.; Loggers, E.T.; Ganjoo, K.N.; Livingston, M.B.; Chow, W.; Wright, J.; Ward, J.H.; et al. A Randomized, Double-Blind, Placebo-Controlled, Phase II Study of Regorafenib Versus Placebo in Advanced/Metastatic, Treatment-Refractory Liposarcoma: Results from the SARC024 Study. Oncologist 2020, 25, e1655–e1662. [Google Scholar] [CrossRef]
- Chi, Y.; Fang, Z.; Hong, X.; Yao, Y.; Sun, P.; Wang, G.; Du, F.; Sun, Y.; Wu, Q.; Qu, G.; et al. Safety and Efficacy of Anlotinib, a Multikinase Angiogenesis Inhibitor, in Patients with Refractory Metastatic Soft-Tissue Sarcoma. Clin. Cancer Res. 2018, 24, 5233–5238. [Google Scholar] [CrossRef] [PubMed]
- Laroche-Clary, A.; Chaire, V.; Algeo, M.-P.; Derieppe, M.-A.; Loarer, F.L.; Italiano, A. Combined Targeting of MDM2 and CDK4 Is Synergistic in Dedifferentiated Liposarcomas. J. Hematol. Oncol. J. Hematol. Oncol. 2017, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Stefano, S.; Giovanni, S. The PTEN Tumor Suppressor Gene in Soft Tissue Sarcoma. Cancers 2019, 11, 1169. [Google Scholar] [CrossRef]
- Fuchs, J.W.; Schulte, B.C.; Fuchs, J.R.; Agulnik, M. Targeted Therapies for the Treatment of Soft Tissue Sarcoma. Front. Oncol. 2023, 13, 1122508. [Google Scholar] [CrossRef] [PubMed]
- Mariño-Enríquez, A.; Bovée, J.V.M.G. Molecular Pathogenesis and Diagnostic, Prognostic and Predictive Molecular Markers in Sarcoma. Surg. Pathol. Clin. 2016, 9, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.E.; Dickson, M.A.; Antonescu, C.; Qin, L.-X.; Dooley, S.J.; Barlas, A.; Manova, K.; Schwartz, G.K.; Crago, A.M.; Singer, S.; et al. PDLIM7 and CDH18 Regulate the Turnover of MDM2 during CDK4/6 Inhibitor Therapy-Induced Senescence. Oncogene 2018, 37, 5066–5078. [Google Scholar] [CrossRef]
- Assi, T.; Kattan, J.; Rassy, E.; Nassereddine, H.; Farhat, F.; Honore, C.; Le Cesne, A.; Adam, J.; Mir, O. Targeting CDK4 (Cyclin-Dependent Kinase) Amplification in Liposarcoma: A Comprehensive Review. Crit. Rev. Oncol. Hematol. 2020, 153, 103029. [Google Scholar] [CrossRef]
- Schettini, F.; De Santo, I.; Rea, C.G.; De Placido, P.; Formisano, L.; Giuliano, M.; Arpino, G.; De Laurentiis, M.; Puglisi, F.; De Placido, S.; et al. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front. Oncol. 2018, 8, 608. [Google Scholar] [CrossRef]
- Clark, A.S.; Karasic, T.B.; DeMichele, A.; Vaughn, D.J.; O’Hara, M.; Perini, R.; Zhang, P.; Lal, P.; Feldman, M.; Gallagher, M.; et al. Palbociclib (PD0332991)—A Selective and Potent Cyclin-Dependent Kinase Inhibitor: A Review of Pharmacodynamics and Clinical Development. JAMA Oncol. 2016, 2, 253. [Google Scholar] [CrossRef]
- Konecny, G.E. Cyclin-Dependent Kinase Pathways as Targets for Women’s Cancer Treatment. Curr. Opin. Obstet. Gynecol. 2016, 28, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Dickson, M.A.; Schwartz, G.K.; Keohan, M.L.; D’Angelo, S.P.; Gounder, M.M.; Chi, P.; Antonescu, C.R.; Landa, J.; Qin, L.-X.; Crago, A.M.; et al. Progression-Free Survival Among Patients with Well-Differentiated or Dedifferentiated Liposarcoma Treated with CDK4 Inhibitor Palbociclib: A Phase 2 Clinical Trial. JAMA Oncol. 2016, 2, 937. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, R.; Zhang, Y.-X.; Czaplinski, J.T.; Anatone, A.J.; Sicinska, E.T.; Fletcher, J.A.; Demetri, G.D.; Wagner, A.J. Preclinical Activity of Selinexor, an Inhibitor of XPO1, in Sarcoma. Oncotarget 2016, 7, 16581–16592. [Google Scholar] [CrossRef] [PubMed]
- Ou, W.-B.; Zhu, J.; Eilers, G.; Li, X.; Kuang, Y.; Liu, L.; Mariño-Enríquez, A.; Yan, Z.; Li, H.; Meng, F.; et al. HDACi Inhibits Liposarcoma via Targeting of the MDM2-P53 Signaling Axis and PTEN, Irrespective of P53 Mutational Status. Oncotarget 2015, 6, 10510–10520. [Google Scholar] [CrossRef]
- Smith, K.B.; Tran, L.M.; Tam, B.M.; Shurell, E.M.; Li, Y.; Braas, D.; Tap, W.D.; Christofk, H.R.; Dry, S.M.; Eilber, F.C.; et al. Novel Dedifferentiated Liposarcoma Xenograft Models Reveal PTEN Down-Regulation as a Malignant Signature and Response to PI3K Pathway Inhibition. Am. J. Pathol. 2013, 182, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Laroche, A.; Chaire, V.; Algeo, M.-P.; Karanian, M.; Fourneaux, B.; Italiano, A. MDM2 Antagonists Synergize with PI3K/mTOR Inhibition in Well-Differentiated/Dedifferentiated Liposarcomas. Oncotarget 2017, 8, 53968–53977. [Google Scholar] [CrossRef]
- Zhao, H.-F.; Wang, J.; To, S.-S.T. The Phosphatidylinositol 3-Kinase/Akt and c-Jun N-Terminal Kinase Signaling in Cancer: Alliance or Contradiction? (Review). Int. J. Oncol. 2015, 47, 429–436. [Google Scholar] [CrossRef]
- von Mehren, M.; Rankin, C.; Goldblum, J.R.; Demetri, G.D.; Bramwell, V.; Ryan, C.W.; Borden, E. Phase 2 Southwest Oncology Group-Directed Intergroup Trial (S0505) of Sorafenib in Advanced Soft Tissue Sarcomas. Cancer 2012, 118, 770–776. [Google Scholar] [CrossRef]
- Hanes, R.; Grad, I.; Lorenz, S.; Stratford, E.W.; Munthe, E.; Reddy, C.C.S.; Meza-Zepeda, L.A.; Myklebost, O. Preclinical Evaluation of Potential Therapeutic Targets in Dedifferentiated Liposarcoma. Oncotarget 2016, 7, 54583–54595. [Google Scholar] [CrossRef]
- Miller, M.L.; Molinelli, E.J.; Nair, J.S.; Sheikh, T.; Samy, R.; Jing, X.; He, Q.; Korkut, A.; Crago, A.M.; Singer, S.; et al. Drug Synergy Screen and Network Modeling in Dedifferentiated Liposarcoma Identifies CDK4 and IGF1R as Synergistic Drug Targets. Sci. Signal. 2013, 6, ra85. [Google Scholar] [CrossRef]
- Xu, B.; Pan, Q.; Pan, H.; Li, H.; Li, X.; Chen, J.; Pang, D.; Zhang, B.; Weng, D.; Peng, R.; et al. Anlotinib as a Maintenance Treatment for Advanced Soft Tissue Sarcoma after First-Line Chemotherapy (ALTER-S006): A Multicentre, Open-Label, Single-Arm, Phase 2 Trial. eClinicalMedicine 2023, 64, 102240. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://Clinicaltrials.Gov/Study/NCT03890068 (accessed on 14 November 2023).
- Demetri, G.D.; Fletcher, C.D.M.; Mueller, E.; Sarraf, P.; Naujoks, R.; Campbell, N.; Spiegelman, B.M.; Singer, S. Induction of Solid Tumor Differentiation by the Peroxisome Proliferator-Activated Receptor-γ Ligand Troglitazone in Patients with Liposarcoma. Proc. Natl. Acad. Sci. USA 1999, 96, 3951–3956. [Google Scholar] [CrossRef] [PubMed]
- Debrock, G.; Vanhentenrijk, V.; Sciot, R.; Debiec-Rychter, M.; Oyen, R.; Van Oosterom, A. A Phase II Trial with Rosiglitazone in Liposarcoma Patients. Br. J. Cancer 2003, 89, 1409–1412. [Google Scholar] [CrossRef] [PubMed]
- Pishvaian, M.J.; Marshall, J.L.; Wagner, A.J.; Hwang, J.J.; Malik, S.; Cotarla, I.; Deeken, J.F.; He, A.R.; Daniel, H.; Halim, A.-B.; et al. A Phase 1 Study of Efatutazone, an Oral Peroxisome Proliferator-Activated Receptor Gamma Agonist, Administered to Patients with Advanced Malignancies: PPARγ Agonist Efatutazone. Cancer 2012, 118, 5403–5413. [Google Scholar] [CrossRef]
- Trautmann, M.; Menzel, J.; Bertling, C.; Cyra, M.; Isfort, I.; Steinestel, K.; Elges, S.; Grünewald, I.; Altvater, B.; Rossig, C.; et al. FUS–DDIT3 Fusion Protein-Driven IGF-IR Signaling Is a Therapeutic Target in Myxoid Liposarcoma. Clin. Cancer Res. 2017, 23, 6227–6238. [Google Scholar] [CrossRef] [PubMed]
- Trautmann, M.; Cyra, M.; Isfort, I.; Jeiler, B.; Krüger, A.; Grünewald, I.; Steinestel, K.; Altvater, B.; Rossig, C.; Hafner, S.; et al. Phosphatidylinositol-3-Kinase (PI3K)/Akt Signaling Is Functionally Essential in Myxoid Liposarcoma. Mol. Cancer Ther. 2019, 18, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; La Ferlita, A.; Sp, N.; Goryunova, M.; Sarchet, P.; Hu, Z.; Sorkin, M.; Kim, A.; Huang, H.; et al. Phosphorylation of IWS1 by AKT Maintains Liposarcoma Tumor Heterogeneity through Preservation of Cancer Stem Cell Phenotypes and Mesenchymal-Epithelial Plasticity. Oncogenesis 2023, 12, 30. [Google Scholar] [CrossRef]
- Künstlinger, H.; Fassunke, J.; Schildhaus, H.-U.; Brors, B.; Heydt, C.; Ihle, M.A.; Mechtersheimer, G.; Wardelmann, E.; Büttner, R.; Merkelbach-Bruse, S. FGFR2 Is Overexpressed in Myxoid Liposarcoma and Inhibition of FGFR Signaling Impairs Tumor Growth In Vitro. Oncotarget 2015, 6, 20215–20230. [Google Scholar] [CrossRef]
- Göransson, M.; Andersson, M.K.; Forni, C.; Ståhlberg, A.; Andersson, C.; Olofsson, A.; Mantovani, R.; Åman, P. The Myxoid Liposarcoma FUS-DDIT3 Fusion Oncoprotein Deregulates NF-κB Target Genes by Interaction with NFKBIZ. Oncogene 2009, 28, 270–278. [Google Scholar] [CrossRef]
- Bidère, N.; Ngo, V.N.; Lee, J.; Collins, C.; Zheng, L.; Wan, F.; Davis, R.E.; Lenz, G.; Anderson, D.E.; Arnoult, D.; et al. Casein Kinase 1α Governs Antigen-Receptor-Induced NF-κB Activation and Human Lymphoma Cell Survival. Nature 2009, 458, 92–96. [Google Scholar] [CrossRef]
- Berthold, R.; Isfort, I.; Erkut, C.; Heinst, L.; Grünewald, I.; Wardelmann, E.; Kindler, T.; Åman, P.; Grünewald, T.G.P.; Cidre-Aranaz, F.; et al. Fusion Protein-Driven IGF-IR/PI3K/AKT Signals Deregulate Hippo Pathway Promoting Oncogenic Cooperation of YAP1 and FUS-DDIT3 in Myxoid Liposarcoma. Oncogenesis 2022, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Trautmann, M.; Cheng, Y.; Jensen, P.; Azoitei, N.; Brunner, I.; Hüllein, J.; Slabicki, M.; Isfort, I.; Cyra, M.; Berthold, R.; et al. Requirement for YAP1 Signaling in Myxoid Liposarcoma. EMBO Mol. Med. 2019, 11, e9889. [Google Scholar] [CrossRef] [PubMed]
- Regina, C.; Hettmer, S. Myxoid Liposarcoma: It’s a Hippo’s World. EMBO Mol. Med. 2019, 11, e10470. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadi, S.; Jonasson, E.; Andersson, L.; Luna Santamaría, M.; Lindén, M.; Österlund, T.; Åman, P.; Ståhlberg, A. FUS-DDIT3 Fusion Oncoprotein Expression Affects JAK-STAT Signaling in Myxoid Liposarcoma. Front. Oncol. 2022, 12, 816894. [Google Scholar] [CrossRef]
- Svec, D.; Dolatabadi, S.; Thomsen, C.; Cordes, N.; Shannon, M.; Fitzpatrick, P.; Landberg, G.; Åman, P.; Ståhlberg, A. Identification of Inhibitors Regulating Cell Proliferation and FUS-DDIT3 Expression in Myxoid Liposarcoma Using Combined DNA, mRNA, and Protein Analyses. Lab. Invest. 2018, 98, 957–967. [Google Scholar] [CrossRef]
- Andersson, M.K.; Göransson, M.; Olofsson, A.; Andersson, C.; Åman, P. Nuclear Expression of FLT1 and Its Ligand PGF in FUS-DDIT3 Carrying Myxoid Liposarcomas Suggests the Existence of an Intracrine Signaling Loop. BMC Cancer 2010, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Bi, J.; Liu, X.; Wang, B.; Wang, J. Significant Partial Response of Metastatic Intra-Abdominal and Pelvic Round Cell Liposarcoma to a Small-Molecule VEGFR-2 Tyrosine Kinase Inhibitor Apatinib: A Case Report. Medicine 2016, 95, e4368. [Google Scholar] [CrossRef] [PubMed]
- Payandeh, M.; Karami, A.; Rahimi, S.; Karami, N. A Revolution in the Treatment of Aggressive Liposarcoma by Pazopanib Combined with Chemotherapy—A Case Report. Biomed. Res. Ther. 2019, 6, 3180–3183. [Google Scholar] [CrossRef]
- Eilber, F.C.; Eilber, F.R.; Eckardt, J.; Rosen, G.; Riedel, E.; Maki, R.G.; Brennan, M.F.; Singer, S. The Impact of Chemotherapy on the Survival of Patients with High-Grade Primary Extremity Liposarcoma. Ann. Surg. 2004, 240, 686–695, discussion 695–697. [Google Scholar] [CrossRef]
- Dalal, K.M.; Kattan, M.W.; Antonescu, C.R.; Brennan, M.F.; Singer, S. Subtype Specific Prognostic Nomogram for Patients with Primary Liposarcoma of the Retroperitoneum, Extremity, or Trunk. Ann. Surg. 2006, 244, 381–391. [Google Scholar] [CrossRef]
- Crago, A.M.; Dickson, M.A. Liposarcoma. Surg. Oncol. Clin. N. Am. 2016, 25, 761–773. [Google Scholar] [CrossRef]
- Gounder, M.M.; Bauer, T.M.; Schwartz, G.K.; LoRusso, P.; Kumar, P.; Kato, K.; Tao, B.; Hong, Y.; Patel, P.; Hong, D. Milademetan, an Oral MDM2 Inhibitor, in Well-Differentiated/ Dedifferentiated Liposarcoma: Results from a Phase 1 Study in Patients with Solid Tumors or Lymphomas. Eur. J. Cancer 2020, 138, S3–S4. [Google Scholar] [CrossRef]
- Available online: https://Clinicaltrials.Gov/Study/NCT04979442 (accessed on 14 November 2023).
- Available online: https://Clinicaltrials.Gov/Study/NCT03449381 (accessed on 14 November 2023).
- LoRusso, P.; Yamamoto, N.; Patel, M.R.; Laurie, S.A.; Bauer, T.M.; Geng, J.; Davenport, T.; Teufel, M.; Li, J.; Lahmar, M.; et al. The MDM2-P53 Antagonist Brigimadlin (BI 907828) in Patients with Advanced or Metastatic Solid Tumors: Results of a Phase Ia, First-in-Human, Dose-Escalation Study. Cancer Discov. 2023, 13, 1802–1813. [Google Scholar] [CrossRef]
- Chen, T.W.-W.; Hsu, C.-L.; Hong, R.-L.; Lee, J.-C.; Chang, K.; Yu, C.-W.; Chen, S.-C.; Guo, J.-C.; Chen, M.-L.; Hsu, M.-C.; et al. A Single-Arm Phase Ib/II Study of Lenvatinib plus Eribulin in Advanced Liposarcoma and Leiomyosarcoma. Clin. Cancer Res. 2022, 28, 5058–5065. [Google Scholar] [CrossRef]
- Gounder, M.M.; Razak, A.A.; Somaiah, N.; Chawla, S.; Martin-Broto, J.; Grignani, G.; Schuetze, S.M.; Vincenzi, B.; Wagner, A.J.; Chmielowski, B.; et al. Selinexor in Advanced, Metastatic Dedifferentiated Liposarcoma: A Multinational, Randomized, Double-Blind, Placebo-Controlled Trial. J. Clin. Oncol. 2022, 40, 2479–2490. [Google Scholar] [CrossRef]
LPS Subtype | Cytogenetic Abnormality and Associated Genetic Aberration | Epigenetic-Related Change |
---|---|---|
WDLPS | Ring chromosome 12 12q13-15 region amplifications: MDM2, CDK4, HMGA2, SAS, GL1, JUN family genes [21,22,23,24,26,27] | Not described |
DDLPS | Ring chromosome 12 12q13-15 region amplifications: MDM2, CDK4, HMGA2, SAS, GL1, JUN family genes [21,22,23,24,26,27] | Mutations in genes of epigenetic regulators (HDAC1) Aberrant methylation of tumor-promoting genes KLF4, CEBPA, CDKN2A Increased expression of miR-155 [33,34,35,36] |
MLPS | t(12;16) (q13;p11), t(12;22) (q13;q12) FUS-CHOP, EWS-CHOP [18] | Specific methylation profile of 12q13-q14 region CpG-methylated APC locus and reduced APC expression Epigenetic regulation of increased expression of CDKN2A, MGMT, RASSF1A, MST1, MST2 Increased expression of microRNA-135b [37,38,39,40] |
PLPS | 13q14.2-5 deletion Rb/TP53 deletion Complex karyotype [21,26,41,42] | Not described |
MPLPS | No specific changes Complex karyotype | Not described |
Drug | Target/Mechanism of Action | LPS Subtype | References |
---|---|---|---|
Palbociclib | CDK 4/6 inhibitor | WDLPS, DDLPS | [100,112] |
Abemaciclib | CDK 4/6 inhibitor | ||
Milademetan | MDM2 inhibitor | WDLPS, DDLPS | [143,144,145,146] |
BI 907828 (brigimadlin) | MDM2 inhibitor | ||
Sunitinib | PDGFR/VEGFR inhibitor | Metastatic LPS | [98] |
Lenvatinib | VEGFR/c-Kit/PDGFR/FGFR/RET inhibitor | LPS | [147] |
Pazopanib | PDGFR/VEGFR/FGFR inhibitor | Metastatic LPS | [99] |
Efatutazone | PPAR-α inhibitor | MLPS | [125] |
Anlotinib | VEGFR/c-Kit/PDGFR/FGFR1 inhibitor | WDLPS/DDLPS | [102,121,122] |
Selinexor | Inhibitor of nuclear transportation (inhibitor of exportin 1) | DDLPS | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesovaya, E.A.; Fetisov, T.I.; Bokhyan, B.Y.; Maksimova, V.P.; Kulikov, E.P.; Belitsky, G.A.; Kirsanov, K.I.; Yakubovskaya, M.G. Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection. Cancers 2024, 16, 271. https://doi.org/10.3390/cancers16020271
Lesovaya EA, Fetisov TI, Bokhyan BY, Maksimova VP, Kulikov EP, Belitsky GA, Kirsanov KI, Yakubovskaya MG. Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection. Cancers. 2024; 16(2):271. https://doi.org/10.3390/cancers16020271
Chicago/Turabian StyleLesovaya, Ekaterina A., Timur I. Fetisov, Beniamin Yu. Bokhyan, Varvara P. Maksimova, Evgeny P. Kulikov, Gennady A. Belitsky, Kirill I. Kirsanov, and Marianna G. Yakubovskaya. 2024. "Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection" Cancers 16, no. 2: 271. https://doi.org/10.3390/cancers16020271
APA StyleLesovaya, E. A., Fetisov, T. I., Bokhyan, B. Y., Maksimova, V. P., Kulikov, E. P., Belitsky, G. A., Kirsanov, K. I., & Yakubovskaya, M. G. (2024). Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection. Cancers, 16(2), 271. https://doi.org/10.3390/cancers16020271