Novel Insights in Venous Thromboembolism Risk Assessment Methods in Ambulatory Cancer Patients: From the Guidelines to Clinical Practice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Guideline Recommendations
3. VTE Screening in Ambulatory High-Risk Oncologic Patients
4. VTE Risk Assessment Using Scores
5. Genetic-Based Risk Assessment Scores
6. Machine Learning Algorithms Tools
7. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Abdol Razak, N.B.; Jones, G.; Bhandari, M.; Berndt, M.C.; Metharom, P. Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers 2018, 10, 380. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Horváth-Puhó, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Büller, H.R.; Sørensen, H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, H.T.; Pedersen, L.; van Es, N.; Büller, H.R.; Horváth-Puhó, E. Impact of venous thromboembolism on the mortality in patients with cancer: A population-based cohort study. Lancet Reg. Health Eur. 2023, 34, 100739. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; McCrae, K.R.; Milentijevic, D.; Laliberté, F.; Lejeune, D.; Crivera, C.; Lefebvre, P. Healthcare resource utilization and costs associated with venous thromboembolism recurrence in patients with cancer. J. Med. Econ. 2020, 23, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Marchetti, M. Cancer-associated thrombosis: Enhanced awareness and pathophysiologic complexity. J. Thromb. Haemost. 2023, 21, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Ay, C.; Di Nisio, M.; Gerotziafas, G.; Jara-Palomares, L.; Langer, F.; Lecumberri, R.; Mandala, M.; Maraveyas, A.; Pabinger, I.; et al. Venous thromboembolism in cancer patients: ESMO Clinical Practice Guideline. Ann. Oncol. 2023, 34, 452–467. [Google Scholar] [CrossRef] [PubMed]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Gates, L.E.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Guideline Update. J. Clin. Oncol. 2023, 41, 3063–3071. [Google Scholar] [CrossRef]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef]
- Middeldorp, S.; Nieuwlaat, R.; Baumann Kreuziger, L.; Coppens, M.; Houghton, D.E.; James, A.H.; Lang, E.; Moll, S.; Myers, T.; Bhatt, M.; et al. American Society of Hematology 2023 Guidelines for Management of Venous Thromboembolism: Thrombophilia Testing. Blood Adv. 2023, 7, 7101–7138. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Drăgan, A.; Sinescu, I. The Role of the Cardiac Biomarkers in the Renal Cell Carcinoma Multidisciplinary Management. Diagnostics 2023, 13, 1912. [Google Scholar] [CrossRef] [PubMed]
- Mosarla, R.C.; Vaduganathan, M.; Qamar, A.; Moslehi, J.; Piazza, G.; Giugliano, R.P. Anticoagulation Strategies in Patients with Cancer: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 1336–1349. [Google Scholar] [CrossRef] [PubMed]
- van Es, N.; Ay, C.; Jara-Palomares, L. Screening for Occult Cancer in Patients with Venous Thromboembolism: Past, Present, and Future. Hamostaseologie 2020, 40, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Gainsbury, M.L.; Erdrich, J.; Taubman, D.; Mirocha, J.; Manguso, N.; Amersi, F.; Silberman, A.W. Prevalence and Predictors of Preoperative Venous Thromboembolism in Asymptomatic Patients Undergoing Major Oncologic Surgery. Ann. Surg. Oncol. 2018, 25, 1640–1645. [Google Scholar] [CrossRef]
- Heidrich, H.; Konau, E.; Hesse, P. Asymptomatic venous thrombosis in cancer patients—A problem often overlooked. Results of a retrospective and prospective study. Vasa 2009, 38, 160–166. [Google Scholar] [CrossRef]
- Loftus, J.R.; Hu, Z.; Morin, B.R.; Hobbs, S.K.; Francis, C.W.; Khorana, A.A.; Rubens, D.J.; Kaproth-Joslin, K.A. Vascular Imaging in the Asymptomatic High-risk Cancer Population: A Role for Thrombosis Screening and Therapy Management. J. Ultrasound Med. 2022, 41, 225–236. [Google Scholar] [CrossRef]
- Kourlaba, G.; Gourzoulidis, G.; Rasmussen, E.; Kontodimas, S.; Maniadakis, N. Cost Effectiveness of Ultrasound Screening, Cancer Patients, to Detect Asymptomatic Thrombosis. Value Health 2017, 20, A587. [Google Scholar] [CrossRef]
- Kunapareddy, G.; Switzer, B.; Jain, P.; Conces, M.; Chen, Y.W.; Patel, B.; Patel, S.; Pinnamaneni, P.; Pohlman, B.; Angelini, D.E.; et al. Implementation of an electronic medical record tool for early detection of deep vein thrombosis in the ambulatory oncology setting. Res. Pract. Thromb. Haemost. 2019, 3, 226–233. [Google Scholar] [CrossRef]
- Holmes, C.E.; Ades, S.; Gilchrist, S.; Douce, D.; Libby, K.; Rogala, B.; Parenteau, E.; Cushman, M.; Holm, A.K. Successful Model for Guideline Implementation to Prevent Cancer-Associated Thrombosis: Venous Thromboembolism Prevention in the Ambulatory Cancer Clinic. JCO Oncol. Pract. 2020, 16, e868–e874. [Google Scholar] [CrossRef]
- Ay, C.; Vormittag, R.; Dunkler, D.; Simanek, R.; Chiriac, A.L.; Drach, J.; Quehenberger, P.; Wagner, O.; Zielinski, C.; Pabinger, I. D-dimer and prothrombin fragment 1 + 2 predict venous thromboembolism in patients with cancer: Results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 2009, 27, 4124–4129. [Google Scholar] [CrossRef]
- Schorling, R.M.; Pfrepper, C.; Golombek, T.; Cella, C.A.; Muñoz-Unceta, N.; Siegemund, R.; Engel, C.; Petros, S.; Lordick, F.; Knödler, M. Evaluation of Biomarkers for the Prediction of Venous Thromboembolism in Ambulatory Cancer Patients. Oncol. Res. Treat. 2020, 43, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Niimi, K.; Nishida, K.; Lee, C.; Ikeda, S.; Kawai, Y.; Sugimoto, M.; Banno, H. Optimal D-Dimer Cutoff Values for Diagnosing Deep Vein Thrombosis in Patients with Comorbid Malignancies. Ann. Vasc. Surg. 2024, 98, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Harris, S.; Underhill, C.; Torres, J.; Sharma, S.; Lee, N.; Wong, H.; Eek, R.; Michael, M.; Tie, J.; et al. Risk-Directed Ambulatory Thromboprophylaxis in Lung and Gastrointestinal Cancers: The TARGET-TP Randomized Clinical Trial. JAMA Oncol. 2023, 9, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Oi, M.; Yamashita, Y.; Toyofuku, M.; Morimoto, T.; Motohashi, Y.; Tamura, T.; Kaitani, K.; Amano, H.; Takase, T.; Hiramori, S.; et al. D-dimer levels at diagnosis and long-term clinical outcomes in venous thromboembolism: From the COMMAND VTE Registry. J. Thromb. Thrombolysis. 2020, 49, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Koch, V.; Martin, S.S.; Gruber-Rouh, T.; Eichler, K.; Mahmoudi, S.; Leistner, D.M.; Scholtz, J.E.; Bernatz, S.; Puntmann, V.O.; Nagel, E.; et al. Cancer patients with venous thromboembolism: Diagnostic and prognostic value of elevated D-dimers. Eur. J. Clin. Investig. 2023, 53, e13914. [Google Scholar] [CrossRef] [PubMed]
- Ay, C.; Simanek, R.; Vormittag, R.; Dunkler, D.; Alguel, G.; Koder, S.; Kornek, G.; Marosi, C.; Wagner, O.; Zielinski, C.; et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: Results from the Vienna Cancer and Thrombosis Study (CATS). Blood 2008, 112, 2703–2708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, C.; Ma, Z.; Zhang, Y. Soluble P-selectin level in patients with cancer-associated venous and artery thromboembolism: A systematic review and meta-analysis. Arch. Med. Sci. 2023, 19, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Barnard, J.; Wun, T.; Vijapurkar, U.; Damaraju, C.V.; Moore, K.T.; Wildgoose, P.; McCrae, K.R. Biomarker signatures in cancer patients with and without venous thromboembolism events: A substudy of CASSINI. Blood Adv. 2022, 6, 1212–1221. [Google Scholar] [CrossRef]
- Anijs, R.J.S.; Nguyen, Y.N.; Cannegieter, S.C.; Versteeg, H.H.; Buijs, J.T. MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism. J. Thromb. Haemost. 2023, 21, 7–17. [Google Scholar] [CrossRef]
- Marques, I.S.; Tavares, V.; Neto, B.V.; Mota, I.N.R.; Pereira, D.; Medeiros, R. Long Non-Coding RNAs in Venous Thromboembolism: Where Do We Stand? Int. J. Mol. Sci. 2023, 24, 12103. [Google Scholar] [CrossRef]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; DeSancho, M.T.; Liebman, H.; Rosovsky, R.; Connors, J.M.; Zwicker, J. Prediction and Prevention of Cancer-Associated Thromboembolism. Oncologist 2021, 26, e2–e7. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Candeloro, M.; Kamphuisen, P.W.; Di Nisio, M.; Bossuyt, P.M.; Guman, N.; Smit, K.; Buller, H.R.; van Es, N.; CAT-prediction collaborators. The Khorana score for prediction of venous thromboembolism in cancer patients: A systematic review and meta-analysis. Haematologica 2019, 104, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Akasaka-Kihara, F.; Sueta, D.; Ishii, M.; Maki, Y.; Hirakawa, K.; Tabata, N.; Ito, M.; Yamanaga, K.; Fujisue, K.; Hoshiyama, T.; et al. Validation of the Khorana Venous Thromboembolism Risk Score in Japanese Cancer Patients. JACC Asia 2021, 1, 259–270. [Google Scholar] [CrossRef]
- Ramos-Esquivel, A.; Marenco-Flores, A.; Hernández-Romero, G.; Umaña-Mora, C.; Céspedes-Calvo, A.; Mora-Hidalgo, R. Using the Khorana risk score to predict venous thromboembolism and overall survival in a cohort of Hispanic patients with solid malignancies. Ecancermedicalscience 2022, 16, 1470. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, H.A.; Othman, M.; Azzam, H.; Bucciol, R.; Ebrahim, M.A.; El-Agdar, M.A.M.A.; Tera, Y.; Sakr, D.H.; Ghoneim, H.R.; Selim, T.E. Assessing the risk of venous thromboembolism in patients with haematological cancers using three prediction models. J. Cancer Res. Clin. Oncol. 2023, 149, 17771–17780. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.; Ko, Y.H.; Kim, K.; Hong, J.; Lee, G.W.; Jeong, S.H.; Bang, S.M.; Yoon, S.S. Application of the Khorana score for cancer-associated thrombosis prediction in patients of East Asian ethnicity undergoing ambulatory chemotherapy. Thromb. J. 2023, 21, 63. [Google Scholar] [CrossRef]
- Overvad, T.F.; Ording, A.G.; Nielsen, P.B.; Skjøth, F.; Albertsen, I.E.; Noble, S.; Vistisen, A.K.; Gade, I.L.; Severinsen, M.T.; Piazza, G.; et al. Validation of the Khorana score for predicting venous thromboembolism in 40 218 patients with cancer initiating chemotherapy. Blood Adv. 2022, 6, 2967–2976. [Google Scholar] [CrossRef]
- van Es, N.; Ventresca, M.; Di Nisio, M.; Zhou, Q.; Noble, S.; Crowther, M.; Briel, M.; Garcia, D.; Lyman, G.H.; Macbeth, F.; et al. IPDMA Heparin Use in Cancer Patients Research Group. The Khorana score for prediction of venous thromboembolism in cancer patients: An individual patient data meta-analysis. J. Thromb. Haemost. 2020, 18, 1940–1951. [Google Scholar] [CrossRef]
- Austin, K.; George, J.; Robinson, E.J.; Scully, M.; Thomas, M.R. Retrospective Cohort Study of Venous Thromboembolism Rates in Ambulatory Cancer Patients: Association with Khorana Score and Other Risk Factors. J. Hematol. 2019, 8, 17–25. [Google Scholar] [CrossRef]
- Verzeroli, C.; Giaccherini, C.; Russo, L.; Bolognini, S.; Gamba, S.; Tartari, C.J.; Schieppati, F.; Ticozzi, C.; Vignoli, A.; Masci, G.; et al. Utility of the Khorana and the new-Vienna CATS prediction scores in cancer patients of the HYPERCAN cohort. J. Thromb. Haemost. 2023, 21, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razeq, H.; Sharaf, B.; Al-Jaghbeer, M.J.; Abu-Fares, H.; Bater, R.; Shaer, M.A.; Abu-Jaish, H.; Laban, D.A.; Salamah, O.; Tamimi, F.; et al. COMPASS-CAT versus Khorana risk assessment model for predicting venous thromboembolic events in patients with non-small cell lung cancer on active treatment with chemotherapy and/or immunotherapy, the CK-RAM study. J. Thromb. Thrombolysis 2023, 56, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, A.S.; Tafur, A.J.; Wang, C.E.; Kourelis, T.V.; Wysokinska, E.M.; Yang, P. Predictors of active cancer thromboembolic outcomes: Validation of the Khorana score among patients with lung cancer. J. Thromb. Haemost. 2016, 14, 1773–1778. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, K.M.; Carson, K.R.; Wang, T.F.; Luo, S.; Edwin, N.; Kuderer, N.; Keller, J.M.; Gage, B.F. Evaluation of the Khorana score for prediction of venous thromboembolism in patients with multiple myeloma. Res. Pract. Thromb. Haemost. 2022, 6, e12634. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.S.; Yun, S.; Ali, N.A.; Shin, H.; O’Neil, J.L.; Elharake, M.; Schwartz, D.; Robinson, K.; Nowell, E.; Engle, G.; et al. Validation of the Khorana score in acute myeloid leukemia patients: A single-institution experience. Thromb. J. 2019, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Attar, B.M.; Fuentes, H.E.; Yu, J.; Zhang, H.; Tafur, A.J. Performance of Khorana Risk Score for Prediction of Venous Thromboembolism in Patients with Hepatocellular Carcinoma. Clin. Appl. Thromb. Hemost. 2018, 24, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Piver, R.N.; Wagner, V.M.; Levine, M.D.; Backes, F.J.; Chambers, L.J.; Cohn, D.E.; Copeland, L.J.; Cosgrove, C.M.; Nagel, C.I.; O’Malley, D.M.; et al. Use of the Khorana score to predict venous thromboembolism in patients undergoing chemotherapy for uterine cancer. Gynecol. Oncol. Rep. 2023, 46, 101156. [Google Scholar] [CrossRef]
- Rupa-Matysek, J.; Gil, L.; Kaźmierczak, M.; Barańska, M.; Komarnicki, M. Prediction of venous thromboembolism in newly diagnosed patients treated for lymphoid malignancies: Validation of the Khorana Risk Score. Med. Oncol. 2017, 35, 5. [Google Scholar] [CrossRef]
- Di Nisio, M.; van Es, N.; Rotunno, L.; Anzoletti, N.; Falcone, L.; De Tursi, M.; Natoli, C.; Tinari, N.; Cavallo, I.; Valeriani, E.; et al. Long-term performance of risk scores for venous thromboembolism in ambulatory cancer patients. J. Thromb. Thrombolysis 2019, 48, 125–133. [Google Scholar] [CrossRef]
- Guman, N.A.M.; van Geffen, R.J.; Mulder, F.I.; van Haaps, T.F.; Hovsepjan, V.; Labots, M.; Cirkel, G.A.; de Vos, F.Y.F.L.; Ten Tije, A.J.; Beerepoot, L.V.; et al. Evaluation of the Khorana, PROTECHT, and 5-SNP scores for prediction of venous thromboembolism in patients with cancer. J. Thromb. Haemost. 2021, 19, 2974–2983. [Google Scholar] [CrossRef]
- Ay, C.; Dunkler, D.; Marosi, C.; Chiriac, A.L.; Vormittag, R.; Simanek, R.; Quehenberger, P.; Zielinski, C.; Pabinger, I. Prediction of venous thromboembolism in cancer patients. Blood 2010, 116, 5377–5382. [Google Scholar] [CrossRef] [PubMed]
- van Es, N.; Di Nisio, M.; Cesarman, G.; Kleinjan, A.; Otten, H.M.; Mahé, I.; Wilts, I.T.; Twint, D.C.; Porreca, E.; Arrieta, O.; et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: A prospective cohort study. Haematologica 2017, 102, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Harada, Y.; Sato, A.; Nishioka, A.; Ogusu, S.; Matsumoto, M.; Sueoka, E.; Kawaguchi, A.; Kimura, S.; Sueoka-Aragane, N. Usefulness of blood biomarkers for predicting venous thromboembolism in Japanese patients with cancer. Oncol. Lett. 2023, 25, 180. [Google Scholar] [CrossRef] [PubMed]
- Verso, M.; Agnelli, G.; Barni, S.; Gasparini, G.; LaBianca, R. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: The Protecht score. Intern. Emerg. Med. 2012, 7, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Moik, F.; van Es, N.; Posch, F.; Di Nisio, M.; Fuereder, T.; Preusser, M.; Pabinger, I.; Ay, C. Gemcitabine and Platinum-Based Agents for the Prediction of Cancer-Associated Venous Thromboembolism: Results from the Vienna Cancer and Thrombosis Study. Cancers 2020, 12, 2493. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Esquivel, A.; Marenco-Flores, A.; Hernández-Romero, G.; Céspedes-Calvo, A.; Mora-Hidalgo, R. Comparison among three predictive models for cancer-associated thromboembolism in a hispanic population. J. Thromb. Thrombolysis 2023, 56, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, U.; Sinn, M.; Stieler, J.; Riess, H. Primary pharmacological prevention of thromboembolic events in ambulatory patients with advanced pancreatic cancer treated with chemotherapy? Dtsch. Med. Wochenschr. 2013, 138, 2084–2088. [Google Scholar]
- Qin, L.; Liang, Z.; Xie, J.; Li, X. Estimating Venous Thromboembolism Risk in Metastatic Colorectal Cancer Inpatients: Validation of Existing Risk Scores and Development of New Risk Scores. Clin. Appl. Thromb. Hemost. 2023, 29, 10760296231196859. [Google Scholar] [CrossRef]
- Gomez-Rosas, P.; Giaccherini, C.; Russo, L.; Verzeroli, C.; Gamba, S.; Tartari, C.J.; Bolognini, S.; Ticozzi, C.; Schieppati, F.; Barcella, L.; et al. A New Risk Prediction Model for Venous Thromboembolism and Death in Ambulatory Lung Cancer Patients. Cancers 2023, 15, 4588. [Google Scholar] [CrossRef]
- Yan, A.R.; Samarawickrema, I.; Naunton, M.; Peterson, G.M.; Yip, D.; Mortazavi, R. Models for predicting venous thromboembolism in ambulatory patients with lung cancer: A systematic review protocol. BMJ Open 2021, 11, e055322. [Google Scholar] [CrossRef]
- Pabinger, I.; van Es, N.; Heinze, G.; Posch, F.; Riedl, J.; Reitter, E.M.; Di Nisio, M.; Cesarman-Maus, G.; Kraaijpoel, N.; Zielinski, C.C.; et al. A clinical prediction model for cancer-associated venous thromboembolism: A development and validation study in two independent prospective cohorts. Lancet Haematol. 2018, 5, e289–e298. [Google Scholar] [CrossRef] [PubMed]
- Gerotziafas, G.T.; Taher, A.; Abdel-Razeq, H.; AboElnazar, E.; Spyropoulos, A.C.; El Shemmari, S.; Larsen, A.K.; Elalamy, I.; COMPASS–CAT Working Group. A Predictive Score for Thrombosis Associated with Breast, Colorectal, Lung, or Ovarian Cancer: The Prospective COMPASS-Cancer-Associated Thrombosis Study. Oncologist 2017, 22, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Taglialatela, I.; Mariani, L.; Dotti, K.F.; Di Vico, L.; Pisanu, M.N.; Facchinetti, C.; De Braud, F.; Ferrari, L.A.M. Central venous catheters-related-thrombosis and risk factors in oncological patients: A retrospective evaluation of recent risk scores. Tumori J. 2023, 109, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Rupa-Matysek, J.; Lembicz, M.; Rogowska, E.K.; Gil, L.; Komarnicki, M.; Batura-Gabryel, H. Evaluation of risk factors and assessment models for predicting venous thromboembolism in lung cancer patients. Med. Oncol. 2018, 35, 63. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, A.C.; Eldredge, J.B.; Anand, L.N.; Zhang, M.; Qiu, M.; Nourabadi, S.; Rosenberg, D.J. External Validation of a Venous Thromboembolic Risk Score for Cancer Outpatients with Solid Tumors: The COMPASS-CAT Venous Thromboembolism Risk Assessment Model. Oncologist 2020, 25, e1083–e1090. [Google Scholar] [CrossRef] [PubMed]
- Pestana, R.M.C.; Alves, M.T.; de Oliveira, A.N.; Oliveira, H.H.M.; Soares, C.E.; Sabino, A.P.; Silva, L.M.; Simões, R.; Gomes, K.B. Interleukin-10 levels and the risk of thromboembolism according to COMPASS-Cancer associated thrombosis score in breast cancer patients prior to undergoing doxorubicin-based chemotherapy. Blood Coagul. Fibrinolysis 2023, 34, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Cella, C.A.; Di Minno, G.; Carlomagno, C.; Arcopinto, M.; Cerbone, A.M.; Matano, E.; Tufano, A.; Lordick, F.; De Simone, B.; Muehlberg, K.S.; et al. Preventing Venous Thromboembolism in Ambulatory Cancer Patients: The ONKOTEV Study. Oncologist 2017, 22, 601–608. [Google Scholar] [CrossRef]
- Cella, C.A.; Knoedler, M.; Hall, M.; Arcopinto, M.; Bagnardi, V.; Gervaso, L.; Pellicori, S.; Spada, F.; Zampino, M.G.; Ravenda, P.S.; et al. Validation of the ONKOTEV Risk Prediction Model for Venous Thromboembolism in Outpatients with Cancer. JAMA Netw. Open 2023, 6, e230010. [Google Scholar] [CrossRef]
- Godinho, J.; Casa-Nova, M.; Moreira-Pinto, J.; Simões, P.; Paralta Branco, F.; Leal-Costa, L.; Faria, A.; Lopes, F.; Teixeira, J.A.; Passos-Coelho, J.L. ONKOTEV Score as a Predictive Tool for Thromboembolic Events in Pancreatic Cancer—A Retrospective Analysis. Oncologist 2020, 25, e284–e290. [Google Scholar] [CrossRef]
- Xiong, W.; Zhao, Y.; Du, H.; Wang, Y.; Xu, M.; Guo, X. Optimal authoritative risk assessment score of Cancer-associated venous thromboembolism for hospitalized medical patients with lung Cancer. Thromb. J. 2021, 19, 95. [Google Scholar] [CrossRef]
- Pfrepper, C.; Knödler, M.; Schorling, R.M.; Seehofer, D.; Petros, S.; Lordick, F. Predictors for thromboembolism in patients with cholangiocarcinoma. J. Cancer Res. Clin. Oncol. 2022, 148, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fang, Y.; Xing, J.; Cheng, H.; Sun, X.; Yuan, Z.; Xu, Y.; Hao, J. The Efficacy of the Systemic Immune-Inflammation Index and Prognosis Nutritional Index for the Diagnosis of Venous Thromboembolism in Gastrointestinal Cancers. J. Inflamm. Res. 2022, 15, 4649–4661. [Google Scholar] [CrossRef] [PubMed]
- Tort, M.; Sevil, F.C.; Sevil, H.; Becit, N. Evaluation of systemic immune-inflammation index in acute deep vein thrombosis: A propensity-matched. J. Vasc. Surg. Venous Lymphat. Disord. 2023, 11, 972–977.e1. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Yang, R.; Yang, Y.; Chen, X. The Diagnostic Value of the Systemic Immune-Inflammation Index for Venous Thromboembolism in Lung Cancer Patients: A Retrospective Study. Mediat. Inflamm. 2022, 2022, 9215311. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; La, J.; May, S.B.; Guffey, D.; da Costa, W.L., Jr.; Amos, C.I.; Bandyo, R.; Milner, E.M.; Kurian, K.M.; Chen, D.C.R.; et al. Derivation and Validation of a Clinical Risk Assessment Model for Cancer-Associated Thrombosis in Two Unique US Health Care Systems. J. Clin. Oncol. 2023, 41, 2926–2938. [Google Scholar] [CrossRef] [PubMed]
- Castellón Rubio, V.E.; Segura, P.P.; Muñoz, A.; Farré, A.L.; Ruiz, L.C.; Lorente, J. High plasma levels of soluble P-Selectin and Factor VIII predict venous thromboembolism in non-small cell lung cancer patients: The Thrombo-Nsclc risk score. Thromb. Res. 2020, 196, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tian, Y.; Niu, H.; He, L.; Cao, G.; Zhang, C.; Kaiweisierkezi, K.; Luo, Q. Derivation, validation and assessment of a novel nomogram-based risk assessment model for venous thromboembolism in hospitalized patients with lung cancer: A retrospective case control study. Front. Oncol. 2022, 12, 988287. [Google Scholar] [CrossRef]
- Antic, D.; Milic, N.; Nikolovski, S.; Todorovic, M.; Bila, J.; Djurdjevic, P.; Andjelic, B.; Djurasinovic, V.; Sretenovic, A.; Vukovic, V.; et al. Development and validation of multivariable predictive model for thromboembolic events in lymphoma patients. Am. J. Hematol. 2016, 91, 1014–1019. [Google Scholar] [CrossRef]
- Kirkizlar, O.; Alp Kirkizlar, T.; Umit, E.G.; Asker, I.; Baysal, M.; Bas, V.; Gulsaran, S.K.; Demirci, U.; Demir, A.M. The Incidence of Venous Thromboembolism and Impact on Survival in Hodgkin Lymphoma. Clin. Lymphoma Myeloma Leuk. 2020, 20, 542–547. [Google Scholar] [CrossRef]
- Abdel-Razeq, H.; Ma’koseh, M.; Mansour, A.; Bater, R.; Amarin, R.; Abufara, A.; Halahleh, K.; Manassra, M.; Alrwashdeh, M.; Almomani, M.; et al. The Application of the ThroLy Risk Assessment Model to Predict Venous Thromboembolism in Patients with Diffuse Large B-Cell Lymphoma. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211045908. [Google Scholar] [CrossRef]
- Rupa-Matysek, J.; Brzeźniakiewicz-Janus, K.; Gil, L.; Krasiński, Z.; Komarnicki, M. Evaluation of the ThroLy score for the prediction of venous thromboembolism in newly diagnosed patients treated for lymphoid malignancies in clinical practice. Cancer Med. 2018, 7, 2868–2875. [Google Scholar] [CrossRef] [PubMed]
- Bastos-Oreiro, M.; Ortiz, J.; Pradillo, V.; Salas, E.; Marínez-Laperche, C.; Muñoz, A.; Buño, I.; Diéz-Martin, J.L.; Soria, J.M.; Pascual Izquierdo, C. Incorporating genetic and clinical data into the prediction of thromboembolism risk in patients with lymphoma. Cancer Med. 2021, 10, 7585–7592. [Google Scholar] [CrossRef] [PubMed]
- López Sacerio, A.; Tejeda Ramón, M.C.; Morales Helguera, A.; Pérez Castillo, Y.; Cruz Rodríguez, J.; Guerra Rodríguez, J.F.; Falanga, A. Validation of venous thromboembolism predictive model in hematologic malignancies. Ann. Hematol. 2023, 102, 3613–3620. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Luo, S.; Wang, T.F.; Fiala, M.; Schoen, M.; Wildes, T.M.; Mikhael, J.; Kuderer, N.M.; Calverley, D.C.; Keller, J.; et al. Predicting venous thromboembolism in multiple myeloma: Development and validation of the IMPEDE VTE score. Am. J. Hematol. 2019, 94, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, K.M.; Fiala, M.; Feinberg, D.; Tathireddy, H.; Girard, T.; Vij, R.; Di Paola, J.; Gage, B.F. D-dimer predicts venous thromboembolism in multiple myeloma: A nested case-control study. Res. Pract. Thromb. Haemost. 2023, 7, e102235. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, F.; Berghoff, A.S.; Grossenbacher, B.; Lareida, A.; Löb, R.; Roth, P.; Neidert, M.C.; Andratschke, N.; Le Rhun, E.; Preusser, M.; et al. Venous thromboembolic events in patients with brain metastases: The PICOS score. Eur. J. Cancer 2020, 134, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Nakamura, K.; Okamoto, K.; Matsuoka, H.; Ida, N.; Haruma, T.; Ogawa, C.; Masuyama, H. The Combination of D-dimer and Glasgow Prognostic Score Can Be Useful in Predicting VTE in Patients with Stage IIIC and IVA Ovarian Cancer. Acta Med. Okayama 2022, 76, 129–135. [Google Scholar]
- Roy, D.C.; Wang, T.F.; Carrier, M.; Mallick, R.; Burger, D.; Hawken, S.; Wells, P.S. Thrombophilia gene mutations predict venous thromboembolism in ambulatory cancer patients receiving chemotherapy. J. Thromb. Haemost. 2023, 21, 3184–3192. [Google Scholar] [CrossRef]
- Lindström, S.; Wang, L.; Smith, E.N.; Gordon, W.; van Hylckama Vlieg, A.; de Andrade, M.; Brody, J.A.; Pattee, J.W.; Haessler, J.; Brumpton, B.M.; et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood 2019, 134, 1645–1657. [Google Scholar] [CrossRef]
- de Haan, H.G.; Bezemer, I.D.; Doggen, C.J.; Le Cessie, S.; Reitsma, P.H.; Arellano, A.R.; Tong, C.H.; Devlin, J.J.; Bare, L.A.; Rosendaal, F.R.; et al. Multiple SNP testing improves risk prediction of first venous thrombosis. Blood 2012, 120, 656–663. [Google Scholar] [CrossRef]
- Skille, H.; Paulsen, B.; Hveem, K.; Gabrielsen, M.E.; Brumpton, B.; Hindberg, K.; Gran, O.V.; Rosendaal, F.R.; Braekkan, S.K.; Hansen, J.B. Combined effects of five prothrombotic genotypes and cancer on the risk of a first venous thromboembolic event. J. Thromb. Haemost. 2020, 18, 2861–2869. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, L.; Frischmuth, T.; Brækkan, S.K.; Hansen, J.B.; Morelli, V.M. Joint Effect of Multiple Prothrombotic Genotypes and Mean Platelet Volume on the Risk of Incident Venous Thromboembolism. Thromb. Haemost. 2022, 122, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Guman, N.A.M.; Mulder, F.I.; Ferwerda, B.; Zwinderman, A.H.; Kamphuisen, P.W.; Büller, H.R.; van Es, N. Polygenic risk scores for prediction of cancer-associated venous thromboembolism in the UK Biobank cohort study. J. Thromb. Haemost. 2023, 21, 3175–3183. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Martín, A.J.; Ortega, I.; Font, C.; Pachón, V.; Castellón, V.; Martínez-Marín, V.; Salgado, M.; Martínez, E.; Calzas, J.; Rupérez, A.; et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br. J. Cancer 2018, 118, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Neto, B.V.; Tavares, V.; da Silva, J.B.; Liz-Pimenta, J.; Marques, I.S.; Carvalho, L.; Salgado, L.; Pereira, D.; Medeiros, R. Thrombogenesis-associated genetic determinants as predictors of thromboembolism and prognosis in cervical cancer. Sci. Rep. 2023, 13, 9519. [Google Scholar] [CrossRef]
- Muñoz, A.; Ay, C.; Grilz, E.; López, S.; Font, C.; Pachón, V.; Castellón, V.; Martínez-Marín, V.; Salgado, M.; Martínez, E.; et al. A Clinical-Genetic Risk Score for Predicting Cancer-Associated Venous Thromboembolism: A Development and Validation Study Involving Two Independent Prospective Cohorts. J. Clin. Oncol. 2023, 41, 2911–2925. [Google Scholar] [CrossRef]
- Xu, Q.; Lei, H.; Li, X.; Li, F.; Shi, H.; Wang, G.; Sun, A.; Wang, Y.; Peng, B. Machine learning predicts cancer-associated venous thromboembolism using clinically available variables in gastric cancer patients. Heliyon 2023, 9, e12681. [Google Scholar] [CrossRef]
- Nudel, J.; Bishara, A.M.; de Geus, S.W.L.; Patil, P.; Srinivasan, J.; Hess, D.T.; Woodson, J. Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: An analysis of the MBSAQIP database. Surg. Endosc. 2021, 35, 182–191. [Google Scholar] [CrossRef]
- Ting Sim, J.Z.; Fong, Q.W.; Huang, W.; Tan, C.H. Machine learning in medicine: What clinicians should know. Singap. Med. J. 2023, 64, 91–97. [Google Scholar]
- Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Riondino, S.; Nanni, U.; Roselli, M.; Guadagni, F. Risk Assessment for Venous Thromboembolism in Chemotherapy-Treated Ambulatory Cancer Patients. Med. Decis. Mak. 2017, 37, 234–242. [Google Scholar] [CrossRef]
- Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Riondino, S.; Guadagni, F.; Roselli, M. Validation of a Machine Learning Approach for Venous Thromboembolism Risk Prediction in Oncology. Dis. Markers 2017, 2017, 8781379. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Qin, D.; Liang, B.S.; Zhang, L.C.; Wei, X.X.; Wang, Y.J.; Zhuang, B.; Zhang, T.; Yang, Z.P.; Cao, Y.W.; et al. Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables. Int. J. Med. Inform. 2022, 161, 104733. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Zhang, M.; Wu, Z.; Liu, C.; Li, X.; Zhou, W.; Long, B.; Ma, J.; Zhang, H.; Wang, Y.; et al. Development and Validation of a Risk Prediction Model for Venous Thromboembolism in Lung Cancer Patients Using Machine Learning. Front. Cardiovasc. Med. 2022, 9, 845210. [Google Scholar] [CrossRef] [PubMed]
- Mantha, S.; Chatterjee, S.; Singh, R.; Cadley, J.; Poon, C.; Chatterjee, A.; Kelly, D.; Sterpi, M.; Soff, G.; Zwicker, J.; et al. Application of Machine Learning to the Prediction of Cancer-Associated Venous Thromboembolism. Res. Sq. 2023, rs.3.rs, 2870367. [Google Scholar]
- Meng, L.; Wei, T.; Fan, R.; Su, H.; Liu, J.; Wang, L.; Huang, X.; Qi, Y.; Li, X. Development and validation of a machine learning model to predict venous thromboembolism among hospitalized cancer patients. Asia Pac. J. Oncol. Nurs. 2022, 9, 100128. [Google Scholar] [CrossRef]
- Danilatou, V.; Nikolakakis, S.; Antonakaki, D.; Tzagkarakis, C.; Mavroidis, D.; Kostoulas, T.; Ioannidis, S. Outcome Prediction in Critically-Ill Patients with Venous Thromboembolism and/or Cancer Using Machine Learning Algorithms: External Validation and Comparison with Scoring Systems. Int. J. Mol. Sci. 2022, 23, 7132. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Wang, T.F.; Carrier, M.; Falanga, A.; Gage, B.F.; Khorana, A.A.; Maraveyas, A.; Soff, G.A.; Wells, P.S.; Zwicker, J.I. Standardization of risk prediction model reporting in cancer-associated thrombosis: Communication from the ISTH SSC subcommittee on hemostasis and malignancy. J. Thromb. Haemost. 2022, 20, 1920–1927. [Google Scholar] [CrossRef]
Guideline | Reference | Main Findings | Recommendation |
---|---|---|---|
ESMO 2023 | [6] |
| Class I, Level of evidence A |
| Class I, Level of evidence B | ||
| Class II, Level of evidence C | ||
| Class III, Level of evidence B | ||
| Class III, Level of evidence C | ||
| Class II, Level of evidence C | ||
ASCO 2023 | [7] |
| Evidence-based Intermediate-High quality Strong recommendation |
| Evidence-based Evidence quality: Intermediate to High for apixaban and rivaroxaban, Intermediate for LMWH Moderate recommendation | ||
| Evidence-based Intermediate evidence quality Strong recommendation | ||
ESC 2022 | [10] |
| |
| |||
| Class I | ||
| - | ||
| Class IIb, Level of evidence B | ||
| |||
| Class I, Level of evidence C | ||
ASH 2021 | [8] |
| Strong recommendation, moderate certainty in the evidence of effects |
| Conditional recommendation, moderate certainty in the evidence of effects | ||
| Conditional recommendation, moderate certainty in the evidence of effects |
Screening Modality | Authors (Year) [Ref] | No. Patients | VTE Detected (%) | Type of Tumors | Main Findings |
---|---|---|---|---|---|
Lower limb venous duplex US | Gainsbury et al. (2018) [14] | 346 | 10.1 | Solid cancer | High-risk cancer patients may benefit from screening lower extremity venous duplex US before surgery. |
Lower limb duplex US and/or venography | Heidrich et al. (2009) [15] | 97 | 33 | Various types | Regular screening for thrombosis is indicated even in asymptomatic tumor patients |
Lower limb duplex US and contrast-enhanced chest CT | Loftus et al. (2022) [16] | 117 | 58 | Solid cancers | Suggested to add US screening to routine oncologic surveillance CT in high-risk ambulatory cancer patients (Khorana score ≥ 3) |
Lower limb venous US | Kourlaba et al. (2017) [17] | 907 | - | various | Screening high-risk cancer patients via US to detect asymptomatic DVT is a cost-effective strategy over clinical surveillance |
Automated alert Lower limb venous US | Kunapareddy et al. (2019) [18] | 194 | 12.5 | various | An automated alert may help in early detection of DVT in high-risk cancer patients |
VTEPACC model | Holmes et al. (2020) [19] | 918 | 23.2 | various | VTEPACC involves a multidisciplinary approach |
D-dimer F 1 + 2 | Ay et al. (2009) [20] | 821 | 7.6 | various | The cumulative probability of developing VTE after 6 months was highest in patients with both elevated D-dimer and elevated F 1 + 2 |
Baseline D-dimer | Schorling et al. (2020) [21] | 100 | 11.2 | Solid cancers | VTE risk was well predicted by baseline D-dimer levels. |
D-dimer | Niim et al. (2023 [22] | 208 | 28.4 | various | The optimal D-dimer cut-off value for the DVT diagnosis in cancer patients was 4.0 μg/mL. |
D-dimer | Oi et al. (2020) [24] | 2852 | various | Elevated levels at diagnosis were associated with an increased risk for short-term and long-term mortality. | |
D-dimer | Koch et al. (2023) [25] | 526 | 39.73 | various | Levels above the 10-fold upper reference limit contain diagnostic and prognostic information |
sP-selectin | Ay et al. (2008) [26] | 687 | 6.4 | various | Higher levels independently predict VTE in cancer patients |
sP-selectin | Zhang (2023) [27] | 1882 | 24.17 | various | Metaanalysis. Role in early identification and monitoring A higher level in Asian cancer patients |
Various biomarkers | Khorana (2022) [28] | 124 | 50 | various | SDF-1 and TSH were the strongest predictors of VTE |
Score | Authors (Year) [Reference] | Study Population | Observation | ||||||
---|---|---|---|---|---|---|---|---|---|
No. | Type of Cancer | Age | Male (%) | Ethnicity/ Race | Metastasis (%) | VTE (%) | |||
Khorana | Khorana et al. (2008) [31] | 2801 | breast, lung, ovarian sarcoma colon lymphomas | 32.7 | US | 36.9 | 2.2 |
| |
Austin et al. (2019) [40] | 87 | pancreatic | 66.2 | - | UK | 86.2 | 26.8 |
| |
154 | endometrial | 67.5 | 27.3 | 5.7 | |||||
205 | colorectal | 64 | 16.6 | 9.8 | |||||
193 | ovarian | 60.2 | 67.9 | 10.2 | |||||
91 | cervical | 48.9 | 0 | 0 | |||||
Mulder et al. (2019) [33] | 34,555 | various | - | - | various | - | 6.9% |
| |
Di Nisio et al. (2019) [49] | 770 | various types | - | - | Multinational | 70 | - |
| |
van Es et al. (2020) [39] | 3293 | solid cancers | 61 | 59 | various | 68 | - |
| |
Akasaka-Kihara et al. (2021) [34] | 27,687 | various | 67 | 52.3 | Japanese | 23.5 | 5.26 |
| |
Guman et al. (2021) [50] | 2729 | advanced solid tumors | 63 | 51 | Dutch | - | 5.9 |
| |
Ramos-Esquivel et al. (2022) [35] | 708 | solid tumors | 59.04 | 37.4 | Hispanic | - | 4.23 |
| |
Overvad et al. (2022) [38] | 40,218 | various | 65 | 44.6 | Danish | - | 2.5 |
| |
Verzeroli et al. (2023) [41] | 1286 | NSCL, colorectal, gastric, breast | 65 | 55 | Caucasian | 100 | 9.7 |
| |
El-Sayed et al. (2023) [36] | 81 | hematology | 42.6 | 49.4 | Egyptian | 2.7 | 9.8 |
| |
Ha et al. (2023) [37] | 11,714 | various | 59 | 40.5 | East Asian | - | 1.77 |
| |
PROTECHT | van Es et al. (2017) [52] | 876 | solid advanced cancers | 64 | 59 | Dutch Italian French Mexican | 66 | 6.1 |
|
Di Nisio et al. (2019) [49] | 770 | various types | - | - | Multinational | 70 | - |
| |
Guman et al. (2021) [50] | 2729 | advanced solid tumors | 63 | 51 | Dutch | - | 5.9 |
| |
Ramos-Esquivel et al. (2023) [56] | 708 | solid tumours | - | - | Hispanic | - | 4.45 |
| |
ONKOTEV | Cella et al. (2017) [67] | 843 | various types | 59 | 33.6 | Italian, Germany | 55.2 | 8.6 |
|
Godinho et al. (2020) [69] | 165 | pancreatic | 73 | 54.5 | Portuguese | 55.8 | 30.9 |
| |
Cella et al. (2023) [68] | 425 | various types | 61 | 43.1 | Italian, Germany, UK | 68 | 2.6 |
| |
COMPASS-CAT | Gerotziafas et al. (2016) [61] | 1023 | breast colorectal lung ovarian | 55 | 18.9 | Multinational | 39.6 | 8.5 |
|
Spyropoulos et al. (2020) [65] | 3814 | breast lung colorectal ovarian | 64 | 21 | US | 18.8 | 5.85 |
| |
Abdel-Razeq et al. (2023) [42] | 508 | NSCLC | 58.4 | 79.7 | Jordanian | 65.6 | 15 |
| |
Vienna CATS | Ay et al. (2010) [51] | 819 | various types | 62 | 55.44% | Austrian | 37.1 | 7.4 |
|
van Es et al. (2017) [52] | 876 | solid advanced cancers | 64 | 59 | Dutch Italian French Mexican | 66 | 6.1 |
| |
Harada et al. (2023) [53] | 190 | solid cancers | 69 | 73 | Japanese | 100 | 8.94 |
| |
El-Sayed et al. (2023) [36] | 81 | hematology | 42.6 | 49.4 | Egyptian | 2.7 | 9.8 |
| |
CATS/ MICA | Pabinger et al. (2018) [61] | 1423 CATS | solid cancers | 62.9 CATS | 54.2 CATS | Austrian Dutch Franch Italian Mexican | 61.7 | 6.3 |
|
832 MICA | 63.7 MICA | 57.3 MICA | |||||||
Verzeroli et al. (2023) [41] | 1286 | NSCL, colorectal, gastric, breast | 65 | 55 | Caucasian | 100 | 9.7 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drăgan, A.; Drăgan, A.Ş. Novel Insights in Venous Thromboembolism Risk Assessment Methods in Ambulatory Cancer Patients: From the Guidelines to Clinical Practice. Cancers 2024, 16, 458. https://doi.org/10.3390/cancers16020458
Drăgan A, Drăgan AŞ. Novel Insights in Venous Thromboembolism Risk Assessment Methods in Ambulatory Cancer Patients: From the Guidelines to Clinical Practice. Cancers. 2024; 16(2):458. https://doi.org/10.3390/cancers16020458
Chicago/Turabian StyleDrăgan, Anca, and Adrian Ştefan Drăgan. 2024. "Novel Insights in Venous Thromboembolism Risk Assessment Methods in Ambulatory Cancer Patients: From the Guidelines to Clinical Practice" Cancers 16, no. 2: 458. https://doi.org/10.3390/cancers16020458
APA StyleDrăgan, A., & Drăgan, A. Ş. (2024). Novel Insights in Venous Thromboembolism Risk Assessment Methods in Ambulatory Cancer Patients: From the Guidelines to Clinical Practice. Cancers, 16(2), 458. https://doi.org/10.3390/cancers16020458