Antibody-Based Therapies for Peripheral T-Cell Lymphoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Monoclonal Antibodies
2.1. CD52
2.2. CCR4
2.3. CD38C
2.4. CD30
2.5. PD-1/PD-L1
2.6. Future Directions
3. Bispecific Antibodies
4. CAR T-Cell Therapies
4.1. CD7
4.2. CD5
4.3. CD3
4.4. CD4
4.5. CD30
4.6. CD70
4.7. CCR4
4.8. TRBC1 and TRBC2
4.9. γδ TCR
4.10. Future Directions
5. Antibody–Drug Conjugates
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.d.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Foley, N.C.; Mehta-Shah, N. Management of Peripheral T-Cell Lymphomas and the Role of Transplant. Curr. Oncol. Rep. 2022, 24, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Jalili-Nik, M.; Soltani, A.; Mashkani, B.; Rafatpanah, H.; Hashemy, S.I. PD-1 and PD-L1 Inhibitors Foster the Progression of Adult T-Cell Leukemia/Lymphoma. Int. Immunopharmacol. 2021, 98, 107870. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Konig, M.F.; Pardoll, D.M.; Bettegowda, C.; Papadopoulos, N.; Wright, K.M.; Gabelli, S.B.; Ho, M.; van Elsas, A.; Zhou, S. Cancer Therapy with Antibodies. Nat. Rev. Cancer 2024, 24, 399–426. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, J.M.; Whiteside, G.; McKeage, K.; Croxtall, J.C. Mogamulizumab: First Global Approval. Drugs 2012, 72, 1293–1298. [Google Scholar] [CrossRef]
- Torka, P.; Barth, M.; Ferdman, R.; Hernandez-Ilizaliturri, F.J. Mechanisms of Resistance to Monoclonal Antibodies (MAbs) in Lymphoid Malignancies. Curr. Hematol. Malig. Rep. 2019, 14, 426–438. [Google Scholar] [CrossRef]
- Ratner, L.; Waldmann, T.A.; Janakiram, M.; Brammer, J.E. Rapid Progression of Adult T-Cell Leukemia–Lymphoma after PD-1 Inhibitor Therapy. N. Engl. J. Med. 2018, 378, 1947–1948. [Google Scholar] [CrossRef]
- Dearden, C.E.; Matutes, E.; Cazin, B.; Tjønnfjord, G.E.; Parreira, A.; Nomdedeu, B.; Leoni, P.; Clark, F.J.; Radia, D.; Rassam, S.M.B.; et al. High Remission Rate in T-Cell Prolymphocytic Leukemia with CAMPATH-1H. Blood 2001, 98, 1721–1726. [Google Scholar] [CrossRef]
- Sharma, K.; Janik, J.E.; O’Mahony, D.; Stewart, D.; Pittaluga, S.; Stetler-Stevenson, M.; Jaffe, E.S.; Raffeld, M.; Fleisher, T.A.; Lee, C.C.; et al. Phase II Study of Alemtuzumab (CAMPATH-1) in Patients with HTLV-1-Associated Adult T-Cell Leukemia/Lymphoma. Clin. Cancer Res. 2017, 23, 35–42. [Google Scholar] [CrossRef]
- Martin, S.I.; Marty, F.M.; Fiumara, K.; Treon, S.P.; Gribben, J.G.; Baden, L.R. Infectious Complications Associated with Alemtuzumab Use for Lymphoproliferative Disorders. Clin. Infect. Dis. 2006, 43, 16–24. [Google Scholar] [CrossRef]
- Horwitz, S.M.; Ansell, S.; Ai, W.Z.; Barnes, J.; Barta, S.K.; Brammer, J.; Clemens, M.W.; Dogan, A.; Foss, F.; Ghione, P.; et al. T-Cell Lymphomas, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 285–308. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Inagaki, H.; Utsunomiya, A.; Takatsuka, Y.; Komatsu, H.; Iida, S.; Takeuchi, G.; Eimoto, T.; Nakamura, S.; Ueda, R. CXC Chemokine Receptor 3 and CC Chemokine Receptor 4 Expression in T-Cell and NK-Cell Lymphomas with Special Reference to Clinicopathological Significance for Peripheral T-Cell Lymphoma, Unspecified. Clin. Cancer Res. 2004, 10, 5494–5500. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Joh, T.; Uike, N.; Yamamoto, K.; Utsunomiya, A.; Yoshida, S.; Saburi, Y.; Miyamoto, T.; Takemoto, S.; Suzushima, H.; et al. Defucosylated Anti-CCR4 Monoclonal Antibody (KW-0761) for Relapsed Adult T-Cell Leukemia-Lymphoma: A Multicenter Phase II Study. J. Clin. Oncol. 2012, 30, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Ogura, M.; Ishida, T.; Inagaki, H.; Yamamoto, K.; Ueda, R.; Hatake, K.; Tobinai, K.; Akinaga, S.; Taniwaki, M.; Ando, K.; et al. Multicenter Phase II Study of Mogamulizumab (KW-0761), a Defucosylated Anti-CC Chemokine Receptor 4 Antibody, in Patients with Relapsed Peripheral T-Cell Lymphoma and Cutaneous T-Cell Lymphoma. J. Clin. Oncol. 2014, 32, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Zinzani, P.L.; Karlin, L.; Radford, J.; Caballero, D.; Fields, P.; Chamuleau, M.E.D.; D’Amore, F.; Haioun, C.; Thieblemont, C.; González-Barca, E.; et al. European Phase II Study of Mogamulizumab, an Anti-CCR4 Monoclonal Antibody, in Relapsed/Refractory Peripheral T-Cell Lymphoma. Haematologica 2016, 101, e407. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Li, P.F.; Lu, Y.; Xia, Z.J.; Huang, H.Q.; Zhang, Y.J. CD38 Expression Predicts Poor Prognosis and Might Be a Potential Therapy Target in Extranodal NK/T Cell Lymphoma, Nasal Type. Ann. Hematol. 2015, 94, 1381–1388. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, J.; Yao, M.; Kim, T.M.; Yoon, D.H.; Cho, S.G.; Eom, H.S.; Lim, S.T.; Yeh, S.p.; Song, Y.; et al. Daratumumab Monotherapy for Patients with Relapsed or Refractory Natural Killer/T-Cell Lymphoma, Nasal Type: An Open-Label, Single-Arm, Multicenter, Phase 2 Study. J. Hematol. Oncol. 2021, 14, 25. [Google Scholar] [CrossRef]
- Mustafa, N.; Nee, A.H.F.; Chooi, J.Y.; Toh, S.H.M.; Chung, T.-H.; Selvarajan, V.; Fan, S.; Ng, S.B.; Poon, M.; Chan, E.; et al. Determinants of Response to Daratumumab in Epstein-Barr Virus-Positive Natural Killer and T-Cell Lymphoma. J. Immunother. Cancer 2021, 9, e002123. [Google Scholar] [CrossRef]
- Sabattini, E.; Pizzi, M.; Tabanelli, V.; Baldin, P.; Sagramoso Sacchetti, C.; Agostinelli, C.; Luigi Zinzani, P.; Pileri, S.A. CD30 Expression in Peripheral T-Cell Lymphomas. Haematologica 2013, 98, e81–e82. [Google Scholar] [CrossRef]
- Bossard, C.; Dobay, M.P.; Parrens, M.; Lamant, L.; Missiaglia, E.; Haioun, C.; Martin, A.; Fabiani, B.; Delarue, R.; Tournilhac, O.; et al. Immunohistochemistry as a Valuable Tool to Assess CD30 Expression in Peripheral T-Cell Lymphomas: High Correlation with MRNA Levels. Blood 2014, 124, 2983–2986. [Google Scholar] [CrossRef]
- Ansell, S.M.; Horwitz, S.M.; Engert, A.; Khan, K.D.; Lin, T.; Strair, R.; Keler, T.; Graziano, R.; Blanset, D.; Yellin, M.; et al. Phase I/II Study of an Anti-CD30 Monoclonal Antibody (MDX-060) in Hodgkin’s Lymphoma and Anaplastic Large-Cell Lymphoma. J. Clin. Oncol. 2007, 25, 2764–2769. [Google Scholar] [CrossRef] [PubMed]
- Forero-Torres, A.; Leonard, J.P.; Younes, A.; Rosenblatt, J.D.; Brice, P.; Bartlett, N.L.; Bosly, A.; Pinter-Brown, L.; Kennedy, D.; Sievers, E.L.; et al. A Phase II Study of SGN-30 (Anti-CD30 MAb) in Hodgkin Lymphoma or Systemic Anaplastic Large Cell Lymphoma. Br. J. Haematol. 2009, 146, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wu, J.; Wang, Z.; Zhang, L.; Wang, Z.; Zhang, M.; Cen, H.; Peng, Z.; Li, Y.; Fan, L.; et al. Efficacy and Safety of Geptanolimab (GB226) for Relapsed or Refractory Peripheral T Cell Lymphoma: An Open-Label Phase 2 Study (Gxplore-002). J. Hematol. Oncol. 2021, 14, 12. [Google Scholar] [CrossRef] [PubMed]
- Barta, S.K.; Zain, J.; MacFarlane, A.W.; Smith, S.M.; Ruan, J.; Fung, H.C.; Tan, C.R.; Yang, Y.; Alpaugh, R.K.; Dulaimi, E.; et al. Phase II Study of the PD-1 Inhibitor Pembrolizumab for the Treatment of Relapsed or Refractory Mature T-Cell Lymphoma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 356–364.e3. [Google Scholar] [CrossRef]
- Nora Bennani, N.; Kim, H.J.; Pederson, L.D.; Atherton, P.J.; Micallef, I.N.; Thanarajasingam, G.; Nowakowski, G.S.; Witzig, T.; Feldman, A.L.; Ansell, S.M. Nivolumab in Patients with Relapsed or Refractory Peripheral T-Cell Lymphoma: Modest Activity and Cases of Hyperprogression. J. Immunother. Cancer 2022, 10, e004984. [Google Scholar] [CrossRef]
- Iyer, S.; Prakash, R.; Feng, L.; Agbedia, O.; Xu, J.; Lee, H.J.; Malpica, L.; Ahmed, S.; Oki, Y.; Chihara, D.; et al. TCL-275 Updated Results of an Investigator-Initiated Phase II Study of Pembrolizumab and Romidepsin for Patients With Relapsed or Refractory T-Cell Lymphoma (TCL) With Survival Analysis. Clin. Lymphoma Myeloma Leuk. 2023, 23, S468–S469. [Google Scholar] [CrossRef]
- Merrill, M.H.; Dahi, P.B.; Redd, R.A.; McDonough, M.M.; Chen, Y.B.; DeFilipp, Z.; Herrera, A.F.; Fisher, D.C.; LaCasce, A.S.; Odejide, O.O.; et al. A Phase 2 Study of Pembrolizumab after Autologous Stem Cell Transplantation in Patients with T-Cell Non-Hodgkin Lymphoma. Blood 2023, 142, 621–628. [Google Scholar] [CrossRef]
- Jo, J.C.; Kim, M.; Choi, Y.; Kim, H.J.; Kim, J.E.; Chae, S.W.; Kim, H.; Cha, H.J. Expression of Programmed Cell Death 1 and Programmed Cell Death Ligand 1 in Extranodal NK/T-Cell Lymphoma, Nasal Type. Ann. Hematol. 2017, 96, 25–31. [Google Scholar] [CrossRef]
- Kim, S.J.; Lim, J.Q.; Laurensia, Y.; Cho, J.; Yoon, S.E.; Lee, J.Y.; Ryu, K.J.; Ko, Y.H.; Koh, Y.; Cho, D.; et al. Avelumab for the Treatment of Relapsed or Refractory Extranodal NK/T-Cell Lymphoma: An Open-Label Phase 2 Study. Blood 2020, 136, 2754–2763. [Google Scholar] [CrossRef]
- Kwong, Y.L.; Chan, T.S.Y.; Tan, D.; Kim, S.J.; Poon, L.M.; Mow, B.; Khong, P.L.; Loong, F.; Au-Yeung, R.; Iqbal, J.; et al. PD1 Blockade with Pembrolizumab Is Highly Effective in Relapsed or Refractory NK/T-Cell Lymphoma Failing L-Asparaginase. Blood 2017, 129, 2437–2442. [Google Scholar] [CrossRef]
- Huang, H.; Tao, R.; Hao, S.; Yang, Y.; Cen, H.; Zhou, H.; Guo, Y.; Zou, L.; Cao, J.; Huang, Y.; et al. Sugemalimab Monotherapy for Patients With Relapsed or Refractory Extranodal Natural Killer/T-Cell Lymphoma (GEMSTONE-201): Results from a Single-Arm, Multicenter, Phase II Study. J. Clin. Oncol. 2023, 41, 3032–3041. [Google Scholar] [CrossRef] [PubMed]
- Wartewig, T.; Kurgyis, Z.; Keppler, S.; Pechloff, K.; Hameister, E.; Öllinger, R.; Maresch, R.; Buch, T.; Steiger, K.; Winter, C.; et al. PD-1 Is a Haploinsufficient Suppressor of T Cell Lymphomagenesis. Nature 2017, 552, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hu, S.; Li, R.; Jin, S.; Liu, F.; Liu, X.; Li, Y.; Yan, Y.; Liu, W.; Gong, J.; et al. Hyperprogression of Cutaneous T Cell Lymphoma after Anti-PD-1 Treatment. JCI Insight 2023, 8, e164793. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Wang, W.; Kadia, T.M.; El Hussein, S.; Wang, S.A.; Khoury, J.D. CD94 Expression Patterns in Reactive and Neoplastic T-Cell and NK-Cell Proliferations. Leuk. Res. 2021, 108, 106614. [Google Scholar] [CrossRef]
- Yang, Y.; Islam, M.S.; Hu, Y.; Chen, X. TNFR2: Role in Cancer Immunology and Immunotherapy. Immunotargets Ther. 2021, 10, 103–122. [Google Scholar] [CrossRef]
- Chavez, J.C.; Foss, F.M.; William, B.M.; Brammer, J.E.; Smith, S.M.; Prica, A.; Zain, J.M.; Tuscano, J.M.; Shah, H.; Mehta-Shah, N.; et al. Targeting the Inducible T-Cell Costimulator (ICOS) in Patients with Relapsed/Refractory T-Follicular Helper Phenotype Peripheral T-Cell and Angioimmunoblastic T-Cell Lymphoma. Clin. Cancer Res. 2023, 29, 1869–1878. [Google Scholar] [CrossRef]
- Decroos, A.; Cheminant, M.; Bruneau, J.; Carras, S.; Parinet, V.; Pelletier, L.; Lacroix, L.; Martin, N.; Giustiniani, J.; Lhermitte, L.; et al. KIR3DL2 May Represent a Novel Therapeutic Target in Aggressive Systemic Peripheral T-Cell Lymphoma. Haematologica 2023, 108, 2830–2836. [Google Scholar] [CrossRef]
- Morschhauser, F.; Fowler, N.H.; Feugier, P.; Bouabdallah, R.; Tilly, H.; Palomba, M.L.; Fruchart, C.; Libby, E.N.; Casasnovas, R.-O.; Flinn, I.W.; et al. Rituximab plus Lenalidomide in Advanced Untreated Follicular Lymphoma. N. Engl. J. Med. 2018, 379, 934–947. [Google Scholar] [CrossRef]
- Morschhauser, F.; Le Gouill, S.; Feugier, P.; Bailly, S.; Nicolas-Virelizier, E.; Bijou, F.; Salles, G.A.; Tilly, H.; Fruchart, C.; Van Eygen, K.; et al. Obinutuzumab Combined with Lenalidomide for Relapsed or Refractory Follicular B-Cell Lymphoma (GALEN): A Multicentre, Single-Arm, Phase 2 Study. Lancet Haematol. 2019, 6, e429–e437. [Google Scholar] [CrossRef]
- Nijhof, I.S.; Van Bueren, J.J.L.; Van Kessel, B.; Andre, P.; Morel, Y.; Lokhorst, H.M.; Van De Donk, N.W.C.J.; Parren, P.W.H.I.; Mutis, T. Daratumumab-Mediated Lysis of Primary Multiple Myeloma Cells Is Enhanced in Combination with the Human Anti-KIR Antibody IPH2102 and Lenalidomide. Haematologica 2015, 100, 263–268. [Google Scholar] [CrossRef]
- Querfeld, C.; Chen, L.; Wu, X.; Han, Z.; Su, C.; Banez, M.; Quach, J.; Barnhizer, T.; Crisan, L.; Rosen, S.T.; et al. Preliminary Analysis Demonstrates Durvalumab (Anti-PD-L1) & Lenalidomide Is Superior to Single-Agent Durvalumab (Anti-PD-L1) in Refractory/Advanced Cutaneous T Cell Lymphoma in a Randomized Phase 2 Trial. Blood 2023, 142, 3077. [Google Scholar] [CrossRef]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.-M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Budde, L.E.; Sehn, L.H.; Matasar, M.; Schuster, S.J.; Assouline, S.; Giri, P.; Kuruvilla, J.; Canales, M.; Dietrich, S.; Fay, K.; et al. Safety and Efficacy of Mosunetuzumab, a Bispecific Antibody, in Patients with Relapsed or Refractory Follicular Lymphoma: A Single-Arm, Multicentre, Phase 2 Study. Lancet Oncol. 2022, 23, 1055–1065. [Google Scholar] [CrossRef]
- Dickinson, M.J.; Carlo-Stella, C.; Morschhauser, F.; Bachy, E.; Corradini, P.; Iacoboni, G.; Khan, C.; Wróbel, T.; Offner, F.; Trněný, M.; et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 387, 2220–2231. [Google Scholar] [CrossRef] [PubMed]
- Thieblemont, C.; Phillips, T.; Ghesquieres, H.; Cheah, C.Y.; Clausen, M.R.; Cunningham, D.; Do, Y.R.; Feldman, T.; Gasiorowski, R.; Jurczak, W.; et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J. Clin. Oncol. 2023, 41, 2238–2247. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell-Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Miles Prince, H.; Niesvizky, R.; Rodrίguez-Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C.; et al. Elranatamab in Relapsed or Refractory Multiple Myeloma: Phase 2 MagnetisMM-3 Trial Results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef]
- Nathan, P.; Hassel, J.C.; Rutkowski, P.; Baurain, J.-F.; Butler, M.O.; Schlaak, M.; Sullivan, R.J.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2021, 385, 1196–1206. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Champiat, S.; Lai, W.V.; Izumi, H.; Govindan, R.; Boyer, M.; Hummel, H.-D.; Borghaei, H.; Johnson, M.L.; Steeghs, N.; et al. Tarlatamab, a First-in-Class DLL3-Targeted Bispecific T-Cell Engager, in Recurrent Small-Cell Lung Cancer: An Open-Label, Phase I Study. J. Clin. Oncol. 2023, 41, 2893–2903. [Google Scholar] [CrossRef]
- Park, K.; Haura, E.B.; Leighl, N.B.; Mitchell, P.; Shu, C.A.; Girard, N.; Viteri, S.; Han, J.-Y.; Kim, S.-W.; Lee, C.K.; et al. Amivantamab in EGFR Exon 20 Insertion-Mutated Non-Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study. J. Clin. Oncol. 2021, 39, 3391–3402. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, L.C.; Spencer, H.T.; Raikar, S.S. Targeting T Cell Malignancies Using CAR-Based Immunotherapy: Challenges and Potential Solutions. J. Hematol. Oncol. 2019, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Pearlman, A.H.; Douglass, J.; Mog, B.J.; Hsiue, E.H.C.; Hwang, M.S.; DiNapoli, S.R.; Konig, M.F.; Brown, P.A.; Wright, K.M.; et al. TCR β Chain-Directed Bispecific Antibodies for the Treatment of T Cell Cancers. Sci. Transl. Med. 2021, 13, eabd3595. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Umino, A.; Liu, F.; Arita, K.; Karube, K.; Tsuzuki, S.; Ohshima, K.; Seto, M. Identification of Multiple Subclones in Peripheral T-Cell Lymphoma, Not Otherwise Specified with Genomic Aberrations. Cancer Med. 2012, 1, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, S.; O’Connor, O.A.; Pro, B.; Illidge, T.; Fanale, M.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; et al. Brentuximab Vedotin with Chemotherapy for CD30-Positive Peripheral T-Cell Lymphoma (ECHELON-2): A Global, Double-Blind, Randomised, Phase 3 Trial. Lancet 2019, 393, 229–240. [Google Scholar] [CrossRef]
- Faber, M.L.; Oldham, R.A.A.; Thakur, A.; Rademacher, M.J.; Kubicka, E.; Dlugi, T.A.; Gifford, S.A.; McKillop, W.M.; Schloemer, N.J.; Lum, L.G.; et al. Novel Anti-CD30/CD3 Bispecific Antibodies Activate Human T Cells and Mediate Potent Anti-Tumor Activity. Front. Immunol. 2023, 14, 1225610. [Google Scholar] [CrossRef]
- Harper, T.; Sharma, A.; Kaliyaperumal, S.; Fajardo, F.; Hsu, K.; Liu, L.; Davies, R.; Wei, Y.L.; Zhan, J.; Estrada, J.; et al. Characterization of an Anti-CD70 Half-Life Extended Bispecific T-Cell Engager (HLE-BiTE) and Associated On-Target Toxicity in Cynomolgus Monkeys. Toxicol. Sci. 2022, 189, 32–50. [Google Scholar] [CrossRef]
- Kim, W.S.; Shortt, J.; Zinzani, P.L.; Mikhaylova, N.; Marin-Niebla, A.; Radeski, D.; Ribrag, V.; Domenech, E.D.; Sawas, A.; Alexis, K.; et al. Abstract CT024: REDIRECT: A Phase 2 Study of AFM13 in Patients with CD30-Positive Relapsed or Refractory (R/R) Peripheral T Cell Lymphoma (PTCL). Cancer Res. 2023, 83, CT024. [Google Scholar] [CrossRef]
- Nieto, Y.; Banerjee, P.; Kaur, I.; Griffin, L.; Barnett, M.; Ganesh, C.; Borneo, Z.; Bassett, R.L.; Kerbauy, L.N.; Basar, R.; et al. Innate Cell Engager (ICE®) AFM13 Combined with Preactivated and Expanded (P+E) Cord Blood (CB)-Derived Natural Killer (NK) Cells for Patients with Refractory CD30-Positive Lymphomas: Final Results. Blood 2023, 142, 774. [Google Scholar] [CrossRef]
- Moskowitz, A.; Harstrick, A.; Emig, M.; Overesch, A.; Pinto, S.; Ravenstijn, P.; Schlüter, T.; Rubel, J.; Rebscher, H.; Graefe, T.; et al. AFM13 in Combination with Allogeneic Natural Killer Cells (AB-101) in Relapsed or Refractory Hodgkin Lymphoma and CD30 + Peripheral T-Cell Lymphoma: A Phase 2 Study (LuminICE). Blood 2023, 142, 4855. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Morschhauser, F.; Dahiya, S.; Palomba, M.L.; Martin Garcia-Sancho, A.; Reguera Ortega, J.L.; Kuruvilla, J.; Jäger, U.; Cartron, G.; Izutsu, K.; Dreyling, M.; et al. Lisocabtagene Maraleucel in Follicular Lymphoma: The Phase 2 TRANSCEND FL Study. Nat. Med. 2024, 30, 2199–2207. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Silva, D.; Srinivasan, M.; Sharma, S.; Lee, C.M.; Wagner, D.L.; Davis, T.H.; Rouce, R.H.; Bao, G.; Brenner, M.K.; Mamonkin, M. CD7-Edited T Cells Expressing a CD7-Specific CAR for the Therapy of T-Cell Malignancies. Blood 2017, 130, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, R.; Georgiadis, C.; Syed, F.; Zhan, H.; Etuk, A.; Gkazi, S.A.; Preece, R.; Ottaviano, G.; Braybrook, T.; Chu, J.; et al. Base-Edited CAR7 T Cells for Relapsed T-Cell Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2023, 389, 899–910. [Google Scholar] [CrossRef]
- Freiwan, A.; Zoine, J.T.; Crawford, J.C.; Vaidya, A.; Schattgen, S.A.; Myers, J.A.; Patil, S.L.; Khanlari, M.; Inaba, H.; Klco, J.M.; et al. Engineering Naturally Occurring CD7− T Cells for the Immunotherapy of Hematological Malignancies. Blood 2022, 140, 2684–2696. [Google Scholar] [CrossRef]
- Lu, P.; Liu, Y.; Yang, J.; Zhang, X.; Yang, X.; Wang, H.; Wang, L.; Wang, Q.; Jin, D.; Li, J.; et al. Naturally Selected CD7 CAR-T Therapy without Genetic Manipulations for T-ALL/LBL: First-in-Human Phase 1 Clinical Trial. Blood 2022, 140, 321–334. [Google Scholar] [CrossRef]
- Ghobadi, A.; Aldoss, I.; Maude, S.; Bhojwani, D.; Wayne, A.; Bajel, A.; Dholaria, B.; Faramand, R.; Mattison, R.; Rijneveld, A.; et al. Anti-CD7 Allogeneic WU-CART-007 in Patients with Relapsed/Refractory T-Cell Acute Lymphoblastic Leukemia/Lymphoma: A Phase 1/2 Trial. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Watanabe, N.; Mo, F.; Zheng, R.; Ma, R.; Bray, V.C.; van Leeuwen, D.G.; Sritabal-Ramirez, J.; Hu, H.; Wang, S.; Mehta, B.; et al. Feasibility and Preclinical Efficacy of CD7-Unedited CD7 CAR T Cells for T Cell Malignancies. Mol. Ther. 2023, 31, 24–34. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, M.; Yang, T.; Mo, Z.; Wei, G.; Jing, R.; Zhao, H.; Chen, R.; Zu, C.; Gu, T.; et al. Sequential CD7 CAR T-Cell Therapy and Allogeneic HSCT without GVHD Prophylaxis. N. Engl. J. Med. 2024, 390, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, B.; Ling, Y.; Pan, Y.; Jiang, S.; Zhang, S.; Yu, K.; Han, Y. Increase of CD3+CD7- T Cells in Bone Marrow Predicts Invasion in Patients with T-Cell Non-Hodgkin’s Lymphoma. Transl. Cancer Res. 2022, 11, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Alaibac, M.; Pigozzi, B.; Belloni-Fortina, A.; Michelotto, A.; Saponeri, A.; Peserico, A. CD7 Expression in Reactive and Malignant Human Skin T-Lymphocytes. Anticancer Res. 2003, 23, 2707–2710. [Google Scholar] [PubMed]
- Mamonkin, M.; Mukherjee, M.; Srinivasan, M.; Sharma, S.; Gomes-Silva, D.; Mo, F.; Krenciute, G.; Orange, J.S.; Brenner, M.K. Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-Cell Malignancies. Cancer Immunol. Res. 2018, 6, 47–58. [Google Scholar] [CrossRef]
- Chun, I.; Kim, K.H.; Chiang, Y.-H.; Xie, W.; Lee, Y.G.G.; Pajarillo, R.; Rotolo, A.; Shestova, O.; Hong, S.J.; Abdel-Mohsen, M.; et al. CRISPR-Cas9 Knock out of CD5 Enhances the Anti-Tumor Activity of Chimeric Antigen Receptor T Cells. Blood 2020, 136, 51–52. [Google Scholar] [CrossRef]
- Dai, Z.; Mu, W.; Zhao, Y.; Jia, X.; Liu, J.; Wei, Q.; Tan, T.; Zhou, J. The Rational Development of CD5-Targeting Biepitopic CARs with Fully Human Heavy-Chain-Only Antigen Recognition Domains. Mol. Ther. 2021, 29, 2707–2722. [Google Scholar] [CrossRef]
- Hill, L.C.; Rouce, R.H.; Smith, T.S.; Yang, L.; Srinivasan, M.; Zhang, H.; Perconti, S.; Mehta, B.; Dakhova, O.; Randall, J.; et al. Safety and Anti-Tumor Activity of CD5 CAR T-Cells in Patients with Relapsed/Refractory T-Cell Malignancies. Blood 2019, 134, 199. [Google Scholar] [CrossRef]
- Hill, L.Q.C.; Rouce, R.H.; Wu, M.J.; Wang, T.; Ma, R.; Zhang, H.; Mehta, B.; Lapteva, N.; Mei, Z.; Smith, T.S.; et al. Antitumor Efficacy and Safety of Unedited Autologous CD5.CAR T Cells in Relapsed/Refractory Mature T-Cell Lymphomas. Blood 2024, 143, 1231–1241. [Google Scholar] [CrossRef]
- Dai, Z.; Mu, W.; Zhao, Y.; Cheng, J.; Lin, H.; Ouyang, K.; Jia, X.; Liu, J.; Wei, Q.; Wang, M.; et al. T Cells Expressing CD5/CD7 Bispecific Chimeric Antigen Receptors with Fully Human Heavy-Chain-Only Domains Mitigate Tumor Antigen Escape. Signal Transduct. Target Ther. 2022, 7, 85. [Google Scholar] [CrossRef]
- Pan, J.; Tan, Y.; Deng, B.; Ling, Z.; Xu, J.; Duan, J.; Wang, Z.; Wang, K.; Hu, G. S116: DONOR-DERIVED CD5 CAR T CELLS FOR T-CELL ACUTE LYMPHOBLASTIC LEUKEMIA. Hemasphere 2023, 7, e3515785. [Google Scholar] [CrossRef]
- Patel, R.P.; Ghilardi, G.; Porazzi, P.; Yang, S.; Qian, D.; Pajarillo, R.; Wang, M.; Zhang, Y.; Schuster, S.J.; Barta, S.K.; et al. Clinical Development of Senza5TM CART5: A Novel Dual Population CD5 CRISPR-Cas9 Knocked out Anti-CD5 Chimeric Antigen Receptor T Cell Product for Relapsed and Refractory CD5+ Nodal T-Cell Lymphomas. Blood 2022, 140, 1604–1605. [Google Scholar] [CrossRef]
- Qian, H.; Gay, F.P.H.; Pang, J.W.L.; Lee, Y.; Ang, J.; Tan, H.C.; Lek, E.S.; Campana, D.; Tan, Y.X. Development of Anti-CD3 Chimeric Antigen Receptor (CAR)-T Cells for Allogeneic Cell Therapy of Peripheral T-Cell Lymphoma (PTCL). Blood 2022, 140, 4510–4511. [Google Scholar] [CrossRef]
- Chen, K.H.; Wada, M.; Firor, A.E.; Pinz, K.G.; Jares, A.; Liu, H.; Salman, H.; Golightly, M.; Lan, F.; Jiang, X.; et al. Novel Anti-CD3 Chimeric Antigen Receptor Targeting of Aggressive T Cell Malignancies. Oncotarget 2016, 7, 56219–56232. [Google Scholar] [CrossRef] [PubMed]
- Knox, S.; Hoppe, R.T.; Maloney, D.; Gibbs, I.; Fowler, S.; Marquez, C.; Cornbleet, P.J.A.; Levy, R. Treatment of Cutaneous T-Cell Lymphoma with Chimeric Anti-CD4 Monoclonal Antibody. Blood 1996, 87, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Duvic, M.; Obitz, E.; Gniadecki, R.; Iversen, L.; Österborg, A.; Whittaker, S.; Illidge, T.M.; Schwarz, T.; Kaufmann, R.; et al. Clinical Efficacy of Zanolimumab (HuMax-CD4): Two Phase 2 Studies in Refractory Cutaneous T-Cell Lymphoma. Blood 2007, 109, 4655–4662. [Google Scholar] [CrossRef] [PubMed]
- D’Amore, F.; Radford, J.; Relander, T.; Jerkeman, M.; Tilly, H.; Österborg, A.; Morschhauser, F.; Gramatzki, M.; Dreyling, M.; Bang, B.; et al. Phase II Trial of Zanolimumab (HuMax-CD4) in Relapsed or Refractory Non-Cutaneous Peripheral T Cell Lymphoma. Br. J. Haematol. 2010, 150, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Pinz, K.; Liu, H.; Golightly, M.; Jares, A.; Lan, F.; Zieve, G.W.; Hagag, N.; Schuster, M.; Firor, A.E.; Jiang, X.; et al. Preclinical Targeting of Human T-Cell Malignancies Using CD4-Specific Chimeric Antigen Receptor (CAR)-Engineered T Cells. Leukemia 2016, 30, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Pinz, K.G.; Yakaboski, E.; Jares, A.; Liu, H.; Firor, A.E.; Chen, K.H.; Wada, M.; Salman, H.; Tse, W.; Hagag, N.; et al. Targeting T-Cell Malignancies Using Anti-CD4 CAR NK-92 Cells. Oncotarget 2017, 8, 112783–112796. [Google Scholar] [CrossRef]
- Hombach, A.A.; Görgens, A.; Chmielewski, M.; Murke, F.; Kimpel, J.; Giebel, B.; Abken, H. Superior Therapeutic Index in Lymphoma Therapy: CD30+ CD34+ Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-Cell Attack. Mol. Ther. 2016, 24, 1423–1434. [Google Scholar] [CrossRef]
- Hombach, A.; Heuser, C.; Sircar, R.; Tillmann, T.; Diehl, V.; Pohl, C.; Abken, H. Characterization of a Chimeric T-Cell Receptor with Specificity for the Hodgkin’s Lymphoma-Associated CD30 Antigen. J. Immunother. 1999, 22, 473–480. [Google Scholar] [CrossRef]
- Wang, C.M.; Wu, Z.Q.; Wang, Y.; Guo, Y.L.; Dai, H.R.; Wang, X.H.; Li, X.; Zhang, Y.J.; Zhang, W.Y.; Chen, M.X.; et al. Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase i Trial. Clin. Cancer Res. 2017, 23, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Ballard, B.; Zhang, H.; Dakhova, O.; Gee, A.P.; Mei, Z.; Bilgi, M.; Wu, M.F.; Liu, H.; Grilley, B.; et al. Clinical and Immunological Responses after CD30-Specific Chimeric Antigen Receptor-Redirected Lymphocytes. J. Clin. Investig. 2017, 127, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Grover, N.S.; Beaven, A.W.; Lulla, P.D.; Wu, M.F.; Ivanova, A.; Wang, T.; Shea, T.C.; Rooney, C.M.; Dittus, C.; et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J. Clin. Oncol. 2020, 38, 3794–3804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gu, C.; Huang, L.; Wu, H.; Shi, J.; Zhang, Z.; Zhou, Y.; Zhou, J.; Gao, Y.; Liu, J.; et al. The Third-Generation Anti-CD30 CAR T-Cells Specifically Homing to the Tumor and Mediating Powerful Antitumor Activity. Sci. Rep. 2022, 12, 10488. [Google Scholar] [CrossRef]
- Grover, N.S.; Hucks, G.; Riches, M.L.; Ivanova, A.; Moore, D.T.; Shea, T.C.; Seegars, M.B.; Armistead, P.M.; Kasow, K.A.; Beaven, A.W.; et al. Anti-CD30 CAR T Cells as Consolidation after Autologous Haematopoietic Stem-Cell Transplantation in Patients with High-Risk CD30+ Lymphoma: A Phase 1 Study. Lancet Haematol. 2024, 11, e358–e367. [Google Scholar] [CrossRef]
- Quach, D.H.; Ramos, C.A.; Lulla, P.D.; Sharma, S.; Ganesh, H.R.; Nouraee, N.; Briones, Y.D.; Hadidi, Y.F.; Becerra-Dominguez, L.; Thakkar, S.G.; et al. CD30.CAR-Modified Epstein-Barr Virus-Specific T Cells (CD30.CAR EBVSTs) Provide a Safe and Effective Off-the-Shelf Therapy for Patients with CD30-Positive Lymphoma. Blood 2022, 140, 6411–6420. [Google Scholar] [CrossRef]
- Aftimos, P.; Rolfo, C.; Rottey, S.; Offner, F.; Bron, D.; Maerevoet, M.; Soria, J.C.; Moshir, M.; Dreier, T.; Van Rompaey, L.; et al. Phase I Dose-Escalation Study of the Anti-CD70 Antibody ARGX-110 in Advanced Malignancies. Clin. Cancer Res. 2017, 23, 6411–6420. [Google Scholar] [CrossRef]
- Iyer, S.P.; Sica, R.A.; Ho, P.J.; Hu, B.; Zain, J.; Prica, A.; Weng, W.-K.; Kim, Y.H.; Khodadoust, M.S.; Palomba, M.L.; et al. S262: THE COBALT-LYM STUDY OF CTX130: A PHASE 1 DOSE ESCALATION STUDY OF CD70-TARGETED ALLOGENEIC CRISPR-CAS9–ENGINEERED CAR T CELLS IN PATIENTS WITH RELAPSED/REFRACTORY (R/R) T-CELL MALIGNANCIES. Hemasphere 2022, 6, 163–164. [Google Scholar] [CrossRef]
- Rafei, H.; Basar, R.; Acharya, S.; Zhang, P.; Liu, P.; Moseley, S.M.; Li, P.; Daher, M.; Agarwal, N.; Marques-Piubelli, M.L.; et al. Targeting T-Cell Lymphoma Using CD70-Directed Cord Blood-Derived CAR-NK Cells. Blood 2023, 142, 4811. [Google Scholar] [CrossRef]
- Watanabe, K.; Gomez, A.M.; Kuramitsu, S.; Siurala, M.; Da, T.; Agarwal, S.; Song, D.; Scholler, J.; Rotolo, A.; Posey, A.D.; et al. Identifying Highly Active Anti-CCR4 CAR T Cells for the Treatment of T-Cell Lymphoma. Blood Adv. 2023, 7, 3416–3430. [Google Scholar] [CrossRef]
- Grover, N.S.; Ivanova, A.; Moore, D.T.; Cheng, C.J.A.; Babinec, C.; West, J.; Cavallo, T.; Morrison, J.K.; Buchanan, F.B.; Bowers, E.; et al. CD30-Directed CAR-T Cells Co-Expressing CCR4 in Relapsed/Refractory Hodgkin Lymphoma and CD30+ Cutaneous T Cell Lymphoma. Blood 2021, 138, 742. [Google Scholar] [CrossRef]
- Cwynarski, K.; Iacoboni, G.; Tholouli, E.; Menne, T.F.; Irvine, D.A.; Balasubramaniam, N.; Wood, L.; Shang, J.; Zhang, Y.; Basilico, S.; et al. First in Human Study of AUTO4, a TRBC1-Targeting CAR T-Cell Therapy in Relapsed/Refractory TRBC1-Positive Peripheral T-Cell Lymphoma. Blood 2022, 140, 10316–10317. [Google Scholar] [CrossRef]
- Nichakawade, T.D.; Ge, J.; Mog, B.J.; Lee, B.S.; Pearlman, A.H.; Hwang, M.S.; DiNapoli, S.R.; Wyhs, N.; Marcou, N.; Glavaris, S.; et al. TRBC1-Targeting Antibody-Drug Conjugates for the Treatment of T Cell Cancers. Nature 2024, 628, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Righi, M.; Baldan, V.; Wawrzyniecka, P.; Bulek, A.; Kinna, A.; Ma, B.; Bughda, R.; Akbar, Z.; Srivastava, S.; et al. Structure-Guided Engineering of Immunotherapies Targeting TRBC1 and TRBC2 in T Cell Malignancies. Nat. Commun. 2024, 15, 1583. [Google Scholar] [CrossRef] [PubMed]
- Pro, B.; Allen, P.; Behdad, A. Hepatosplenic T-Cell Lymphoma: A Rare but Challenging Entity. Blood 2020, 136, 2018–2026. [Google Scholar] [CrossRef]
- Alberti-Violetti, S.; Maronese, C.A.; Venegoni, L.; Merlo, V.; Berti, E. Primary Cutaneous Gamma-Delta T Cell Lymphomas: A Case Series and Overview of the Literature. Dermatopathology 2021, 8, 54. [Google Scholar] [CrossRef]
- Chan, J.K.C.; Chan, A.C.L.; Cheuk, W.; Wan, S.K.; Lee, W.K.; Lui, Y.H.; Chan, W.K. Type II Enteropathy-Associated T-Cell Lymphoma: A Distinct Aggressive Lymphoma with Frequent Γδ t-Cell Receptor Expression. Am. J. Surg. Pathol. 2011, 35, 1557–1569. [Google Scholar] [CrossRef]
- Wawrzyniecka, P.A.; Ibrahim, L.; Gritti, G.; Pule, M.A.; Maciocia, P.M. Chimeric Antigen Receptor T Cells for Gamma–Delta T Cell Malignancies. Leukemia 2022, 36, 577–579. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Y.; Feng, X.; Han, Z. CAR-NK Cells for Cancer Immunotherapy: From Bench to Bedside. Biomark. Res. 2022, 10, 12. [Google Scholar] [CrossRef]
- Glienke, W.; Esser, R.; Priesner, C.; Suerth, J.D.; Schambach, A.; Wels, W.S.; Grez, M.; Kloess, S.; Arseniev, L.; Koehl, U. Advantages and Applications of CAR-Expressing Natural Killer Cells. Front. Pharmacol. 2015, 6, 21. [Google Scholar] [CrossRef]
- Horwitz, S.; O’Connor, O.A.; Pro, B.; Trümper, L.; Iyer, S.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; et al. The ECHELON-2 Trial: 5-Year Results of a Randomized, Phase III Study of Brentuximab Vedotin with Chemotherapy for CD30-Positive Peripheral T-Cell Lymphoma. Ann. Oncol. 2022, 33, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, S.M.; Advani, R.H.; Bartlett, N.L.; Jacobsen, E.D.; Sharman, J.P.; O’Connor, O.A.; Siddiqi, T.; Kennedy, D.A.; Oki, Y. Objective Responses in Relapsed T-Cell Lymphomas with Single-Agent Brentuximab Vedotin. Blood 2014, 123, 3095–3100. [Google Scholar] [CrossRef] [PubMed]
- Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; et al. Brentuximab Vedotin (SGN-35) in Patients with Relapsed or Refractory Systemic Anaplastic Large-Cell Lymphoma: Results of a Phase II Study. J. Clin. Oncol. 2012, 30, 2190–2196. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Tavallaee, M.; Sundram, U.; Salva, K.A.; Wood, G.S.; Li, S.; Rozati, S.; Nagpal, S.; Krathen, M.; Reddy, S.; et al. Phase II Investigator-Initiated Study of Brentuximab Vedotin in Mycosis Fungoides and Sézary Syndrome With Variable CD30 Expression Level: A Multi-Institution Collaborative Project. J. Clin. Oncol. 2015, 33, 3750–3758. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesh, D.; Horwitz, S.; Bartlett, N.L.; Kim, Y.; Jacobsen, E.; Duvic, M.; Little, M.; Trepicchio, W.; Fenton, K.; Onsum, M.; et al. Response to Brentuximab Vedotin by CD30 Expression in Non-Hodgkin Lymphoma. Oncologist 2022, 27, 864–873. [Google Scholar] [CrossRef]
- Masuda, S.; Miyagawa, S.; Sougawa, N.; Sawa, Y. CD30-Targeting Immunoconjugates and Bystander Effects. Nat. Rev. Clin. Oncol. 2015, 12, 245. [Google Scholar] [CrossRef]
- Onaindia, A.; Martínez, N.; Montes-Moreno, S.; Almaraz, C.; Rodríguez-Pinilla, S.M.; Cereceda, L.; Revert, J.B.; Ortega, C.; Tardio, A.; González, L.; et al. CD30 Expression by B and T Cells: A Frequent Finding in Angioimmunoblastic T-Cell Lymphoma and Peripheral T-Cell Lymphoma-Not Otherwise Specified. Am. J. Surg. Pathol. 2016, 40, 378–385. [Google Scholar] [CrossRef]
- Heiser, R.A.; Cao, A.T.; Zeng, W.; Ulrich, M.; Younan, P.; Anderson, M.E.; Trueblood, E.S.; Jonas, M.; Thurman, R.; Law, C.-L.; et al. Brentuximab Vedotin-Driven Microtubule Disruption Results in Endoplasmic Reticulum Stress Leading to Immunogenic Cell Death and Antitumor Immunity. Mol. Cancer Ther. 2024, 23, 68–83. [Google Scholar] [CrossRef]
- Bartlett, N.L.; Yasenchak, C.A.; Ashraf, K.K.; Harwin, W.N.; Orcutt, J.M.; Kuriakose, P.; Zinzani, P.L.; Mamidipalli, A.; Fenton, K.; Glenn, C.; et al. Brentuximab Vedotin in Combination with Lenalidomide and Rituximab in Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Safety and Efficacy Results from the Safety Run-in Period of the Phase 3 ECHELON-3 Study. J. Clin. Oncol. 2022, 40, 7559. [Google Scholar] [CrossRef]
- Hamblett, K.J.; Jin, S.; Yumul, R.; Chen, Y.; Kwon, J.; Simmons, J.; Henderson, C.; Sun, H.; Schrum, J.P.; Lim, A.R.; et al. Abstract C132: SGN-35T: A Novel CD30-Directed Antibody-Drug Conjugate for the Treatment of Lymphomas. Mol. Cancer Ther. 2023, 22, C132. [Google Scholar] [CrossRef]
- Thompson, J.; Stavrou, S.; Weetall, M.; Hexham, J.M.; Digan, M.E.; Wang, Z.; Woo, J.H.; Yu, Y.; Mathias, A.; Liu, Y.Y.; et al. Improved Binding of a Bivalent Single-Chain Immunotoxin Results in Increased Efficacy for in Vivo T-Cell Depletion. Protein Eng. 2001, 14, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Frankel, A.E.; Woo, J.H.; Ahn, C.; Foss, F.M.; Duvic, M.; Neville, P.H.; Neville, D.M. Resimmune, an Anti-CD3ε Recombinant Immunotoxin, Induces Durable Remissions in Patients with Cutaneous T-Cell Lymphoma. Haematologica 2015, 100, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, S.C.; Burke, P.J.; Lyon, R.P.; Meyer, D.W.; Sussman, D.; Anderson, M.; Hunter, J.H.; Leiske, C.I.; Miyamoto, J.B.; Nicholas, N.D.; et al. A Potent Anti-CD70 Antibody-Drug Conjugate Combining a Dimeric Pyrrolobenzodiazepine Drug with Site-Specific Conjugation Technology. Bioconjug. Chem. 2013, 24, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.; Barr, P.M.; Park, S.I.; Kolibaba, K.; Caimi, P.F.; Chhabra, S.; Kingsley, E.C.; Boyd, T.; Chen, R.; Carret, A.S.; et al. A Phase 1 Trial of SGN-CD70A in Patients with CD70-Positive Diffuse Large B Cell Lymphoma and Mantle Cell Lymphoma. Investig. New Drugs 2019, 37, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Wang, L.; Yang, C.Y.; Wen, K.W.; Hinds, B.; Gill, R.; McCormick, F.; Moasser, M.; Pincus, L.; Ai, W.Z. Targeting CD70 in Cutaneous T-Cell Lymphoma Using an Antibody-Drug Conjugate in Patient-Derived Xenograft Models. Blood Adv. 2022, 6, 2290–2302. [Google Scholar] [CrossRef]
- Kang, L.; Li, C.; Rosenkrans, Z.T.; Huo, N.; Chen, Z.; Ehlerding, E.B.; Huo, Y.; Ferreira, C.A.; Barnhart, T.E.; Engle, J.W.; et al. CD38-Targeted Theranostics of Lymphoma with 89Zr/177Lu-Labeled Daratumumab. Adv. Sci. 2021, 8, 2001879. [Google Scholar] [CrossRef]
Study ID | Title | Phase | Status | Sponsor |
---|---|---|---|---|
NCT04365036 | A Multicenter, Phase III, Randomized Trial of Sequential Chemoradiotherapy With or Without Toripalimab (PD-1 Antibody) in Newly Diagnosed Early-Stage Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type (ENKTL) | 3 | Recruiting | Sun Yat-sen University |
NCT05700448 | Study of Sugemalimab (or Placebo) Plus PGemOx Regimen in Participants with Extranodal NK/T-Cell Lymphoma | 3 | Not yet recruiting | CStone Pharmaceuticals |
NCT05254899 | Anti-PD-1 Antibody and P-GEMOX Chemotherapy Combined with Radiotherapy in High-risk Early-Stage ENKTL | 2 | Recruiting | Chinese Academy of Medical Sciences |
NCT01703949 | Brentuximab Vedotin with or without Nivolumab in Treating Patients with Relapsed or Refractory CD30+ Lymphoma | 2 | Recruiting | University of Washington |
NCT05821192 | Chemotherapy Plus PD-1 Monoclonal Antibody in the Treatment of Refractory or Relapsed Peripheral T-Cell Lymphoma | 2 | Recruiting | The First Hospital of Jilin University |
NCT05182957 | Clinical Study of Anti-PD-1 Plus Lenalidomide and Azacitidine in Relapsed/Refractory Peripheral T-Cell Lymphoma | 2 | Recruiting | The First Affiliated Hospital of Soochow University |
NCT04127227 | Sintilimab with P-GemOx Regimen for Newly Diagnosed Advanced Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type | 2 | Recruiting | Sun Yat-sen University |
NCT04414969 | Anti-PD-1 Antibody Combined with Peg-Asparaginase and Chidamide for the Early Stage of NK/T-Cell Lymphoma | 2 | Recruiting | Hunan Cancer Hospital |
NCT04984837 | Study of Lacutamab in Peripheral T-Cell Lymphoma | 2 | Recruiting | The Lymphoma Academic Research Organisation |
NCT04763616 | Study of Isatuximab and Cemiplimab in Relapsed or Refractory Natural Killer/T-Cell Lymphoma Malignancy (ICING) | 2 | Recruiting | Samsung Medical Center |
NCT05996185 | Study of Mogamulizumab With DA-EPOCH in Patients With Aggressive T-Cell Lymphoma | 2 | Not yet recruiting | Yale University |
NCT05475925 | A Study of DR-01 in Subjects With Large Granular Lymphocytic Leukemia or Cytotoxic Lymphomas | 1/2 | Recruiting | Dren Bio |
NCT06376721 | Linperlisib Combined with Camrelizumab and Pegaspargase in Advanced or Relapsed/Refractory NK/T-Cell Lymphoma | 1/2 | Recruiting | Beijing Tongren Hospital |
NCT03598998 | Pembrolizumab and Pralatrexate in Treating Patients with Relapsed or Refractory Peripheral T-Cell Lymphomas | 1/2 | Not yet recruiting | City of Hope |
NCT03011814 | Durvalumab With or Without Lenalidomide in Treating Patients with Relapsed or Refractory Cutaneous or Peripheral T-Cell Lymphoma | 1/2 | Not yet recruiting | City of Hope |
NCT04848064 | Third-Party Natural Killer Cells and Mogamulizumab for the Treatment of Relapsed or Refractory Cutaneous T-Cell Lymphomas or Adult T-Cell Leukemia/Lymphoma | 1 | Recruiting | Ohio State University |
NCT06385522 | A Clinical Trial in Adults With Non-Hodgkin Lymphoma (NHL), With a Particular Emphasis on Cutaneous T-Cell Lymphoma (CTCL), Testing the Safety and Activity of a Novel Drug to Inhibit a Protein Called Tumor Necrosis Factor Receptor 2 That Drives Both Lymphoma Growth and Escape of the Immune System | 1 | Not yet recruiting | Boston Immune Technologies and Therapeutics |
NCT02520791 | Anti-ICOS Monoclonal Antibody MEDI-570 in Treating Patients with Relapsed or Refractory Peripheral T-Cell Lymphoma Follicular Variant or Angioimmunoblastic T-Cell Lymphoma | 1 | Not yet recruiting | National Cancer Institute |
Study ID | Title | Phase | Status | Sponsor |
---|---|---|---|---|
NCT05883449 | Phase II Study of AFM13 in Combination with AB-101 in Subjects With R/R HL and CD30+ PTCL (LuminICE-203) | 2 | Recruiting | Affimed Gmb |
NCT05627856 | A Study of GNC-038 Injection in Patients with Relapsed or Refractory NK/T-Cell Lymphoma, AITL, and Other NHL | 1/2 | Recruiting | Sichuan Baili Pharmaceutical Co., Ltd. |
NCT05079282 | Study of ONO-4685 in Patients with Relapsed or Refractory T-Cell Lymphoma | 1 | Recruiting | Ono Pharmaceutical Co., Ltd. |
NCT05544968 | CD30biAb-AATC for CD30+ Malignancies | 1 | Not yet recruiting | Medical College of Wisconsin |
Study ID | Title | Phase | Status | Sponsor |
---|---|---|---|---|
NCT05941156 | Clinical Study of Anti-CD56-CAR-T in the Treatment of Relapsed/Refractory NK/T Cell Lymphoma/NK Cell Leukemia | 2 | Recruiting | The Affiliated Hospital of Xuzhou Medical University |
NCT03590574 | Phase I/II Study Evaluating AUTO4 in Patients With TRBC1 Positive T-Cell Lymphoma | 1/2 | Recruiting | Autolus Limited |
NCT06492304 | A Safety and Efficacy Study Evaluating CTX131 in Adult Subjects With Relapsed/Refractory Hematologic Malignancies | 1/2 | Recruiting | CRISPR Therapeutics AG |
NCT06420089 | CD5-deleted Chimeric Antigen Receptor Cells (Senza5 CART5) for T-Cell Non-Hodgkin Lymphoma (NHL) | 1 | Recruiting | Vittoria Biotherapeutics |
NCT05377827 | Dose-Escalation and Dose-Expansion Study to Evaluate the Safety and Tolerability of Anti-CD7 Allogeneic CAR T-Cells (WU-CART-007) in Patients With CD7+ Hematologic Malignancies | 1 | Recruiting | Washington University |
NCT05290155 | Anti-CD7 CAR T-Cell Therapy for Relapse and Refractory CD7 Positive T-Cell Malignancies | 1 | Recruiting | Shanghai General Hospital |
NCT04288726 | Allogeneic CD30.CAR-EBVSTs in Patients With Relapsed or Refractory CD30-Positive Lymphomas | 1 | Recruiting | Baylor College of Medicine |
NCT04083495 | CD30 CAR for Relapsed/Refractory CD30+ T-Cell Lymphoma | 1 | Recruiting | UNC Lineberger Comprehensive Cancer Center |
NCT03829540 | CD4CAR for CD4+ Leukemia and Lymphoma | 1 | Recruiting | Indiana University |
NCT03690011 | Cell Therapy for High-Risk T-Cell Malignancies Using CD7-Specific CAR Expressed On Autologous T-Cells | 1 | Recruiting | Baylor College of Medicine |
NCT03081910 | Autologous T-Cells Expressing a Second Generation CAR for Treatment of T-Cell Malignancies Expressing CD5 Antigen | 1 | Recruiting | Baylor College of Medicine |
NCT02917083 | CD30 CAR T-Cells, Relapsed CD30 Expressing Lymphoma (RELY-30) | 1 | Recruiting | Baylor College of Medicine |
NCT05995028 | Universal 4SCAR7U Targeting CD7-Positive Malignancies | 1 | Recruiting | Shenzhen Geno-Immune Medical Institute |
NCT05620680 | CD7 CAR T-Cells in T-Cell Lymphoma/Leukemia | 1 | Recruiting | Shenzhen University General Hospital |
NCT06176690 | Constitutive IL7R (C7R) Modified Banked Allogeneic CD30.CAR EBVSTS for CD30-Positive Lymphomas | 1 | Not yet recruiting | Baylor College of Medicine |
NCT04712864 | Study of CD4-Targeted Chimeric Antigen Receptor T-Cells (CD4- CAR-T) in Subjects With Relapsed or Refractory T-Cell Lymphoma | 1 | Not yet recruiting | Legend Biotech USA Inc |
NCT06345027 | Chimeric Antigen Receptor Treatment Targeting CD70 (Seventy) (Casey) | 1 | Not yet recruiting | Baylor College of Medicine |
NCT04526834 | Phase I Study of Autologous CD30.CAR-T in Relapsed or Refractory CD30 Positive Non-Hodgkin Lymphoma | 1 | Not yet recruiting | Tessa Therapeutics |
NCT04502446 | A Safety and Efficacy Study Evaluating CTX130 in Subjects With Relapsed or Refractory T- or B-Cell Malignancies (COBALT-LYM) | 1 | Not yet recruiting | CRISPR Therapeutics AG |
NCT05979792 | Clinical Study of CD7 CAR T-Cell Injection in the Treatment of Patients With Relapsed or Refractory CD7-Positive Peripheral T-Cell Lymphoma | 1 | Not yet recruiting | Ruijin Hospital |
NCT05013372 | CD147-CAR T-Cells for Relapsed/Refractory T-Cell Non-Hodgkin Lymphoma | 1 | Not yet recruiting | Peking University People’s Hospital |
Study ID | Title | Phase | Status | Sponsor |
---|---|---|---|---|
NCT02588651 | A Phase II Study of Single Agent Brentuximab Vedotin in Relapsed/Refractory CD30 Low (<10%) Mature T-cell Lymphoma (TCL) | 2 | Recruiting | Cleveland Clinic, Case Comprehensive Cancer Center |
NCT05313243 | Pembrolizumab and Brentuximab Vedotin in Subjects with Relapsed/Refractory T-Cell Lymphoma | 2 | Recruiting | Yale University |
NCT05316246 | Efficacy and Safety of BV with Tislelizumab for the Treatment of CD30+ Relapsed/Refractory NK/T-Cell Lymphoma | 2 | Not yet recruiting | Shanghai Zhongshan Hospital |
NCT06120504 | A Safety Study of SGN-35T in Adults with Advanced Cancers | 1 | Recruiting | Seagen Inc. |
NCT05994157 | Phase I, Open-label, Dose-escalation Trial with CD38-SADA:177 Lu-DOTA Drug Complex in Patients with Relapsed or Refractory Non-Hodgkin Lymphoma | 1 | Not yet recruiting | Y-mAbs Therapeutics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafagati, N.; Paul, S.; Rozati, S.; Sterling, C.H. Antibody-Based Therapies for Peripheral T-Cell Lymphoma. Cancers 2024, 16, 3489. https://doi.org/10.3390/cancers16203489
Shafagati N, Paul S, Rozati S, Sterling CH. Antibody-Based Therapies for Peripheral T-Cell Lymphoma. Cancers. 2024; 16(20):3489. https://doi.org/10.3390/cancers16203489
Chicago/Turabian StyleShafagati, Nazila, Suman Paul, Sima Rozati, and Cole H. Sterling. 2024. "Antibody-Based Therapies for Peripheral T-Cell Lymphoma" Cancers 16, no. 20: 3489. https://doi.org/10.3390/cancers16203489
APA StyleShafagati, N., Paul, S., Rozati, S., & Sterling, C. H. (2024). Antibody-Based Therapies for Peripheral T-Cell Lymphoma. Cancers, 16(20), 3489. https://doi.org/10.3390/cancers16203489