DNA Sequencing of CD138 Cell Population Reveals TP53 and RAS-MAPK Mutations in Multiple Myeloma at Diagnosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Groups
2.2. CD138 Cells Separation
2.3. Fluorescence In Situ Hybridization Analysis
2.4. DNA Extraction
2.5. Next-Generation Sequencing and Data Analysis
2.6. Bioinformatic Tools
3. Results
3.1. Demographic and Clinical Profile of Study Subjects
3.2. Risk Stratification According to Cytogenetics
3.3. Next-Generation Sequencing and Data Analysis
3.3.1. Variant Interpretation
3.3.2. Mutational Burden
3.4. In Silico Modeling of Mutated Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Cancer Society. Survival Rates for Multiple Myeloma. Available online: https://www.cancer.org/cancer/types/multiple-myeloma/detection-diagnosis-staging/survival-rates.html (accessed on 8 August 2023).
- Rajan, A.M.; Rajkumar, S.V. Interpretation of Cytogenetic Results in Multiple Myeloma for Clinical Practice. Blood Cancer J. 2015, 5, e365. [Google Scholar] [CrossRef] [PubMed]
- Wiedmeier-Nutor, J.E.; Bergsagel, P.L. Review of Multiple Myeloma Genetics Including Effects on Prognosis, Response to Treatment, and Diagnostic Workup. Life 2022, 12, 812. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V. Multiple Myeloma: 2022 Update on Diagnosis, Risk Stratification, and Management. Am. J. Hematol. 2022, 97, 1086–1107. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Voigtlaender, M.; Janjetovic, S.; Thiele, B.; Alawi, M.; März, M.; Brandt, A.; Hansen, T.; Radloff, J.; Schön, S.; et al. Mutational Landscape Reflects the Biological Continuum of Plasma Cell Dyscrasias. Blood Cancer J. 2017, 7, e537. [Google Scholar] [CrossRef] [PubMed]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for Validation of Next-Generation Sequencing–Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.; Zweegman, S.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2021, 2, 309–322. [Google Scholar] [CrossRef]
- Weinhold, N.; Ashby, C.; Rasche, L.; Chavan, S.S.; Stein, C.; Stephens, O.W.; Tytarenko, R.; Bauer, M.A.; Meissner, T.; Deshpande, S.; et al. Clonal Selection and Double-Hit Events Involving Tumor Suppressor Genes Underlie Relapse in Myeloma. Blood 2016, 128, 1735–1744. [Google Scholar] [CrossRef]
- Chen, S.; Francioli, L.C.; Goodrich, J.K.; Collins, R.L.; Kanai, M.; Wilson, M.W.; Tarasova, Y.; Phu, W.; Yohannes, M.T.; Koenig, Z.; et al. A Genome-Wide Mutational Constraint Map Quantified from Variation in 76,156 Human Genomes. bioRxiv 2022. [Google Scholar] [CrossRef]
- Akram, A.M.; Chaudhary, A.; Kausar, H.; Althobaiti, F.; Abbas, A.S.; Hussain, Z.; Fatima, N.; Zafar, E.; Asif, W.; Afzal, U.; et al. Analysis of RAS Gene Mutations in Cytogenetically Normal de Novo Acute Myeloid Leukemia Patients Reveals Some Novel Alterations. Saudi J. Biol. Sci. 2021, 28, 3735–3740. [Google Scholar] [CrossRef]
- Rivera, D.; Kim, K.; Kanagal-Shamanna, R.; Borthakur, G.; Montalban-Bravo, G.; Daver, N.; Dinardo, C.; Short, N.J.; Yilmaz, M.; Pemmaraju, N.; et al. Implications of RAS Mutational Status in Subsets of Patients with Newly Diagnosed Acute Myeloid Leukemia across Therapy Subtypes. Am. J. Hematol. 2022, 97, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Granowicz, E.M.; Jonas, B.A. Targeting TP53-Mutated Acute Myeloid Leukemia: Research and Clinical Developments. Onco. Targets. Ther. 2022, 15, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Grob, T.; Al Hinai, A.S.A.; Sanders, M.A.; Kavelaars, F.G.; Rijken, M.; Gradowska, P.L.; Biemond, B.J.; Breems, D.A.; Maertens, J.; van Marwijk Kooy, M.; et al. Molecular Characterization of Mutant TP53 Acute Myeloid Leukemia and High-Risk Myelodysplastic Syndrome. Blood 2022, 139, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Schlenk, R.F.; Russell, N.H.; Levis, M.J. Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence. Leukemia 2019, 33, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.A.; Subbiah, V. Precision Oncology for BRAF-Mutant Cancers with BRAF and MEK Inhibitors: From Melanoma to Tissue-Agnostic Therapy. ESMO Open 2023, 8, 788. [Google Scholar] [CrossRef] [PubMed]
- Croce, L.; Coperchini, F.; Magri, F.; Chiovato, L.; Rotondi, M. The Multifaceted Anti-Cancer Effects of BRAF-Inhibitors. Oncotarget 2019, 10, 6623. [Google Scholar] [CrossRef]
- Proietti, I.; Skroza, N.; Michelini, S.; Mambrin, A.; Balduzzi, V.; Bernardini, N.; Marchesiello, A.; Tolino, E.; Volpe, S.; Maddalena, P.; et al. BRAF Inhibitors: Molecular Targeting and Immunomodulatory Actions. Cancers 2020, 12, 1823. [Google Scholar] [CrossRef]
- Köhler, M.; Röring, M.; Schorch, B.; Heilmann, K.; Stickel, N.; Fiala, G.J.; Schmitt, L.C.; Braun, S.; Ehrenfeld, S.; Uhl, F.M.; et al. Activation Loop Phosphorylation Regulates B-Raf in Vivo and Transformation by B-Raf Mutants. EMBO J. 2016, 35, 143–161. [Google Scholar] [CrossRef]
- Kiel, C.; Benisty, H.; Lloréns-Rico, V.; Serrano, L. The Yin-Yang of Kinase Activation and Unfolding Explains the Peculiarity of Val600 in the Activation Segment of BRAF. Elife 2016, 5, e12814. [Google Scholar] [CrossRef]
- Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Project, C.G.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; et al. Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell 2004, 116, 855–867. [Google Scholar] [CrossRef]
- Michaloglou, C.; Vredeveld, L.C.W.; Mooi, W.J.; Peeper, D.S. BRAFE600 in Benign and Malignant Human Tumours. Oncogene 2008, 27, 877–895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, L.; Yang, Q.; Sun, J. The Evolution of BRAF Activation in Non-Small-Cell Lung Cancer. Front. Oncol. 2022, 12, 882940. [Google Scholar] [CrossRef] [PubMed]
- Dagogo-Jack, I.; Martinez, P.; Yeap, B.Y.; Ambrogio, C.; Ferris, L.A.; Lydon, C.; Nguyen, T.; Jessop, N.A.; John Iafrate, A.; Johnson, B.E.; et al. Impact of BRAF Mutation Class on Disease Characteristics and Clinical Outcomes in BRAF-Mutant Lung Cancer. Clin. Cancer Res. 2019, 25, 158–165. [Google Scholar] [CrossRef]
- Kim, N.; Shin, I.; Lee, J.; Jeon, E.; Kim, Y.; Ryu, S.; Ju, E.; Cho, W.; Sim, T. Novel and Potent Small Molecules against Melanoma Harboring Braf Class i/Ii/Iii Mutants for Overcoming Drug Resistance. Int. J. Mol. Sci. 2021, 22, 3783. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF Gene in Human Cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Champion, K.J.; Bunag, C.; Estep, A.L.; Jones, J.R.; Bolt, C.H.; Rogers, R.C.; Rauen, K.; Everman, D. Germline Mutation in BRAF Codon 600 Is Compatible with Human Development: De Novo p.V600G Mutation Identified in a Patient with CFC Syndrome. Clin. Genet. 2011, 79, 468–474. [Google Scholar] [CrossRef]
- Consoli, F.; Barbieri, G.; Picciolini, M.; Medicina, D.; Bugatti, M.; Tovazzi, V.; Liserre, B.; Zambelli, C.; Zorzi, F.; Berruti, A.; et al. A Rare Complex BRAF Mutation Involving Codon V600 and K601 in Primary Cutaneous Melanoma: Case Report. Front. Oncol. 2020, 10, 547127. [Google Scholar] [CrossRef]
- Moiseyenko, F.V.; Egorenkov, V.V.; Kramchaninov, M.M.; Artemieva, E.V.; Aleksakhina, S.N.; Holmatov, M.M.; Moiseyenko, V.M.; Imyanitov, E.N. Lack of Response to Vemurafenib in Melanoma Carrying BRAF K601E Mutation. Case Rep. Oncol. 2019, 12, 339–343. [Google Scholar] [CrossRef]
- Saalfeld, F.C.; Wenzel, C.; Aust, D.E.; Wermke, M. Targeted Therapy in BRAF p.K601E–Driven NSCLC: Case Report and Literature Review. JCO Precis. Oncol. 2020, 5, 1163–1166. [Google Scholar] [CrossRef]
- Su, P.L.; Lin, C.Y.; Chen, Y.L.; Chen, W.L.; Lin, C.C.; Su, W.C. Durable Response to Combined Dabrafenib and Trametinib in a Patient With BRAF K601E Mutation-Positive Lung Adenocarcinoma: A Case Report. JTO Clin. Res. Rep. 2021, 2, 100202. [Google Scholar] [CrossRef]
- Marconcini, R.; Galli, L.; Antonuzzo, A.; Bursi, S.; Roncella, C.; Fontanini, G.; Sensi, E.; Falcone, A. Metastatic BRAF K601E-Mutated Melanoma Reaches Complete Response to MEK Inhibitor Trametinib Administered for over 36 Months. Exp. Hematol. Oncol. 2017, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, M.; Karunamurthy, A.; Chiosea, S.; Nikiforova, M.N.; Seethala, R.; Nikiforov, Y.E.; Coyne, C. Histopathologic and Clinical Characterization of Thyroid Tumors Carrying the BRAFK601E Mutation. Thyroid 2016, 26, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Nazmun, N.; Hassan, S.; Liu, X.; Yang, J. BRAF Mutation and Its Inhibitors in Sarcoma Treatment. Cancer Med. 2020, 9, 4881–4896. [Google Scholar] [CrossRef]
- Ernst, T.; Aebi, S.; Zander, A.; Zander, T. Partial Response to Dabrafenib and Trametinib in Relapsed BRAF V600E-Mutated Multiple Myeloma and Possible Mechanisms of Resistance. BMJ Case Rep. 2022, 15, e246264. [Google Scholar] [CrossRef] [PubMed]
- Raje, N.; Chau, I.; Hyman, D.M.; Ribrag, V.; Blay, J.-Y.; Tabernero, J.; Elez, E.; Wolf, J.; Yee, A.J.; Kaiser, M.; et al. Vemurafenib in Patients With Relapsed Refractory Multiple Myeloma Harboring BRAFV600 Mutations: A Cohort of the Histology-Independent VE-BASKET Study. JCO Precis. Oncol. 2018, 2, 00070. [Google Scholar] [CrossRef] [PubMed]
- Giesen, N.; Chatterjee, M.; Scheid, C.; Poos, A.M.; Besemer, B.; Miah, K.; Benner, A.; Becker, N.; Moehler, T.; Metzler, I.; et al. A Phase 2 Clinical Trial of Combined BRAF/MEK Inhibition for BRAFV600E-Mutated Multiple Myeloma. Blood 2023, 14, 1685–1690. [Google Scholar] [CrossRef]
- Vakana, E.; Pratt, S.; Blosser, W.; Dowless, M.; Simpson, N.; Yuan, X.J.; Jaken, S.; Manro, J.; Stephens, J.; Zhang, Y.; et al. LY3009120, a PanRAF Inhibitor, Has Significant Anti-Tumor Activity in BRAF and KRAS Mutant Preclinical Models of Colorectal Cancer. Oncotarget 2017, 8, 9251–9266. [Google Scholar] [CrossRef]
- Kholodenko, B.N.; Rauch, N.; Kolch, W.; Rukhlenko, O.S. A Systematic Analysis of Signaling Reactivation and Drug Resistance. Cell Rep. 2021, 35, 109157. [Google Scholar] [CrossRef]
- Walker, B.A.; Boyle, E.M.; Wardell, C.P.; Murison, A.; Begum, D.B.; Dahir, N.M.; Proszek, P.Z.; Johnson, D.C.; Kaiser, M.F.; Melchor, L.; et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients with Newly Diagnosed Myeloma. J. Clin. Oncol. 2015, 33, 3911–3920. [Google Scholar] [CrossRef]
- Shirazi, F.; Jones, R.J.; Singh, R.K.; Zou, J.; Kuiatse, I.; Berkova, Z.; Wang, H.; Lee, H.C.; Hong, S.; Dick, L.; et al. Activating KRAS, NRAS, and BRAF Mutants Enhance Proteasome Capacity and Reduce Endoplasmic Reticulum Stress in Multiple Myeloma. Proc. Natl. Acad. Sci. USA 2020, 117, 20004–20014. [Google Scholar] [CrossRef]
- Sacco, A.; Federico, C.; Todoerti, K.; Ziccheddu, B.; Palermo, V.; Giacomini, A.; Ravelli, C.; Maccarinelli, F.; Bianchi, G.; Belotti, A.; et al. Specific Targeting of the KRAS Mutational Landscape in Myeloma as a Tool to Unveil the Elicited Antitumor Activity. Blood 2021, 138, 1705–1720. [Google Scholar] [CrossRef]
- Pantsar, T. The Current Understanding of KRAS Protein Structure and Dynamics. Comput. Struct. Biotechnol. J. 2020, 18, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Sriskandarajah, P.; De Haven Brandon, A.; MacLeod, K.; Carragher, N.O.; Kirkin, V.; Kaiser, M.; Whittaker, S.R. Combined Targeting of MEK and the Glucocorticoid Receptor for the Treatment of RAS-Mutant Multiple Myeloma. BMC Cancer 2020, 20, 269. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Chénard-Poirier, M.; Roda, D.; de Miguel, M.; Harris, S.J.; Candilejo, I.M.; Sriskandarajah, P.; Xu, W.; Scaranti, M.; Constantinidou, A.; et al. Intermittent Schedules of the Oral RAF–MEK Inhibitor CH5126766/VS-6766 in Patients with RAS/RAF-Mutant Solid Tumours and Multiple Myeloma: A Single-Centre, Open-Label, Phase 1 Dose-Escalation and Basket Dose-Expansion Study. Lancet Oncol. 2020, 21, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Schjesvold, F.; Paiva, B.; Ribrag, V.; Rodriguez-Otero, P.; San-Miguel, J.F.; Robak, P.; Hansson, M.; Onishi, M.; Hamidi, H.; Malhi, V.; et al. Cobimetinib Alone and Plus Venetoclax With/Without Atezolizumab in Patients With Relapsed/Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2023, 23, e59–e70. [Google Scholar] [CrossRef]
- Punekar, S.R.; Velcheti, V.; Neel, B.G.; Wong, K.K. The Current State of the Art and Future Trends in RAS-Targeted Cancer Therapies. Nat. Rev. Clin. Oncol. 2022, 19, 637–655. [Google Scholar] [CrossRef] [PubMed]
- Pasca, S.; Tomuleasa, C.; Teodorescu, P.; Ghiaur, G.; Dima, D.; Moisoiu, V.; Berce, C.; Stefan, C.; Ciechanover, A.; Einsele, H. Kras/Nras/Braf Mutations as Potential Targets in Multiple Myeloma. Front. Oncol. 2019, 9, 1137. [Google Scholar] [CrossRef]
- Andrulis, M.; Lehners, N.; Capper, D.; Penzel, R.; Heining, C.; Huellein, J.; Zenz, T.; von Deimling, A.; Schirmacher, P.; Ho, A.D.; et al. Targeting the BRAF V600E Mutation in Multiple Myeloma. Cancer Discov. 2013, 3, 862–869. [Google Scholar] [CrossRef]
- O’Donnell, E.; Raje, N.S. Targeting BRAF in Multiple Myeloma. Cancer Discov. 2013, 3, 840–842. [Google Scholar] [CrossRef]
- Corre, J.; Perrot, A.; Caillot, D.; Belhadj, K.; Hulin, C.; Leleu, X.; Mohty, M.; Facon, T.; Buisson, L.; Do Souto, L.; et al. Del(17p) without TP53 Mutation Confers a Poor Prognosis in Intensively Treated Newly Diagnosed Patients with Multiple Myeloma. Blood 2021, 137, 1192–1195. [Google Scholar] [CrossRef]
- De Souza, C.; Madden, J.; Koestler, D.C.; Minn, D.; Montoya, D.J.; Minn, K.; Raetz, A.G.; Zhu, Z.; Xiao, W.W.; Tahmassebi, N.; et al. Effect of the P53 P72R Polymorphism on Mutant TP53 Allele Selection in Human Cancer. J. Natl. Cancer Inst. 2021, 113, 1246–1257. [Google Scholar] [CrossRef] [PubMed]
- Tashakori, M.; Kadia, T.; Loghavi, S.; Daver, N.; Kanagal-Shamanna, R.; Pierce, S.; Sui, D.; Wei, P.; Khodakarami, F.; Tang, Z.; et al. TP53 Copy Number and Protein Expression Inform Mutation Status across Risk Categories in Acute Myeloid Leukemia. Blood 2022, 140, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.M. High or Low? Assessing Disease Risk in Multiple Myeloma. Hematology 2022, 2022, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Ferla, V.; Antonini, E.; Perini, T.; Farina, F.; Masottini, S.; Malato, S.; Marktel, S.; Lupo Stanghellini, M.T.; Tresoldi, C.; Ciceri, F.; et al. Minimal residual disease detection by next-generation sequencing in multiple myeloma: Promise and challenges for response-adapted therapy. Front. Oncol. 2022, 12, 932852. [Google Scholar] [CrossRef]
- Ferreira, B.; Caetano, J.; Barahona, F.; Lopes, R.; Carneiro, E.; Costa-Silva, B.; João, C. Liquid biopsies for multiple myeloma in a time of precision medicine. J. Mol. Med. 2020, 98, 513–525. [Google Scholar] [CrossRef]
- Ye, X.; Li, W.; Zhang, L.; Yu, J. Clinical Significance of Circulating Cell-Free DNA Detection in Multiple Myeloma: A Meta-Analysis. Front. Oncol. 2022, 12, 852573. [Google Scholar] [CrossRef]
Gene | Variant | AA Change | Mutation | Allelic Frequency | Significance (ClinVar) | No. of Patients |
---|---|---|---|---|---|---|
TP53 | c.215C>G | p.P72R | Missense | 42–100% | Benign | 17 |
c.250G>A | p.A84T | Missense | 37–38% | Likely benign | 3 | |
c.341T>A | p.L114 * | Nonsense | 39% | Pathogenic | 1 | |
c.388G>T | p.L130F | Missense | Conflicting interpretations of pathogenicity | 1 | ||
c.464C>T | p.T155I | Missense | 55% | Uncertain significance | 1 | |
c.639A>G | p.R213= | Coding silent | 60% | Benign | 1 | |
c.782+10C>T | - | Intronic | 45% | Benign/Likely benign | 1 | |
c.993+12T>C | - | Intronic | 37–62% | Benign/Likely benign | 3 | |
BRAF | c.1900G>A | p.D594N | Missense | 13% | Likely pathogenic | 1 |
c.1919T>A | p.V600G | Missense | 11% | Pathogenic | 1 | |
c.1921A>G | p.K601E | Missense | 17% | Pathogenic | 1 | |
KRAS | c.35G>C | p.G12A | Missense | 10% | Pathogenic | 1 |
c.38G>A | p.G13D | Missense | 39% | Conflicting interpretations of pathogenicity | 1 | |
c.183A>C | p.Q61H | Missense | 17% | Likely pathogenic | 1 | |
c.219G>A | p.R73= | Missense | 11–21% | Benign | 6 | |
NRAS | c.34G>C | p.G12R | Missense | 23% | Likely pathogenic | 1 |
c.181C>A | p.Q61K | Missense | 15–79% | Likely pathogenic | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragomir, M.; Călugăru, O.-T.; Popescu, B.; Jardan, C.; Jardan, D.; Popescu, M.; Aposteanu, S.; Bădeliță, S.; Nedelcu, G.; Șerban, C.; et al. DNA Sequencing of CD138 Cell Population Reveals TP53 and RAS-MAPK Mutations in Multiple Myeloma at Diagnosis. Cancers 2024, 16, 358. https://doi.org/10.3390/cancers16020358
Dragomir M, Călugăru O-T, Popescu B, Jardan C, Jardan D, Popescu M, Aposteanu S, Bădeliță S, Nedelcu G, Șerban C, et al. DNA Sequencing of CD138 Cell Population Reveals TP53 and RAS-MAPK Mutations in Multiple Myeloma at Diagnosis. Cancers. 2024; 16(2):358. https://doi.org/10.3390/cancers16020358
Chicago/Turabian StyleDragomir, Mihaela, Onda-Tabita Călugăru, Bogdan Popescu, Cerasela Jardan, Dumitru Jardan, Monica Popescu, Silvia Aposteanu, Sorina Bădeliță, Gabriela Nedelcu, Cătălin Șerban, and et al. 2024. "DNA Sequencing of CD138 Cell Population Reveals TP53 and RAS-MAPK Mutations in Multiple Myeloma at Diagnosis" Cancers 16, no. 2: 358. https://doi.org/10.3390/cancers16020358
APA StyleDragomir, M., Călugăru, O. -T., Popescu, B., Jardan, C., Jardan, D., Popescu, M., Aposteanu, S., Bădeliță, S., Nedelcu, G., Șerban, C., Popa, C., Vassu-Dimov, T., & Coriu, D. (2024). DNA Sequencing of CD138 Cell Population Reveals TP53 and RAS-MAPK Mutations in Multiple Myeloma at Diagnosis. Cancers, 16(2), 358. https://doi.org/10.3390/cancers16020358