Cultivable Microbiome Approach Applied to Cervical Cancer Exploration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Biological Samples
2.2. Demographics Data
2.3. Cervical Sampling Procedure
2.4. Microbiological Culture and Identification Procedure
2.5. Microbiota Identification by Mass Spectrometry
2.6. Bacterial 16S rDNA Identification
2.7. Uncommon Isolate Detection
2.8. Statistical Analysis
2.9. Diversity Index
2.10. Multivariate Analysis
3. Results
3.1. Study Population
3.2. Microbiota Composition in Non-Cancer Group of Women
3.3. Microbiota Composition in Cervical Cancer Group of Women
3.4. Microbiota Composition Diversity
3.5. Relevant Genera Describe Specific Microbiota Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680–4687. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, R.F.; Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 2013, 13, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Goradel, N.H.; Heidarzadeh, S.; Jahangiri, S.; Farhood, B.; Mortezaee, K.; Khanlarkhani, N.; Negahdari, B. Fusobacterium nucleatum and colorectal cancer: A mechanistic overview. J. Cell Physiol. 2019, 234, 2337–2344. [Google Scholar] [CrossRef]
- Doorbar, J.; Egawa, N.; Griffin, H.; Kranjec, C.; Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 2015, 25 (Suppl. S1), 2–23. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; MacIntyre, D.A.; Lee, Y.S.; Smith, A.; Marchesi, J.R.; Lehne, B.; Bhatia, R.; Lyons, D.; Paraskevaidis, E.; Li, J.V.; et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci. Rep. 2015, 5, 16865. [Google Scholar] [CrossRef] [PubMed]
- Sharifian, K.; Shoja, Z.; Jalilvand, S. The interplay between human papillomavirus and vaginal microbiota in cervical cancer development. Virol. J. 2023, 20, 73. [Google Scholar] [CrossRef]
- Donachie, S.P.; Foster, J.S.; Brown, M.V. Culture clash: Challenging the dogma of microbial diversity. ISME J. 2007, 1, 97–99. [Google Scholar] [CrossRef]
- Sherrard, J.; Donders, G.; White, D.; Jensen, J.S. European (IUSTI/WHO) guideline on the management of vaginal discharge, 2011. Int. J. STD AIDS 2011, 22, 421–429. [Google Scholar] [CrossRef]
- Caruso, G.; Giammanco, A.; Virruso, R.; Fasciana, T. Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections. Int. J. Environ. Res. Public. Health 2021, 18, 1038. [Google Scholar] [CrossRef]
- Wolf, E.A.; Rettig, H.C.; Lupatsii, M.; Schlüter, B.; Schäfer, K.; Friedrich, D.; Graspeuntner, S.; Rupp, J. Culturomics Approaches Expand the Diagnostic Accuracy for Sexually Transmitted Infections. Int. J. Mol. Sci. 2021, 22, 10815. [Google Scholar] [CrossRef]
- Jamal, W.Y.; Shahin, M.; Rotimi, V.O. Comparison of two matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry methods and API 20AN for identification of clinically relevant anaerobic bacteria. J. Med. Microbiol. 2013, 62 Pt 4, 540–544. [Google Scholar] [CrossRef]
- Greub, G. Culturomics: A new approach to study the human microbiome. Clin. Microbiol. Infect. 2012, 18, 1157–1159. [Google Scholar] [CrossRef]
- Browne, H.P.; Forster, S.C.; Anonye, B.O.; Kumar, N.; Neville, B.A.; Stares, M.D.; Goulding, D.; Lawley, T.D. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 2016, 533, 543–546. [Google Scholar] [CrossRef]
- Lagier, J.C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.-M.; Fournier, P.-E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef]
- Lamont, R.F.; Sobel, J.D.; Akins, R.A.; Hassan, S.S.; Chaiworapongsa, T.; Kusanovic, J.P.; Romero, R. The vaginal microbiome: New information about genital tract flora using molecular based techniques. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 533–549. [Google Scholar] [CrossRef]
- NORMA Oficial Mexicana NOM-014-SSA2-1994, Para la Prevención, Tratamiento y Control de Cáncer del Cuello del Útero y de la Mama en la Atención Primaria. Sect. 6.1.7. 1995. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4868716&fecha=06/03/1998#gsc.tab=0 (accessed on 12 September 2023).
- Nugent, R.P.; Krohn, M.A.; Hillier, S.L. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J. Clin. Microbiol. 1991, 29, 297–301. [Google Scholar] [CrossRef]
- Bilen, M.; Dufour, J.-C.; Lagier, J.-C.; Cadoret, F.; Daoud, Z.; Dubourg, G.; Raoult, D. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome 2018, 6, 94. [Google Scholar] [CrossRef]
- Diop, K.; Dufour, J.-C.; Levasseur, A.; Fenollar, F. Exhaustive repertoire of human vaginal microbiota. Hum. Human. Microbiome J. 2019, 11, 100051. [Google Scholar] [CrossRef]
- Huang, Y.; Sheth, R.U.; Zhao, S.; Cohen, L.A.; Dabaghi, K.; Moody, T.; Sun, Y.; Ricaurte, D.; Richardson, M.; Velez-Cortes, F.; et al. High-throughput microbial culturomics using automation and machine learning. Nat. Biotechnol. 2023, 41, 1424–1433. [Google Scholar] [CrossRef]
- Safdar, A.; Bodey, G.P.; Armstrong, D. Infections in Patients with Cancer: Overview. Princ. Pract. Cancer Infect. Dis. 2011, 3–15. [Google Scholar] [CrossRef]
- Questionable methods of cancer management: ‘Nutritional’ therapies. CA Cancer J. Clin. 1993, 43, 309–319. [CrossRef]
- Vickers, A.J.; Kuo, J.; Cassileth, B.R. Unconventional Anticancer Agents: A Systematic Review of Clinical Trials. J. Clin. Oncol. 2006, 24, 136–140. [Google Scholar] [CrossRef]
- Chen, H.-M.; Chang, T.-H.; Lin, F.-M.; Liang, C.; Chiu, C.-M.; Yang, T.-L.; Yang, T.; Huang, C.-Y.; Cheng, Y.-N.; Chang, Y.-A.; et al. Vaginal microbiome variances in sample groups categorized by clinical criteria of bacterial vaginosis. BMC Genom. 2018, 19 (Suppl. S10), 876. [Google Scholar] [CrossRef]
- Manzanares-Leal, G.L.; Coronel-Martínez, J.; Rodríguez-Morales, M.; Bustamante-Montes, L.P.; Sandoval-Trujillo, H.; Ramírez-Durán, N. Changes in the diversity of local cervical bacteria in women with cervical cancer receiving antineoplastic treatment. J. Res. Med. Sci. 2021, 26, 56. [Google Scholar]
- Nejman, D.; Livyatan, I.; Fuks, G.; Gavert, N.; Zwang, Y.; Geller, L.T.; Rotter-Maskowitz, A.; Weiser, R.; Mallel, G.; Gigi, E.; et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020, 368, 973–980. [Google Scholar] [CrossRef]
- Kovachev, S.M. Cervical cancer and vaginal microbiota changes. Arch. Microbiol. 2020, 202, 323–327. [Google Scholar] [CrossRef]
- Rokos, T.; Holubekova, V.; Kolkova, Z.; Hornakova, A.; Pribulova, T.; Kozubik, E.; Biringer, K.; Kudela, E. Is the Physiological Composition of the Vaginal Microbiome Altered in High-Risk HPV Infection of the Uterine Cervix? Viruses 2022, 14, 2130. [Google Scholar] [CrossRef]
- Klein, C.; Gonzalez, D.; Samwel, K.; Kahesa, C.; Mwaiselage, J.; Aluthge, N.; Fernando, S.; West, J.T.; Wood, C.; Angeletti, P.C. Relationship between the Cervical Microbiome, HIV Status and Precancerous Lesions. MBio 2019, 10, e02785-18. [Google Scholar] [CrossRef]
- Godoy-Vitorino, F.; Romaguera, J.; Zhao, C.; Vargas-Robles, D.; Ortiz-Morales, G.; Vázquez-Sánchez, F.; Sanchez-Vázquez, M.; de la Garza-Casillas, M.; Martinez-Ferrer, M.; White, J.R.; et al. Cervicovaginal Fungi and Bacteria Associated With Cervical Intraepithelial Neoplasia and High-Risk Human Papillomavirus Infections in a Hispanic Population. Front. Microbiol. 2018, 9, 2533. [Google Scholar] [CrossRef]
- Curty, G.; de Carvalho, P.S.; Soares, M.A. The Role of the Cervicovaginal Microbiome on the Genesis and as a Biomarker of Premalignant Cervical Intraepithelial Neoplasia and Invasive Cervical Cancer. Int. J. Mol. Sci. 2019, 21, 222. [Google Scholar] [CrossRef]
- Minj, J.; Chandra, P.; Paul, C.; Sharma, R.K. Bio-functional properties of probiotic Lactobacillus: Current applications and research perspectives. Crit. Rev. Food Sci. Nutr. 2021, 61, 2207–2224. [Google Scholar] [CrossRef]
- Fan, Q.; Wu, Y.; Li, M.; An, F.; Yao, L.; Wang, M.; Wang, X.; Yuan, J.; Jiang, K.; Li, W.; et al. Lactobacillus spp. create a protective micro-ecological environment through regulating the core fucosylation of vaginal epithelial cells against cervical cancer. Cell Death Dis. 2021, 12, 1094. [Google Scholar] [CrossRef]
- Swartz, H.M.; Flood, A.B.; Schaner, P.E.; Halpern, H.; Williams, B.B.; Pogue, B.W.; Gallez, B.; Vaupel, P. How best to interpret measures of levels of oxygen in tissues to make them effective clinical tools for care of patients with cancer and other oxygen-dependent pathologies. Physiol. Rep. 2020, 8, e14541. [Google Scholar] [CrossRef]
- Kingsley, J.L.; Costello, J.R.; Raghunand, N.; Rejniak, K.A. Bridging cell-scale simulations and radiologic images to explain short-time intratumoral oxygen fluctuations. PLoS Comput. Biol. 2021, 17, e1009206. [Google Scholar] [CrossRef]
- Mba, I.E.; Nweze, E.I.; Eze, E.A.; Anyaegbunam, Z.K.G. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation and survival. Infect. Genet. Evol. 2022, 99, 105256. [Google Scholar] [CrossRef]
- Kudela, E.; Liskova, A.; Samec, M.; Koklesova, L.; Holubekova, V.; Rokos, T.; Kozubik, E.; Pribulova, T.; Zhai, K.; Busselberg, D.; et al. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive and personalized medical approach to combat HPV-induced cervical cancer. EPMA J. 2021, 12, 199–220. [Google Scholar] [CrossRef]
- Muzio, L.L.; Ballini, A.; Cantore, S.; Bottalico, L.; Charitos, I.A.; Ambrosino, M.; Nocini, R.; Malcangi, A.; Dioguardi, M.; Cazzolla, A.P.; et al. Overview of Candida albicans and Human Papillomavirus (HPV) Infection Agents and their Biomolecular Mechanisms in Promoting Oral Cancer in Pediatric Patients. Biomed. Res. Int. 2021, 2021, 7312611. [Google Scholar] [CrossRef]
- Rai, L.S.; Wijlick, L.V.; Bougnoux, M.E.; Bachellier-Bassi, S.; d’Enfert, C. Regulators of commensal and pathogenic life-styles of an opportunistic fungus-Candida albicans. Yeast 2021, 38, 243–250. [Google Scholar] [CrossRef]
- Willems, H.M.E.; Ahmed, S.S.; Liu, J.; Xu, Z.; Peters, B.M. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J. Fungi. 2020, 6, 27. [Google Scholar] [CrossRef]
- Wei, Y.; Sandhu, E.; Yang, X.; Yang, J.; Ren, Y.; Gao, X. Bidirectional Functional Effects of Staphylococcus on Carcinogenesis. Microorganisms 2022, 10, 2353. [Google Scholar] [CrossRef]
- Yu, D.; Yang, J.; Jin, M.; Zhou, B.; Shi, L.; Zhao, L.; Zhang, J.; Lin, Z.; Ren, J.; Liu, L.; et al. Fecal Streptococcus Alteration Is Associated with Gastric Cancer Occurrence and Liver Metastasis. MBio 2021, 12, e0299421. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.J.; Jacobson, R.; van Praagh, J.; Gaines, S.; Koo, H.Y.; Lee, B.; Chan, W.-C.; Weichselbaum, R.; Alverdy, J.C.; Zaborina, O.; et al. Enterococcus faecalis promotes a migratory and invasive phenotype in colon cancer cells. Neoplasia 2022, 27, 100787. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, J.L.; Chen, C.; Zheng, Y.; Chen, M.; Qi, J.; Zhan, X.Y. Identification of Peptoniphilus vaginalis-Like Bacteria, Peptoniphilus septimus sp. nov., From Blood Cultures in a Cervical Cancer Patient Receiving Chemotherapy: Case and Implications. Front. Cell Infect. Microbiol. 2022, 12, 954355. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Nowak, J.A.; Milner, D.A., Jr.; Song, M.; Ogino, S. Integration of microbiology, molecular pathology and epidemiology: A new paradigm to explore the pathogenesis of microbiome-driven neoplasms. J. Pathol. 2019, 247, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, M.; Sani, C.; Clemente, A.M.; Iossa, A.; Perissi, E.; Castronovo, G.; Tanturli, M.; Rivero, D.; Cozzolino, F.; Cavalieri, D.; et al. Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection. Sci. Rep. 2017, 7, 10200. [Google Scholar] [CrossRef] [PubMed]
- Chao, X.; Sun, T.; Wang, S.; Tan, X.; Fan, Q.; Shi, H.; Zhu, L.; Lang, J. Research of the potential biomarkers in vaginal microbiome for persistent high-risk human papillomavirus infection. Ann. Transl. Med. 2020, 8, 100. [Google Scholar] [CrossRef]
Characteristics | Non-Cancer (n = 50) | Cervical Cancer (n = 49) | p-Value | |
---|---|---|---|---|
Age (years) | Mean | 40.62 | 51.2 | p = 0.2489 |
<40 | 19 | 9 | p = 0.0588 | |
>40 | 31 | 40 | p = 0.2855 | |
Body Mass Index | <25 | 20 | 36 | p = 0.0325 |
>25 | 30 | 13 | p = 0.00095 | |
First Sexual Intercourse (years) | <18 | 0 | 29 | p < 0.001 |
>18 | 50 | 20 | p = 0.0003 | |
Number of sexual partners | <2 | 26 | 30 | p = 0.5930 |
>2 | 24 | 19 | p = 0.4458 | |
Smoking | Yes | 13 | 15 | p = 0.7055 |
No | 37 | 34 | p = 0.7218 | |
* Nugent score | <3 | 48 | Nd | Nd |
>4 | 2 | Nd | Nd | |
** Amsel criteria | Positive | 24 | 8 | p = 0.0047 |
Negative | 26 | 41 | p = 0.0669 | |
HPV test | Positive | 0 | 39 | p < 0.0001 |
Negative | 50 | 10 | p < 0.0001 | |
Diagnosis | I-II | 0 | 38 | p < 0.001 |
III-IV | 0 | 11 | p = 0.0009 |
Phylum | Number of Isolates | Detection in Other Habitats | |
---|---|---|---|
NC | CC | ||
Firmicutes | |||
Aneurinibacillus aneurinilyticus | 1 | Liquor [15], marine sediment [16] | |
Bacillus spp. | 1 | Moldy corn [17], soil Himalayan [18] | |
B. amylolicuefasciens | 1 | ||
Paenibacillus spp. | 1 | Cosmopolitan [19] | |
Proteobacteria | |||
Obesumbacterium proteus | 1 | Breweries [20] | |
Pantoea agglomerans | 1 | Soil, insect, phytopathogenic [21] | |
Pseudomonas spp. | 1 | Plant [22], bath Sponge [23] | |
P. oryzihabitans | 1 | ||
Edwarsiella tarda | Marine animals [24] | ||
Actinobacteria | |||
Truperella pyogenes | 2 | Domestic and wild animals [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulato-Briones, I.B.; Rodriguez-Ildefonso, I.O.; Jiménez-Tenorio, J.A.; Cauich-Sánchez, P.I.; Méndez-Tovar, M.d.S.; Aparicio-Ozores, G.; Bautista-Hernández, M.Y.; González-Parra, J.F.; Cruz-Hernández, J.; López-Romero, R.; et al. Cultivable Microbiome Approach Applied to Cervical Cancer Exploration. Cancers 2024, 16, 314. https://doi.org/10.3390/cancers16020314
Mulato-Briones IB, Rodriguez-Ildefonso IO, Jiménez-Tenorio JA, Cauich-Sánchez PI, Méndez-Tovar MdS, Aparicio-Ozores G, Bautista-Hernández MY, González-Parra JF, Cruz-Hernández J, López-Romero R, et al. Cultivable Microbiome Approach Applied to Cervical Cancer Exploration. Cancers. 2024; 16(2):314. https://doi.org/10.3390/cancers16020314
Chicago/Turabian StyleMulato-Briones, Irma Berenice, Ismael Olan Rodriguez-Ildefonso, Julián Antonio Jiménez-Tenorio, Patricia Isidra Cauich-Sánchez, María del Socorro Méndez-Tovar, Gerardo Aparicio-Ozores, María Yicel Bautista-Hernández, Juan Francisco González-Parra, Jesús Cruz-Hernández, Ricardo López-Romero, and et al. 2024. "Cultivable Microbiome Approach Applied to Cervical Cancer Exploration" Cancers 16, no. 2: 314. https://doi.org/10.3390/cancers16020314
APA StyleMulato-Briones, I. B., Rodriguez-Ildefonso, I. O., Jiménez-Tenorio, J. A., Cauich-Sánchez, P. I., Méndez-Tovar, M. d. S., Aparicio-Ozores, G., Bautista-Hernández, M. Y., González-Parra, J. F., Cruz-Hernández, J., López-Romero, R., del Rosario Rojas-Sánchez, T. M., García-Palacios, R., Garay-Villar, Ó., Apresa-García, T., López-Esparza, J., Marrero, D., Castelán-Vega, J. A., Jiménez-Alberto, A., Salcedo, M., & Ribas-Aparicio, R. M. (2024). Cultivable Microbiome Approach Applied to Cervical Cancer Exploration. Cancers, 16(2), 314. https://doi.org/10.3390/cancers16020314