Lenvatinib Exacerbates the Decrease in Skeletal Muscle Mass in Patients with Hepatocellular Carcinoma, Whereas Atezolizumab Plus Bevacizumab Does Not
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Enrolled Patients and Treatment Strategy
2.2. Image Analysis of Body Composition
2.3. Statistical Analysis
3. Results
3.1. Baseline Demographics and Clinical Characteristics of the Enrolled Patients
3.2. Treatment Responses and Adverse Events in the Enrolled Patients
3.3. Chronological Changes in SMI, SATI, VATI, AFP, PIVKA-II, and ALBI Scores
3.4. Analysis of the Independent Predictors for Survival and c-SMI%
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The Trends Projection Analysis. Chem. Biol. Lett. 2023, 10, 451. [Google Scholar]
- Njei, B.; Rotman, Y.; Ditah, I.; Lim, J.K. Emerging Trends in Hepatocellular Carcinoma Incidence and Mortality. Hepatology 2015, 61, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Poon, R.T. Prevention of Recurrence after Resection of Hepatocellular Carcinoma: A Daunting Challenge. Hepatology 2011, 54, 757–759. [Google Scholar] [CrossRef] [PubMed]
- Shiina, S.; Tateishi, R.; Arano, T.; Uchino, K.; Enooku, K.; Nakagawa, H.; Asaoka, Y.; Sato, T.; Masuzaki, R.; Kondo, Y.; et al. Radiofrequency Ablation for Hepatocellular Carcinoma: 10-Year Outcome and Prognostic Factors. Am. J. Gastroenterol. 2012, 107, 569–577. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B. Hepatocellular Carcinoma: An Epidemiologic View. J. Clin. Gastroenterol. 2002, 35, S72–S78. [Google Scholar] [CrossRef] [PubMed]
- Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.L.; Schirmacher, P.; Vilgrain, V. EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD Guidelines for the Treatment of Hepatocellular Carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef]
- Kokudo, N.; Takemura, N.; Hasegawa, K.; Takayama, T.; Kubo, S.; Shimada, M.; Nagano, H.; Hatano, E.; Izumi, N.; Kaneko, S.; et al. Clinical Practice Guidelines for Hepatocellular Carcinoma: The Japan Society of Hepatology 2017 (4th JSH-HCC Guidelines) 2019 Update. Hepatol. Res. 2019, 49, 1109–1113. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC Strategy for Prognosis Prediction and Treatment Recommendation: The 2022 Update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology Guidelines for Sarcopenia in Liver Disease (1st Edition): Recommendation from the Working Group for Creation of Sarcopenia Assessment Criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Iritani, S.; Imai, K.; Takai, K.; Hanai, T.; Ideta, T.; Miyazaki, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M.; Moriwaki, H. Skeletal Muscle Depletion Is an Independent Prognostic Factor for Hepatocellular Carcinoma. J. Gastroenterol. 2015, 50, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Takai, K.; Hanai, T.; Ideta, T.; Miyazaki, T.; Kochi, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Skeletal Muscle Depletion Predicts the Prognosis of Patients with Hepatocellular Carcinoma Treated with Sorafenib. Int. J. Mol. Sci. 2015, 16, 9612–9624. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Takai, K.; Miwa, T.; Taguchi, D.; Hanai, T.; Suetsugu, A. Rapid Depletions of Subcutaneous Fat Mass and Skeletal Muscle Mass Predict Worse Survival in Patients with Hepatocellular Carcinoma Treated with Sorafenib. Cancers 2019, 11, 1206. [Google Scholar] [CrossRef]
- Imai, K.; Takai, K.; Unome, S.; Miwa, T.; Hanai, T.; Suetsugu, A.; Shimizu, M. Lenvatinib or Sorafenib Treatment Causing a Decrease in Skeletal Muscle Mass, an Independent Prognostic Factor in Hepatocellular Carcinoma: A Survival Analysis Using Time-Varying Covariates. Cancers 2023, 15, 4223. [Google Scholar] [CrossRef]
- Lencioni, R. New Data Supporting Modified RECIST (MRECIST) for Hepatocellular Carcinoma. Clin. Cancer Res. 2013, 19, 1312–1314. [Google Scholar] [CrossRef]
- Prado, C.M.M.; Lieff, J.R.; Mccargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and Clinical Implications of Sarcopenic Obesity in Patients with Solid Tumours of the Respiratory and Gastrointestinal Tracts: A Population-Based Study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Fisher, L.D.; Lin, D.Y. Time-dependent covariates in the cox proportional-hazards regression model. Annu. Rev. Public Health 2003, 20, 145–157. [Google Scholar] [CrossRef]
- Arsic, N.; Zacchigna, S.; Zentilin, L.; Ramirez-Correa, G.; Pattarini, L.; Salvi, A.; Sinagra, G.; Giacca, M. Vascular Endothelial Growth Factor Stimulates Skeletal Muscle Regeneration In Vivo. Mol. Ther. 2004, 10, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Sugg, K.B.; Korn, M.A.; Sarver, D.C.; Markworth, J.F.; Mendias, C.L. Inhibition of Platelet-Derived Growth Factor Signaling Prevents Muscle Fiber Growth during Skeletal Muscle Hypertrophy. FEBS Lett. 2017, 591, 801–809. [Google Scholar] [CrossRef]
- Jones, N.C.; Fedorov, Y.V.; Rosenthal, R.S.; Olwin, B.B. ERK1/2 Is Required for Myoblast Proliferation but Is Dispensable for Muscle Gene Expression and Cell Fusion. J. Cell. Physiol. 2001, 186, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Pozzo, C.; Strippoli, A.; Ponziani, F.R.; Pompili, M.; Bria, E.; Tortora, G.; Gasbarrini, A.; et al. Skeletal Muscle Loss during Multikinase Inhibitors Therapy: Molecular Pathways, Clinical Implications, and Nutritional Challenges. Nutrients 2020, 12, 3101. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.; Losurdo, G.; Iannone, A.; Leandro, G.; Di Leo, A.; Trerotoli, P. Assessment of Body Composition: Intrinsic Methodological Limitations and Statistical Pitfalls. Nutrition 2022, 102, 111736. [Google Scholar] [CrossRef] [PubMed]
- Buse, M.G. In Vivo Effects of Branched Chain Amino Acids on Muscle Protein Synthesis in Fasted Rats. Horm. Metab. Res. 1981, 13, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Singh Tejavath, A.; Mathur, A.; Nathiya, D.; Singh, P.; Raj, P.; Suman, S.; Mundada, P.R.; Atif, S.; Rai, R.R.; Tomar, B.S. Impact of Branched Chain Amino Acid on Muscle Mass, Muscle Strength, Physical Performance, Combined Survival, and Maintenance of Liver Function Changes in Laboratory and Prognostic Markers on Sarcopenic Patients with Liver Cirrhosis (BCAAS Study): A Randomized Clinical Trial. Front. Nutr. 2021, 8, 619. [Google Scholar] [CrossRef]
- Takeda, H.; Nishikawa, H.; Iguchi, E.; Ohara, Y.; Sakamoto, A.; Saito, S.; Nishijima, N.; Nasu, A.; Komekado, H.; Kita, R.; et al. Effect of Treatment with Branched-Chain Amino Acids during Sorafenib Therapy for Unresectable Hepatocellular Carcinoma. Hepatol. Res. 2014, 44, 302–312. [Google Scholar] [CrossRef]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN Guidelines on Nutrition in Cancer Patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef]
- Hashida, R.; Kawaguchi, T.; Koya, S.; Hirota, K.; Goshima, N.; Yoshiyama, T.; Otsuka, T.; Bekki, M.; Iwanaga, S.; Nakano, D.; et al. Impact of Cancer Rehabilitation on the Prognosis of Patients with Hepatocellular Carcinoma. Oncol. Lett. 2020, 19, 2355–2367. [Google Scholar] [CrossRef]
- Koya, S.; Kawaguchi, T.; Hashida, R.; Goto, E.; Matsuse, H.; Saito, H.; Hirota, K.; Taira, R.; Matsushita, Y.; Imanaga, M.; et al. Effects of In-Hospital Exercise on Liver Function, Physical Ability, and Muscle Mass during Treatment of Hepatoma in Patients with Chronic Liver Disease. Hepatol. Res. 2017, 47, E22–E34. [Google Scholar] [CrossRef] [PubMed]
- Polesel, J.; Zucchetto, A.; Montella, M.; Dal Maso, L.; Crispo, A.; La Vecchia, C.; Serraino, D.; Franceschi, S.; Talamini, R. The Impact of Obesity and Diabetes Mellitus on the Risk of Hepatocellular Carcinoma. Ann. Oncol. 2009, 20, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A. The Influence of Diabetes in the Pathogenesis and the Clinical Course of Hepatocellular Carcinoma: Recent Findings and New Perspectives. Curr. Diabetes Rev. 2013, 9, 382–386. [Google Scholar] [CrossRef] [PubMed]
Valuables | All Patients (n = 94) | AB Group (n = 37) | LEN Group (n = 57) | p-Value |
---|---|---|---|---|
Age (years) | 75 (68.5–81) | 76 (72–82) | 75 (68–80) | 0.272 |
Sex (male/female) | 73/21 | 28/9 | 45/12 | 0.801 |
Etiology (HBV/HCV/others) | 16/22/56 | 5/11/21 | 11/11/35 | 0.487 |
BCLC stage (A/B1/B2/C) | 7/9/21/57 | 6/4/11/16 | 1/5/10/41 | 0.006 |
Child–Pugh score (5/6/7/8/9) | 53/32/7/1/1 | 21/16/0/0/0 | 32/16/7/1/1 | 0.069 |
ALBI score | −2.460 (−2.80–2.06) | −2.420 (−2.62–2.13) | −2.52 (−2.86–2.05) | 0.566 |
Esophageal varices (no/F1/F2/F3 post EVL) | 52/14/1/2/15 | 23/5/0/0/7 | 29/9/1/2/8 | 0.792 |
SMI (cm2/m2) | 43.6 (38.7–50.5) | 41.7 (36.4–47.7) | 44.5 (40.6–50.8) | 0.123 |
SATI (cm2/m2) | 40.4 (29.2–67.0) | 38.1 (30.4–53.8) | 44.7 (27.9–67.6) | 0.194 |
VATI (cm2/m2) | 50.5 (32.6–66.3) | 56.7 (36.1–67.2) | 46.6 (29.0–64.2) | 0.325 |
ALB (g/dL) | 3.7 (3.4–4.1) | 3.7 (3.5–3.9) | 3.9 (3.4–4.3) | 0.362 |
T-Bil (mg/dL) | 0.8 (0.6–1.1) | 0.7 (0.6–1.0) | 0.8 (0.7–1.1) | 0.236 |
AFP (×103 ng/mL) | 0.169 (0.009–2.470) | 0.098 (0.008–1.618) | 0.225 (0.010–2.770) | 0.061 |
PIVKA-II (×103 mAU/mL) | 0.758 (0.119–5.935) | 0.640 (0.092–5.518) | 0.917 (0.220–6.069) | 0.265 |
Best response (CR/PR/SD/PD) | 7/22/32/29 | 2/11/15/9 | 5/11/17/20 | 0.443 |
AB Group (n = 37) | LEN Group (n = 57) | |||||||
---|---|---|---|---|---|---|---|---|
Any Grade | Grade 1 | Grade 2 | Grade ≥ 3 | Any Grade | Grade 1 | Grade 2 | Grade ≥ 3 | |
Any symptoms | 36 (97.3%) | 15 (40.5%) | 55 (96.5%) | 19 (33.3%) | ||||
Decreased appetite | 12 (32.4%) | 7 (18.9%) | 4 (10.8%) | 1 (2.7%) | 33 (57.9%) | 3 (5.3%) | 28 (49.1%) | 2 (3.5%) |
General fatigue | 15 (40.5%) | 12 (32.4%) | 3 (8.1%) | 0 | 32 (56.1%) | 2 (3.5%) | 27 (47.4%) | 3 (5.3%) |
Hypertension | 15 (40.5%) | 2 (5.4%) | 9 (24.3%) | 4 (10.8%) | 23 (40.4%) | 2 (3.5%) | 14 (24.6%) | 7 (12.3%) |
Proteinuria | 19 (51.4%) | 8 (21.6%) | 5 (13.5%) | 6 (16.2%) | 18 (31.6%) | 4 (7.0%) | 9 (15.8%) | 5 (8.8%) |
Hand–foot syndrome | 0 | 0 | 0 | 0 | 17 (29.8%) | 7 (12.3%) | 10 (17.5%) | 0 |
Hypothyroidism | 13 (35.1%) | 9 (24.3%) | 4 (10.8%) | 0 | 17 (29.8%) | 0 | 17 (29.8%) | 0 |
Diarrhea | 8 (21.6%) | 7 (18.9%) | 0 | 1 (2.7%) | 13 (22.8%) | 11 (19.3%) | 1 (1.8%) | 1 (1.8%) |
Liver dysfunction | 17 (45.9%) | 16 (43.2%) | 0 | 1 (2.7%) | 7 (12.3%) | 1 (1.8%) | 5 (8.8%) | 1 (1.8%) |
Hemorrhage | 3 (8.1%) | 3 (8.1%) | 0 | 0 | 3 (5.3%) | 0 | 3 (5.3%) | 0 |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95%CI) | p-Value | HR (95%CI) | p-Value | |
AFP (×103 ng/mL) | 1.018 (1.009–1.026) | <0.001 | 1.014 (1.004–1.024) | 0.004 |
PIVKA-II (×103 mAU/mL) | 1.001 (0.999–1.003) | 0.240 | ||
BCLC stage A vs. B1 | 0.342 (0.021–5.520) | 0.450 | ||
vs. B2 | 2.271 (0.292–17.65) | 0.433 | ||
vs. C | 3.082 (0.420–22.61) | 0.268 | ||
vs. D | 4.581 (0.285–73.68) | 0.283 | ||
ALBI score | 3.158 (2.123–4.697) | <0.001 | 3.213 (1.997–5.168) | <0.001 |
SMI (cm2/m2) | 0.954 (0.924–0.985) | 0.004 | 0.942 (0.913–0.972) | <0.001 |
SATI (cm2/m2) | 0.997 (0.987–1.007) | 0.569 | ||
VATI (cm2/m2) | 0.995 (0.983–1.006) | 0.357 |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
PRC | p-Value | PRC | p-Value | |
Age | 0.025 | 0.874 | ||
SEX (male versus female) | −0.261 | 0.944 | ||
Drug (LEN versus AB) | −6.841 | 0.030 | −6.290 | 0.038 |
ALBI score | −0.397 | 0.901 | ||
SATI (cm2/m2) | 0.068 | 0.138 | ||
VATI (cm2/m2) | 0.017 | 0.782 | ||
AFP (×103 ng/mL) | −0.207 | 0.104 | ||
PIVKA-II (×103 mAU/mL) | −0.034 | <0.001 | −0.038 | <0.001 |
Decreased appetite (≥G2 versus <G2) | −7.369 | 0.015 | −5.418 | 0.061 |
General fatigue (≥G2 versus <G2) | −5.986 | 0.054 | ||
Hypertension (≥G2 versus <G2) | 0.925 | 0.763 | ||
Proteinuria (≥G2 versus <G2) | 0.227 | 0.949 | ||
Hypothyroidism (≥G2 versus <G2) | −2.364 | 0.504 | ||
Diarrhea (≥G2 versus <G2) | 10.636 | 0.241 | ||
Best response (SD/PD versus CR/PR) | −2.765 | 0.379 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imai, K.; Takai, K.; Unome, S.; Miwa, T.; Hanai, T.; Suetsugu, A.; Shimizu, M. Lenvatinib Exacerbates the Decrease in Skeletal Muscle Mass in Patients with Hepatocellular Carcinoma, Whereas Atezolizumab Plus Bevacizumab Does Not. Cancers 2024, 16, 442. https://doi.org/10.3390/cancers16020442
Imai K, Takai K, Unome S, Miwa T, Hanai T, Suetsugu A, Shimizu M. Lenvatinib Exacerbates the Decrease in Skeletal Muscle Mass in Patients with Hepatocellular Carcinoma, Whereas Atezolizumab Plus Bevacizumab Does Not. Cancers. 2024; 16(2):442. https://doi.org/10.3390/cancers16020442
Chicago/Turabian StyleImai, Kenji, Koji Takai, Shinji Unome, Takao Miwa, Tatsunori Hanai, Atsushi Suetsugu, and Masahito Shimizu. 2024. "Lenvatinib Exacerbates the Decrease in Skeletal Muscle Mass in Patients with Hepatocellular Carcinoma, Whereas Atezolizumab Plus Bevacizumab Does Not" Cancers 16, no. 2: 442. https://doi.org/10.3390/cancers16020442
APA StyleImai, K., Takai, K., Unome, S., Miwa, T., Hanai, T., Suetsugu, A., & Shimizu, M. (2024). Lenvatinib Exacerbates the Decrease in Skeletal Muscle Mass in Patients with Hepatocellular Carcinoma, Whereas Atezolizumab Plus Bevacizumab Does Not. Cancers, 16(2), 442. https://doi.org/10.3390/cancers16020442