Can the Epstein–Barr Virus Play a Role in the Development of Prostate Cancer?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of Patients
2.2. Sample Collection
2.3. Isolation and Detection of EBV DNA
2.4. Detection of HPV
2.5. Antibodies Detection—Serological Methods
2.6. Statistical Analysis
2.7. Ethics
3. Results
3.1. Prevalence of EBVCA and EBNA1 Antibodies in IgA and IgG Classes (U/mL) among Patients with PCa
3.2. Antibody Levels for EBVCA IgA and IgG and EBNA1 IgA and IgG in PCa Patients in Relation to Risk Group, GS and T Stage in EBV-Positive PCa Patients
3.3. EBV Viral Load in Relation to GS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cancer Tomorrow. Available online: https://gco.iarc.fr/tomorrow/en/dataviz/isotype (accessed on 26 November 2023).
- Prostate Cancer: Statistics. Approved by the Cancer.Net Editorial Board. March 2023. Available online: https://www.cancer.net/cancer-types/prostate-cancer/statistics (accessed on 28 November 2023).
- World Health Organization. The Global Cancer Observatory—All Rights Reserved. December 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/27-Prostate-fact-sheet.pdf (accessed on 28 November 2023).
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef]
- Prostate Cancer—Is It Worth Getting Tested? Available online: https://www.gov.pl (accessed on 29 November 2023).
- National Cancer Registry: Reports. Available online: https://onkologia.org.pl/pl/raporty (accessed on 28 November 2023).
- Pereira, N.M.; Martins, E.A.C.; Quintela, M.G.; Cunha, A.A.D.; Santos Netto, M.M.D.; Waisberg, J. Presence of HPV in prostate tissue from patients submitted to prostate biopsy. Acta Cir. Bras. 2023, 37, e371205. [Google Scholar] [CrossRef] [PubMed]
- Leitzmann, M.F.; Rohrmann, S. Risk factors for the onset of prostatic cancer: Age, location, and behavioral correlates. Clin. Epidemiol. 2012, 4, 1–11. [Google Scholar] [CrossRef]
- Abidi, S.H.; Bilwani, F.; Ghias, K.; Abbas, F. Viral etiology of prostate cancer: Genetic alterations and immune response. A literature review. Int. J. Surg. 2018, 52, 136–140. [Google Scholar] [CrossRef]
- Gorish, B.M.T.; Ournasseir, M.E.H.; Shammat, I.M. A correlation study of BK Polyoma Virus infection and prostate Cancer among Sudanese patients—Immunofluorescence and molecular based case-control study. Infect. Agents Cancer 2019, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wang, X.; Shen, P. Herpes simplex virus type 2 or human herpesvirus 8 infection and prostate cancer risk: A meta-analysis. Biomed. Rep. 2013, 1, 433–439. [Google Scholar] [CrossRef]
- Akram, N.; Imran, M.; Noreen, M.; Ahmed, F.; Atif, M.; Fatima, Z.; Bilal Waqar, A. Oncogenic role of tumor viruses in humans. Viral Immunol. 2017, 30, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.S.; Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer 2010, 10, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Kitsou, K.; Iliopoulou, M.; Spoulou, V.; Lagiou, P.; Magiorkinis, G. Viral causality of human cancer and potential roles of human endogenous retroviruses in the multi-omics era: An evolutionary epidemiology review. Front. Oncol. 2021, 11, 687631. [Google Scholar] [CrossRef]
- Chakravorty, S.; Afzali, B.; Kazemian, M. EBV-associated diseases: Current therapeutics and emerging technologies. Front. Immunol. 2022, 13, 1059133. [Google Scholar] [CrossRef] [PubMed]
- IARC. Proceedings of the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Epstein-Barr Virus and Kaposi’s Sarcoma Herpesvirus/Human Herpesvirus 8. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1997; Volume 70, pp. 1–492. [Google Scholar]
- Akhtar, S.; Vranic, S.; Cyprian, F.S.; Al Moustafa, A.E. Epstein-Barr Virus in Gliomas: Cause, Association, or Artifact? Front. Oncol. 2018, 8, 123. [Google Scholar] [CrossRef]
- Carneiro, V.C.S.; Pereira, J.G.; de Paula, V.S. Family Herpesviridae and neuroinfections: Current status and research in progress. Mem. Inst. Oswaldo Cruz 2022, 117, e220200. [Google Scholar] [CrossRef] [PubMed]
- Fugl, A.; Andersen, C.L. Epstein-Barr virus and its association with disease—A review of relevance to general practice. BMC Fam. Pract. 2019, 20, 62. [Google Scholar] [CrossRef]
- Sausen, D.G.; Bhutta, M.S.; Gallo, E.S.; Dahari, H.; Borenstein, R. Stress-Induced Epstein-Barr Virus Reactivation. Biomolecules 2021, 11, 1380. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Z.; Han, L.; Liu, S.; Luo, B. Epstein-Barr Virus Infection in Gastric Remnant Carcinoma and Recurrent Gastric Carcinoma in Qingdao of Northern China. PLoS ONE 2016, 11, e0148342. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Z.; Che, H.; Castro, F.H.; Hu, J.; Brenner, H. Epstein-Barr virus infection and gastric cancer: A systematic review. Medicine 2015, 94, e792. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Hsu, W.L.; Yang, H.I.; Lee, M.H.; Chen, H.C.; Chien, Y.C.; You, S.L. Epidemiology of virus infection and human cancer. Recent Results Cancer Res. 2014, 193, 11–32. [Google Scholar] [PubMed]
- Young, L.S.; Dawson, C.W. Epstein-Barr virus and nasopharyngeal carcinoma. Chin. J. Cancer 2014, 33, 581–590. [Google Scholar] [CrossRef] [PubMed]
- De Lima, M.A.P.; Teodoro, I.P.P.; Galiza, L.E.; Filho, P.H.B.M.; Marques, F.M.; Pinheiro Junior, R.F.F.; Macedo, G.E.C.; Facundo, H.T.; da Silva, C.G.L.; Lima, M.V.A. Association between Epstein-Barr Virus and Oral Carcinoma: A Systematic Review with Meta-Analysis. Crit. Rev. Oncog. 2019, 24, 349–368. [Google Scholar] [CrossRef]
- Ahmed, K.; Sheikh, A.; Fatima, S.; Haider, G.; Ghias, K.; Abbas, F.; Mughal, N.; Abidi, S.H. Detection and characterization of latency stage of EBV and histopathological analysis of prostatic adenocarcinoma tissues. Sci. Rep. 2022, 12, 10399. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading Committee. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Zelefsky, M.J.; Sjoberg, D.D.; Nelson, J.B.; Egevad, L.; Magi-Galluzzi, C.; Vickers, A.J.; Parwani, A.V.; Reuter, V.E.; Fine, S.W.; et al. A Contemporary Prostate Cancer Grading System: A Validated Alternative to the Gleason Score. Eur. Urol. 2016, 69, 428–435. [Google Scholar] [CrossRef] [PubMed]
- EAU Guidelines for Prostate Cancer. Available online: https://uroweb.org/guidelines/prostate-cancer/chapter/classification-and-staging-systems (accessed on 3 December 2023).
- Bertero, L.; Massa, F.; Metovic, J.; Zanetti, R.; Castellano, I.; Ricardi, U.; Papotti, M.; Cassoni, P. Eighth Edition of the UICC Classification of Malignant Tumours: An overview of the changes in the pathological TNM classification criteria-What has changed and why? Virchows Arch. 2018, 472, 519–531. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.S.; Guo, C.; Gurel, B.; De Marzo, A.M.; Sfanos, K.S.; Mani, R.S.; Gil, J.; Drake, C.G.; Alimonti, A. Prostate carcinogenesis: Inflammatory storms. Nat. Rev. Cancer 2020, 20, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Göbel, A.; Dell’Endice, S.; Jaschke, N.; Pählig, S.; Shahid, A.; Hofbauer, L.C.; Rachner, T.D. The role of inflammation in breast and prostate cancer metastasis to bone. Int. J. Mol. Sci. 2021, 22, 5078. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Glenn, W.K. Multiple pathogens and prostate cancer. Infect. Agents Cancer 2022, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Sfanos, K.S.; Sauvageot, J.; Fedor, H.L.; Dick, J.D.; De Marzo, A.M.; Isaacs, W.B. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 2008, 68, 306–320. [Google Scholar] [CrossRef] [PubMed]
- Nahand, J.S.; Khanaliha, K.; Mirzaei, H.; Moghoofei, M.; Baghi, H.B.; Esghaei, M.; Khatami, A.R.; Fatemipour, M.; Bokharaei-Salim, F. Possible role of HPV/EBV coinfection in anoikis resistance and development in prostate cancer. BMC Cancer 2021, 21, 926. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, N.J.; Glenn, W.K.; Sahrudin, A.; Orde, M.M.; Delprado, W.; Lawson, J.S. Human papillomavirus and Epstein Barr virus in prostate cancer: Koilocytes indicate potential oncogenic influences of human papillomavirus in prostate cancer. Prostate 2013, 73, 236–241. [Google Scholar] [CrossRef]
- Grinstein, S.; Preciado, M.V.; Gattuso, P.; Chabay, P.A.; Warren, W.H.; De Matteo, E.; Gould, V.E. Demonstration of Epstein-Barr virus in carcinomas of various sites. Cancer Res. 2002, 62, 4876–4878. [Google Scholar] [PubMed]
- Bergh, J.; Marklund, I.; Gustavsson, C.; Wiklund, F.; Grönberg, H.; Allard, A.; Alexeyev, O.; Elgh, F. No link between viral findings in the prostate and subsequent cancer development. Br. J. Cancer. 2007, 96, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Szkaradkiewicz, A.; Wal, M.; Kuch, A.; Pieta, P. Human papillomavirus (HPV) and Epstein-Barr virus (EBV) cervical infections in women with normal and abnormal cytology. Pol. J. Microbiol. 2004, 53, 95–99. [Google Scholar] [PubMed]
- Huang, W.Y.; Hayes, R.; Pfeiffer, R.; Viscidi, R.P.; Lee, F.K.; Wang, Y.F.; Reding, D.; Whitby, D.; Papp, J.R.; Rabkin, C.S. Sexually transmissible infections and prostate cancer risk. Cancer Epidemiol. Prevent. Biomark. 2008, 17, 2374–2381. [Google Scholar] [CrossRef]
- Tsai, M.H.; Raykova, A.; Klinke, O.; Bernhardt, K.; Gärtner, K.; Leung, C.S.; Geletneky, K.; Sertel, S.; Münz, C.; Delecluse, H.J. Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep. 2013, 5, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Young, L.S.; Yap, L.F.; Murray, P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer 2016, 16, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.I. Epstein-Barr virus infection. N. Engl. J. Med. 2000, 343, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Noguchi, Y.; de Rivera, M.W.; Hoshino, M.; Sakashita, H.; Yamada, T.; Inoue, H.; Miyazaki, Y.; Nozaki, T.; González-López, B.S.; et al. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity. Tumour Biol. 2016, 37, 3389–3404. [Google Scholar] [CrossRef]
- Kang, M.S.; Kieff, E. Epstein-Barr virus latent genes. Exp. Mol. Med. 2015, 47, e131. [Google Scholar] [CrossRef]
- De Paschale, M.; Clerici, P. Serological diagnosis of Epstein-Barr virus infection: Problems and solutions. World. J. Virol. 2012, 1, 31–43. [Google Scholar] [CrossRef]
- Sinha, S.; Dickey, B.L.; Coghill, A.E. Utility of Epstein-Barr virus (EBV) antibodies as screening markers for nasopharyngeal carcinoma: A narrative review. Ann. Nasopharynx Cancer 2022, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.C.; Chen, J.Y.; Liu, M.Y.; Yang, H.I.; Hsu, M.M.; Chen, C.J.; Yang, C.S. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N. Engl. J. Med. 2001, 345, 1877–1882. [Google Scholar] [CrossRef]
- Liu, W.; Chen, G.; Gong, X.; Wang, Y.; Zheng, Y.; Liao, X.; Liao, W.; Song, L.; Xu, J.; Zhang, X. The diagnostic value of EBV-DNA and EBV-related antibodies detection for nasopharyngeal carcinoma: A meta-analysis. Cancer Cell Int. 2021, 21, 164. [Google Scholar] [CrossRef]
- Sun, K.; Jia, K.; Lv, H.; Wang, S.Q.; Wu, Y.; Lei, H.; Chen, X. EBV-Positive Gastric Cancer: Current Knowledge and Future Perspectives. Front. Oncol. 2020, 10, 583463. [Google Scholar] [CrossRef]
- Sivachandran, N.; Wang, X.; Frappier, L. Functions of the Epstein-Barr virus EBNA1 protein in viral reactivation and lytic infection. J. Virol. 2012, 86, 6146–6158. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Hu, J.; Luo, X.; Li, N.; Bode, A.M.; Cao, Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int. J. Biol. Sci. 2016, 12, 1309–1318. [Google Scholar] [CrossRef]
- Lo, A.K.; Dawson, C.W.; Lung, H.L.; Wong, K.L.; Young, L.S. The Therapeutic Potential of Targeting BARF1 in EBV-Associated Malignancies. Cancers 2020, 12, 1940. [Google Scholar] [CrossRef]
- Hoebe, E.K.; Le Large, T.Y.; Greijer, A.E.; Middeldorp, J.M. BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev. Med. Virol. 2013, 23, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Zur Hausen, A.; Brink, A.A.; Craanen, M.E.; Middeldorp, J.M.; Meijer, C.J.; van den Brule, A.J. Unique transcription pattern of Epstein–Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: Expression of the transforming BARF1 gene. Cancer Res. 2000, 60, 2745–2748. [Google Scholar] [PubMed]
- Zheng, H.; Li, L.L.; Hu, D.S.; Deng, X.Y.; Cao, Y. Role of Epstein–Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. Cell. Mol. Immunol. 2007, 4, 185–196. [Google Scholar] [PubMed]
Low Risk | Intermediate Risk | High Risk |
---|---|---|
PSA < 10 ng/mL | PSA 10–20 ng/mL | PSA > 20 ng/mL |
GS < 7 (ISUP grade 1) | GS 7 (ISUP grade 2/3) | GS > 7 (ISUP grade 4/5) |
cT1-2a | cT2b | cT2c |
PCa Patients | |||||
---|---|---|---|---|---|
EBV-Positive | EBV-Negative | ||||
n | % | n | % | ||
Total | 57 | 49.57 | 58 | 50.43 | |
Age | 54–59 | 7 | 12.28 | 11 | 18.97 |
60–82 | 50 | 87.72 | 47 | 81.03 | |
p | 0.3239 | ||||
Place of residence | Urban | 37 | 64.91 | 31 | 53.45 |
Rural | 20 | 35.09 | 27 | 46.55 | |
p | 0.2112 | ||||
Smoking | Never | 12 | 21.05 | 10 | 17.24 |
Ever | 45 | 78.95 | 48 | 82.76 | |
p | 0.6034 | ||||
Alcohol abuse | Never | 19 | 33.33 | 20 | 34.48 |
≤drink per week | 33 | 57.90 | 36 | 62.07 | |
>drink per week | 5 | 8.77 | 2 | 3.45 | |
p | 0.4884 | ||||
Risk | Low | 20 | 35.09 | 34 | 58.62 |
Intermediate | 13 | 22.81 | 16 | 27.59 | |
High | 24 | 42.10 | 8 | 13.79 | |
p | 0.0026 * | ||||
Gleason score | 6 | 20 | 35.08 | 34 | 58.62 |
7 | 13 | 22.81 | 16 | 27.59 | |
8 | 11 | 19.30 | 2 | 3.45 | |
9 | 13 | 22.81 | 6 | 10.34 | |
p | 0.0052 * | ||||
T | T1 | 21 | 36.84 | 33 | 56.90 |
T2 | 36 | 63.16 | 25 | 43.10 | |
T3 | 0 | 0.0 | 0 | 0.0 | |
T4 | 0 | 0.0 | 0 | 0.0 | |
p | 0.0312 * | ||||
N | N0 | 57 | 100.0 | 58 | 100.0 |
M | M0 | 57 | 100.0 | 58 | 100.0 |
EBV-Positive | EBV-Negative | |||||||
---|---|---|---|---|---|---|---|---|
Low Risk n (%) | Intermediate Risk n (%) | High Risk n (%) | p | Low Risk n (%) | Intermediate Risk n (%) | High Risk n (%) | p | |
n = 20 | n = 13 | n = 24 | n = 34 | n = 16 | n = 8 | |||
EBVCA IgA | 12 (60.0) | 10 (76.9) | 22 (91.7) | 0.0447 * | 15 (38.2) | 8 (50.0) | 3 (37.5) | 0.8379 |
EBVCA IgG | 14 (70.0) | 10 (76.9) | 21 (87.5) | 0.3585 | 14 (41.2) | 10 (62.5) | 4 (50.0) | 0.8416 |
EBNA1 IgA | 8 (40.0) | 9 (69.2) | 19 (79.2) | 0.0240 * | 13 (38.2) | 7 (43.8) | 4 (50.0) | 0.8103 |
EBNA1 IgG | 9 (45.0) | 9 (69.2) | 20 (83.3) | 0.0265 * | 13 (38.2) | 7 (43.8) | 3 (37.5) | 0.9248 |
EBV-Positive | EBV-Negative | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gleason 6 n (%) | Gleason 7 n (%) | Gleason 8 n (%) | Gleason 9 n (%) | p | Gleason 6 n (%) | Gleason 7 n (%) | Gleason 8 n (%) | Gleason 9 n (%) | p | |
n = 20 | n = 13 | n = 11 | n = 13 | n = 34 | n = 16 | n = 2 | n = 6 | |||
EBVCA IgA | 12 (60.0) | 10 (76.9) | 10 (90.9) | 12 (92.3) | 0.1013 | 15 (44.1) | 8 (50.0) | 1 (50.0) | 2 (33.3) | 0.9140 |
EBVCA IgG | 14 (70.0) | 10 (76.9) | 10 (90.9) | 11 (84.6) | 0.5332 | 20 (58.8) | 10 (62.5) | 0 (0.0) | 4 (66.7) | 0.3775 |
EBNA1 IgA | 8 (40.0) | 9 (69.2) | 8 (72.7) | 11 (84.6) | 0.0499 * | 13 (38.2) | 7 (43.8) | 0 (0.0) | 4 (66.7) | 0.3663 |
EBNA1 IgG | 9 (45.0) | 9 (69.2) | 10 (90.9) | 10 (76.9) | 0.0506 | 13 (38.2) | 7 (43.8) | 1 (50.0) | 2 (33.3) | 0.9542 |
EBV-Positive | EBV-Negative | |||||
---|---|---|---|---|---|---|
T1 n (%) | T2 n (%) | p | T1 n (%) | T2 n (%) | p | |
n = 21 | n = 36 | n = 33 | n = 25 | |||
EBVCA IgA | 13 (61.9) | 31 (86.1) | 0.0356 * | 14 (42.4) | 12 (48.0) | 0.6724 |
EBVCA IgG | 14 (66.7) | 31 (86.1) | 0.0824 | 20 (60.6) | 14 (56.0) | 0.7243 |
EBNA1 IgA | 9 (42.9) | 27 (75.0) | 0.0152 * | 12 (36.4) | 12 (48.0) | 0.3729 |
EBNA1 IgG | 10 (47.6) | 28 (77.8) | 0.0198 * | 13 (39.4) | 10 (40.0) | 0.9627 |
Viral Load | Gleason Score | p | |
---|---|---|---|
Gleason 6–7 n (%) | Gleason 8–9 n (%) | ||
n = 33 | n = 24 | ||
low | 23 (69.7%) | 8 (33.3%) | 0.0083 * |
high | 10 (33.3%) | 16 (66.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiś, J.; Góralczyk, M.; Sikora, D.; Stępień, E.; Drop, B.; Polz-Dacewicz, M. Can the Epstein–Barr Virus Play a Role in the Development of Prostate Cancer? Cancers 2024, 16, 328. https://doi.org/10.3390/cancers16020328
Kiś J, Góralczyk M, Sikora D, Stępień E, Drop B, Polz-Dacewicz M. Can the Epstein–Barr Virus Play a Role in the Development of Prostate Cancer? Cancers. 2024; 16(2):328. https://doi.org/10.3390/cancers16020328
Chicago/Turabian StyleKiś, Jacek, Magdalena Góralczyk, Dominika Sikora, Ewa Stępień, Bartłomiej Drop, and Małgorzata Polz-Dacewicz. 2024. "Can the Epstein–Barr Virus Play a Role in the Development of Prostate Cancer?" Cancers 16, no. 2: 328. https://doi.org/10.3390/cancers16020328
APA StyleKiś, J., Góralczyk, M., Sikora, D., Stępień, E., Drop, B., & Polz-Dacewicz, M. (2024). Can the Epstein–Barr Virus Play a Role in the Development of Prostate Cancer? Cancers, 16(2), 328. https://doi.org/10.3390/cancers16020328