An Overview of Myeloid Blast-Phase Chronic Myeloid Leukemia
Simple Summary
Abstract
1. Introduction
2. Definition of Myeloid Blast-Phase CML
3. Prognostic Risk Factors in Myeloid Blast-Phase CML
4. The Biology of Blast-Phase CML
4.1. Genetic Events
4.2. Chromosomal Abnormalities
4.3. Telomere Biology
4.4. Epigenetic Modification
5. Current Treatment Approaches for Myeloid Blast-Phase CML
5.1. TKI Monotherapy
5.2. Combination Therapy
5.3. Other Therapies
5.4. Allogeneic Hematopoietic Stem Cell Transplantation
6. Possible Mechanisms of Resistance to Tyrosine Kinase Inhibitors
6.1. BCR-ABL1-Dependent Resistance
6.1.1. BCR-ABL1 Kinase Domain Mutations
6.1.2. Mutations Outside the BCR-ABL1 Kinase Domain
6.1.3. BCR-ABL1 Gene Overexpression
6.1.4. DNA Damage Repair and Gene Instability
6.2. BCR-ABL1-Independent Resistance
6.2.1. Alternative Pathways
6.2.2. Epigenetic Dysregulations
6.2.3. Changes in Drug Influx/Efflux Pumps
6.2.4. Bone Marrow Microenvironment
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Disclaimer
References
- Shallis, R.M.; Wang, R.; Davidoff, A.; Ma, X.; Podoltsev, N.A.; Zeidan, A.M. Epidemiology of the classical myeloproliferative neoplasms: The four corners of an expansive and complex map. Blood Rev. 2020, 42, 100706. [Google Scholar] [CrossRef] [PubMed]
- Heisterkamp, N.; Stam, K.; Groffen, J.; de Klein, A.; Grosveld, G. Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 1985, 315, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Skorski, T. Genetic mechanisms of chronic myeloid leukemia blastic transformation. Curr. Hematol. Malig. Rep. 2012, 7, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Keating, M.J.; Talpaz, M.; Walters, R.S.; Smith, T.L.; Cork, A.; McCredie, K.B.; Freireich, E.J. Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am. J. Med. 1987, 83, 445–454. [Google Scholar] [CrossRef]
- DeFilipp, Z.; Khoury, H.J. Management of advanced-phase chronic myeloid leukemia. Curr. Hematol. Malig. Rep. 2015, 10, 173–181. [Google Scholar] [CrossRef]
- Yohanan, B.; George, B. Current Management of Chronic Myeloid Leukemia Myeloid Blast Phase. Clin. Med. Insights Oncol. 2022, 16, 11795549221139357. [Google Scholar] [CrossRef]
- Brioli, A.; Lomaia, E.; Fabisch, C.; Sacha, T.; Klamova, H.; Morozova, E.; Golos, A.; Ernst, P.; Olsson-Stromberg, U.; Zackova, D.; et al. Management and outcome of patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era—Analysis of the European LeukemiaNet Blast Phase Registry. Leukemia 2024, 38, 1072–1080. [Google Scholar] [CrossRef]
- Bower, H.; Bjorkholm, M.; Dickman, P.W.; Hoglund, M.; Lambert, P.C.; Andersson, T.M. Life Expectancy of Patients with Chronic Myeloid Leukemia Approaches the Life Expectancy of the General Population. J. Clin. Oncol. 2016, 34, 2851–2857. [Google Scholar] [CrossRef]
- Druker, B.J.; Guilhot, F.; O’Brien, S.G.; Gathmann, I.; Kantarjian, H.; Gattermann, N.; Deininger, M.W.; Silver, R.T.; Goldman, J.M.; Stone, R.M.; et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 2006, 355, 2408–2417. [Google Scholar] [CrossRef]
- Copland, M. Treatment of blast phase chronic myeloid leukaemia: A rare and challenging entity. Br. J. Haematol. 2022, 199, 665–678. [Google Scholar] [CrossRef]
- Senapati, J.; Jabbour, E.; Kantarjian, H.; Short, N.J. Pathogenesis and management of accelerated and blast phases of chronic myeloid leukemia. Leukemia 2023, 37, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Saxena, K.; Jabbour, E.; Issa, G.; Sasaki, K.; Ravandi, F.; Maiti, A.; Daver, N.; Kadia, T.; DiNardo, C.D.; Konopleva, M.; et al. Impact of frontline treatment approach on outcomes of myeloid blast phase CML. J. Hematol. Oncol. 2021, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Speck, B.; Bortin, M.M.; Champlin, R.; Goldman, J.M.; Herzig, R.H.; McGlave, P.B.; Messner, H.A.; Weiner, R.S.; Rimm, A.A. Allogeneic bone-marrow transplantation for chronic myelogenous leukaemia. Lancet 1984, 1, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Dixon, D.; Keating, M.J.; Talpaz, M.; Walters, R.S.; McCredie, K.B.; Freireich, E.J. Characteristics of accelerated disease in chronic myelogenous leukemia. Cancer 1988, 61, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Baccarani, M.; Deininger, M.W.; Rosti, G.; Hochhaus, A.; Soverini, S.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Guilhot, F.; et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 2013, 122, 872–884. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Shah, N.P.; Bhatia, R.; Altman, J.K.; Amaya, M.; Begna, K.H.; Berman, E.; Chan, O.; Clements, J.; Collins, R.H.; Curtin, P.T.; et al. Chronic Myeloid Leukemia, Version 1.2025, NCCN Clinical Practice Guidelines in Oncology; National Comprehensive Cancer Network (NCCN): Plymouth Meeting, PA, USA, 2025. [Google Scholar]
- Johansson, B.; Fioretos, T.; Mitelman, F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol. 2002, 107, 76–94. [Google Scholar] [CrossRef]
- Jain, P.; Kantarjian, H.M.; Ghorab, A.; Sasaki, K.; Jabbour, E.J.; Nogueras Gonzalez, G.; Kanagal-Shamanna, R.; Issa, G.C.; Garcia-Manero, G.; Kc, D.; et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: Cohort study of 477 patients. Cancer 2017, 123, 4391–4402. [Google Scholar] [CrossRef]
- Fabarius, A.; Leitner, A.; Hochhaus, A.; Muller, M.C.; Hanfstein, B.; Haferlach, C.; Gohring, G.; Schlegelberger, B.; Jotterand, M.; Reiter, A.; et al. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: Long-term observation of 1151 patients from the randomized CML Study IV. Blood 2011, 118, 6760–6768. [Google Scholar] [CrossRef]
- Chen, Z.; Shao, C.; Wang, W.; Zuo, Z.; Mou, X.; Hu, S.J.; DiGiuseppe, J.A.; Zu, Y.; Medeiros, L.J.; Hu, S. Cytogenetic landscape and impact in blast phase of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia 2017, 31, 585–592. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Chen, R.; Huang, X.; Ye, X. Understanding and Monitoring Chronic Myeloid Leukemia Blast Crisis: How to Better Manage Patients. Cancer Manag. Res. 2021, 13, 4987–5000. [Google Scholar] [CrossRef] [PubMed]
- Calabretta, B.; Perrotti, D. The biology of CML blast crisis. Blood 2004, 103, 4010–4022. [Google Scholar] [CrossRef] [PubMed]
- Radich, J.P. The Biology of CML blast crisis. Hematol. Am. Soc. Hematol. Educ. Program. 2007, 2007, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Gaiger, A.; Henn, T.; Horth, E.; Geissler, K.; Mitterbauer, G.; Maier-Dobersberger, T.; Greinix, H.; Mannhalter, C.; Haas, O.A.; Lechner, K.; et al. Increase of BCR-ABLchimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression. Blood 1995, 86, 2371–2378. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.J.; Palaiologou, D.; Panousopoulou, E.; Schultheis, B.; Yong, A.S.; Wong, A.; Pattacini, L.; Goldman, J.M.; Melo, J.V. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res. 2005, 65, 8912–8919. [Google Scholar] [CrossRef]
- Antoszewska-Smith, J.; Pawlowska, E.; Blasiak, J. Reactive oxygen species in BCR-ABL1-expressing cells—Relevance to chronic myeloid leukemia. Acta Biochim. Pol. 2017, 64, 1–10. [Google Scholar] [CrossRef]
- Skorski, T. Chronic myeloid leukemia cells refractory/resistant to tyrosine kinase inhibitors are genetically unstable and may cause relapse and malignant progression to the terminal disease state. Leuk. Lymphoma 2011, 52 (Suppl. S1), 23–29. [Google Scholar] [CrossRef]
- Telliam, G.; Desterke, C.; Imeri, J.; M’Kacher, R.; Oudrhiri, N.; Balducci, E.; Fontaine-Arnoux, M.; Acloque, H.; Bennaceur-Griscelli, A.; Turhan, A.G. Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cancers 2023, 15, 2594. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Xu, X.; Yi, S.; Meng, L. Mutations in the BCR-ABL1 kinase domain in patients with chronic myeloid leukaemia treated with TKIs or at diagnosis. Oncol. Lett. 2020, 20, 1071–1076. [Google Scholar] [CrossRef]
- Soverini, S.; Martinelli, G.; Rosti, G.; Bassi, S.; Amabile, M.; Poerio, A.; Giannini, B.; Trabacchi, E.; Castagnetti, F.; Testoni, N.; et al. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: A study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J. Clin. Oncol. 2005, 23, 4100–4109. [Google Scholar] [CrossRef]
- Velasco-Hernandez, T.; Vicente-Duenas, C.; Sanchez-Garcia, I.; Martin-Zanca, D. p53 restoration kills primitive leukemia cells in vivo and increases survival of leukemic mice. Cell Cycle 2013, 12, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Manachai, N.; Saito, Y.; Nakahata, S.; Bahirvani, A.G.; Osato, M.; Morishita, K. Activation of EVI1 transcription by the LEF1/beta-catenin complex with p53-alteration in myeloid blast crisis of chronic myeloid leukemia. Biochem. Biophys. Res. Commun. 2017, 482, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Howarth, A.; Clark, R.E. Ikaros transcripts Ik6/10 and levels of full-length transcript are critical for chronic myeloid leukaemia blast crisis transformation. Leukemia 2014, 28, 1745–1747. [Google Scholar] [CrossRef] [PubMed]
- Horne, G.A.; Jackson, L.; Helgason, V.; Holyoake, T.L. Stem Cell Guardians—Old and New Perspectives in LSC Biology. Curr. Drug Targets 2017, 18, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.; Paranal, R.M.; Qi, J.; et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011, 146, 904–917. [Google Scholar] [CrossRef]
- Adnan Awad, S.; Dufva, O.; Ianevski, A.; Ghimire, B.; Koski, J.; Maliniemi, P.; Thomson, D.; Schreiber, A.; Heckman, C.A.; Koskenvesa, P.; et al. RUNX1 mutations in blast-phase chronic myeloid leukemia associate with distinct phenotypes, transcriptional profiles, and drug responses. Leukemia 2021, 35, 1087–1099. [Google Scholar] [CrossRef]
- Crispino, J.D.; Horwitz, M.S. GATA factor mutations in hematologic disease. Blood 2017, 129, 2103–2110. [Google Scholar] [CrossRef]
- Zhang, S.J.; Shi, J.Y.; Li, J.Y. GATA-2 L359 V mutation is exclusively associated with CML progression but not other hematological malignancies and GATA-2 P250A is a novel single nucleotide polymorphism. Leuk. Res. 2009, 33, 1141–1143. [Google Scholar] [CrossRef]
- Neviani, P.; Santhanam, R.; Trotta, R.; Notari, M.; Blaser, B.W.; Liu, S.; Mao, H.; Chang, J.S.; Galietta, A.; Uttam, A.; et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005, 8, 355–368. [Google Scholar] [CrossRef]
- Yang, F.C.; Tsuji, K.; Oda, A.; Ebihara, Y.; Xu, M.J.; Kaneko, A.; Hanada, S.; Mitsui, T.; Kikuchi, A.; Manabe, A.; et al. Differential effects of human granulocyte colony-stimulating factor (hG-CSF) and thrombopoietin on megakaryopoiesis and platelet function in hG-CSF receptor-transgenic mice. Blood 1999, 94, 950–958. [Google Scholar] [CrossRef]
- Cosman, D. The hematopoietin receptor superfamily. Cytokine 1993, 5, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Magistroni, V.; Mauri, M.; D’Aliberti, D.; Mezzatesta, C.; Crespiatico, I.; Nava, M.; Fontana, D.; Sharma, N.; Parker, W.; Schreiber, A.; et al. De novo UBE2A mutations are recurrently acquired during chronic myeloid leukemia progression and interfere with myeloid differentiation pathways. Haematologica 2019, 104, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Li, L.; Haak, M.; Brors, B.; Frank, O.; Giehl, M.; Fabarius, A.; Schatz, M.; Weisser, A.; Lorentz, C.; et al. Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis. Leukemia 2006, 20, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Gilleece, M.H.; Dexter, T.M. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood 1993, 82, 807–812. [Google Scholar] [CrossRef]
- Anand, M.; Ghara, N.; Kumar, R.; Singh, S.; Sengar, M.; Panikar, N.; Raina, V.; Sharma, A. Myeloperoxidase cytochemical negativity: An unexpected but intrinsic property of blasts of all phases of chronic myeloid leukemia. Ann. Hematol. 2005, 84, 767–770. [Google Scholar] [CrossRef]
- Iezza, M.; Cortesi, S.; Ottaviani, E.; Mancini, M.; Venturi, C.; Monaldi, C.; De Santis, S.; Testoni, N.; Soverini, S.; Rosti, G.; et al. Prognosis in Chronic Myeloid Leukemia: Baseline Factors, Dynamic Risk Assessment and Novel Insights. Cells 2023, 12, 1703. [Google Scholar] [CrossRef]
- Gong, Z.; Medeiros, L.J.; Cortes, J.E.; Chen, Z.; Zheng, L.; Li, Y.; Bai, S.; Lin, P.; Miranda, R.N.; Jorgensen, J.L.; et al. Cytogenetics-based risk prediction of blastic transformation of chronic myeloid leukemia in the era of TKI therapy. Blood Adv. 2017, 1, 2541–2552. [Google Scholar] [CrossRef]
- Wang, W.; Cortes, J.E.; Tang, G.; Khoury, J.D.; Wang, S.; Bueso-Ramos, C.E.; DiGiuseppe, J.A.; Chen, Z.; Kantarjian, H.M.; Medeiros, L.J.; et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood 2016, 127, 2742–2750. [Google Scholar] [CrossRef]
- Boultwood, J.; Fidler, C.; Shepherd, P.; Watkins, F.; Snowball, J.; Haynes, S.; Kusec, R.; Gaiger, A.; Littlewood, T.J.; Peniket, A.J.; et al. Telomere length shortening is associated with disease evolution in chronic myelogenous leukemia. Am. J. Hematol. 1999, 61, 5–9. [Google Scholar] [CrossRef]
- Drummond, M.; Lennard, A.; Brummendorf, T.; Holyoake, T. Telomere shortening correlates with prognostic score at diagnosis and proceeds rapidly during progression of chronic myeloid leukemia. Leuk. Lymphoma 2004, 45, 1775–1781. [Google Scholar] [CrossRef]
- Tauchi, T.; Nakajima, A.; Sashida, G.; Shimamoto, T.; Ohyashiki, J.H.; Abe, K.; Yamamoto, K.; Ohyashiki, K. Inhibition of human telomerase enhances the effect of the tyrosine kinase inhibitor, imatinib, in BCR-ABL-positive leukemia cells. Clin. Cancer Res. 2002, 8, 3341–3347. [Google Scholar] [PubMed]
- Krishnan, V.; Kim, D.D.H.; Hughes, T.P.; Branford, S.; Ong, S.T. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: Toward gene expression-based biomarkers. Haematologica 2022, 107, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Sparmann, A.; van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 2006, 6, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Ko, T.K.; Javed, A.; Lee, K.L.; Pathiraja, T.N.; Liu, X.; Malik, S.; Soh, S.X.; Heng, X.T.; Takahashi, N.; Tan, J.H.J.; et al. An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood 2020, 135, 2337–2353. [Google Scholar] [CrossRef] [PubMed]
- Koschmieder, S.; Vetrie, D. Epigenetic dysregulation in chronic myeloid leukaemia: A myriad of mechanisms and therapeutic options. Semin. Cancer Biol. 2018, 51, 180–197. [Google Scholar] [CrossRef] [PubMed]
- Behzad, M.M.; Shahrabi, S.; Jaseb, K.; Bertacchini, J.; Ketabchi, N.; Saki, N. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response. Biochem. Genet. 2018, 56, 149–175. [Google Scholar] [CrossRef]
- Heller, G.; Topakian, T.; Altenberger, C.; Cerny-Reiterer, S.; Herndlhofer, S.; Ziegler, B.; Datlinger, P.; Byrgazov, K.; Bock, C.; Mannhalter, C.; et al. Next-generation sequencing identifies major DNA methylation changes during progression of Ph+ chronic myeloid leukemia. Leukemia 2016, 30, 1861–1868. [Google Scholar] [CrossRef]
- Amabile, G.; Di Ruscio, A.; Muller, F.; Welner, R.S.; Yang, H.; Ebralidze, A.K.; Zhang, H.; Levantini, E.; Qi, L.; Martinelli, G.; et al. Dissecting the role of aberrant DNA methylation in human leukaemia. Nat. Commun. 2015, 6, 7091. [Google Scholar] [CrossRef]
- Issa, J.P.; Gharibyan, V.; Cortes, J.; Jelinek, J.; Morris, G.; Verstovsek, S.; Talpaz, M.; Garcia-Manero, G.; Kantarjian, H.M. Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J. Clin. Oncol. 2005, 23, 3948–3956. [Google Scholar] [CrossRef]
- Abdulmawjood, B.; Costa, B.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Genetic Biomarkers in Chronic Myeloid Leukemia: What Have We Learned So Far? Int. J. Mol. Sci. 2021, 22, 12516. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, M.; Fu, Y.; Yang, L.; Xu, M.; Sun, T.; Wang, X.; Huang, T.; Chen, C. Histone demethylase RBP2 mediates the blast crisis of chronic myeloid leukemia through an RBP2/PTEN/BCR-ABL cascade. Cell Signal 2019, 63, 109360. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Senapati, J.; Jabbour, E. An Update on the Management of Advanced Phase Chronic Myeloid Leukemia. Curr. Hematol. Malig. Rep. 2023, 18, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Druker, B.J.; Sawyers, C.L.; Kantarjian, H.; Resta, D.J.; Reese, S.F.; Ford, J.M.; Capdeville, R.; Talpaz, M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 2001, 344, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Sawyers, C.L.; Hochhaus, A.; Feldman, E.; Goldman, J.M.; Miller, C.B.; Ottmann, O.G.; Schiffer, C.A.; Talpaz, M.; Guilhot, F.; Deininger, M.W.; et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: Results of a phase II study. Blood 2002, 99, 3530–3539. [Google Scholar] [CrossRef] [PubMed]
- Palandri, F.; Castagnetti, F.; Testoni, N.; Luatti, S.; Marzocchi, G.; Bassi, S.; Breccia, M.; Alimena, G.; Pungolino, E.; Rege-Cambrin, G.; et al. Chronic myeloid leukemia in blast crisis treated with imatinib 600 mg: Outcome of the patients alive after a 6-year follow-up. Haematologica 2008, 93, 1792–1796. [Google Scholar] [CrossRef]
- Cortes, J.; Rousselot, P.; Kim, D.W.; Ritchie, E.; Hamerschlak, N.; Coutre, S.; Hochhaus, A.; Guilhot, F.; Saglio, G.; Apperley, J.; et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood 2007, 109, 3207–3213. [Google Scholar] [CrossRef]
- Saglio, G.; Hochhaus, A.; Goh, Y.T.; Masszi, T.; Pasquini, R.; Maloisel, F.; Erben, P.; Cortes, J.; Paquette, R.; Bradley-Garelik, M.B.; et al. Dasatinib in imatinib-resistant or imatinib-intolerant chronic myeloid leukemia in blast phase after 2 years of follow-up in a phase 3 study: Efficacy and tolerability of 140 milligrams once daily and 70 milligrams twice daily. Cancer 2010, 116, 3852–3861. [Google Scholar] [CrossRef]
- Giles, F.J.; Kantarjian, H.M.; le Coutre, P.D.; Baccarani, M.; Mahon, F.X.; Blakesley, R.E.; Gallagher, N.J.; Gillis, K.; Goldberg, S.L.; Larson, R.A.; et al. Nilotinib is effective in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blastic phase. Leukemia 2012, 26, 959–962. [Google Scholar] [CrossRef]
- Nicolini, F.E.; Masszi, T.; Shen, Z.; Gallagher, N.J.; Jootar, S.; Powell, B.L.; Dorlhiac-Llacer, P.E.; Zheng, M.; Szczudlo, T.; Turkina, A. Expanding Nilotinib Access in Clinical Trials (ENACT), an open-label multicenter study of oral nilotinib in adult patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase or blast crisis. Leuk. Lymphoma 2012, 53, 907–914. [Google Scholar] [CrossRef]
- Gambacorti-Passerini, C.; Kantarjian, H.M.; Kim, D.W.; Khoury, H.J.; Turkina, A.G.; Brummendorf, T.H.; Matczak, E.; Bardy-Bouxin, N.; Shapiro, M.; Turnbull, K.; et al. Long-term efficacy and safety of bosutinib in patients with advanced leukemia following resistance/intolerance to imatinib and other tyrosine kinase inhibitors. Am. J. Hematol. 2015, 90, 755–768. [Google Scholar] [CrossRef]
- Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 2013, 369, 1783–1796. [Google Scholar] [CrossRef] [PubMed]
- Fruehauf, S.; Topaly, J.; Buss, E.C.; Fischer, T.; Ottmann, O.G.; Emmerich, B.; Muller, M.C.; Schuld, P.; Balleisen, L.; Hehlmann, R.; et al. Imatinib combined with mitoxantrone/etoposide and cytarabine is an effective induction therapy for patients with chronic myeloid leukemia in myeloid blast crisis. Cancer 2007, 109, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Quintás-Cardama, A.; Kantarjian, H.; Garcia-Manero, G.; O’Brien, S.; Faderl, S.; Ravandi, F.; Giles, F.; Thomas, D.; Wierda, W.; Cortes, J. A pilot study of imatinib, low-dose cytarabine and idarubicin for patients with chronic myeloid leukemia in myeloid blast phase. Leuk. Lymphoma 2007, 48, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Deau, B.; Nicolini, F.E.; Guilhot, J.; Huguet, F.; Guerci, A.; Legros, L.; Pautas, C.; Berthou, C.; Guyotat, D.; Cony-Makhoul, P.; et al. The addition of daunorubicin to imatinib mesylate in combination with cytarabine improves the response rate and the survival of patients with myeloid blast crisis chronic myelogenous leukemia (AFR01 study). Leuk. Res. 2011, 35, 777–782. [Google Scholar] [CrossRef]
- Milojkovic, D.; Ibrahim, A.; Reid, A.; Foroni, L.; Apperley, J.; Marin, D. Efficacy of combining dasatinib and FLAG-IDA for patients with chronic myeloid leukemia in blastic transformation. Haematologica 2012, 97, 473–474. [Google Scholar] [CrossRef]
- Copland, M.; Slade, D.; McIlroy, G.; Horne, G.; Byrne, J.L.; Rothwell, K.; Brock, K.; De Lavallade, H.; Craddock, C.; Clark, R.E.; et al. Ponatinib with fludarabine, cytarabine, idarubicin, and granulocyte colony-stimulating factor chemotherapy for patients with blast-phase chronic myeloid leukaemia (MATCHPOINT): A single-arm, multicentre, phase 1/2 trial. Lancet Haematol. 2022, 9, e121–e132. [Google Scholar] [CrossRef]
- Oki, Y.; Kantarjian, H.M.; Gharibyan, V.; Jones, D.; O’Brien, S.; Verstovsek, S.; Cortes, J.; Morris, G.M.; Garcia-Manero, G.; Issa, J.P. Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer 2007, 109, 899–906. [Google Scholar] [CrossRef]
- Ghez, D.; Micol, J.B.; Pasquier, F.; Auger, N.; Saada, V.; Spentchian, M.; Ianotto, J.C.; Bourhis, J.H.; Bennaceur-Griscelli, A.; Terre, C.; et al. Clinical efficacy of second generation tyrosine kinase inhibitor and 5-azacytidine combination in chronic myelogenous leukaemia in myeloid blast crisis. Eur. J. Cancer 2013, 49, 3666–3670. [Google Scholar] [CrossRef]
- Ruggiu, M.; Oberkampf, F.; Ghez, D.; Cony-Makhoul, P.; Beckeriche, F.; Cano, I.; Taksin, A.L.; Benbrahim, O.; Ghez, S.; Farhat, H.; et al. Azacytidine in combination with tyrosine kinase inhibitors induced durable responses in patients with advanced phase chronic myelogenous leukemia. Leuk. Lymphoma 2018, 59, 1659–1665. [Google Scholar] [CrossRef]
- Abaza, Y.; Kantarjian, H.; Alwash, Y.; Borthakur, G.; Champlin, R.; Kadia, T.; Garcia-Manero, G.; Daver, N.; Ravandi, F.; Verstovsek, S.; et al. Phase I/II study of dasatinib in combination with decitabine in patients with accelerated or blast phase chronic myeloid leukemia. Am. J. Hematol. 2020, 95, 1288–1295. [Google Scholar] [CrossRef]
- Maiti, A.; Franquiz, M.J.; Ravandi, F.; Cortes, J.E.; Jabbour, E.J.; Sasaki, K.; Marx, K.; Daver, N.G.; Kadia, T.M.; Konopleva, M.Y.; et al. Venetoclax and BCR-ABL Tyrosine Kinase Inhibitor Combinations: Outcome in Patients with Philadelphia Chromosome-Positive Advanced Myeloid Leukemias. Acta Haematol. 2020, 143, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Li, N.; Song, Y.; Han, Q.; Zhao, R.C. Standard-dose imatinib plus low-dose homoharringtonine and granulocyte colony-stimulating factor is an effective induction therapy for patients with chronic myeloid leukemia in myeloid blast crisis who have failed prior single-agent therapy with imatinib. Ann. Hematol. 2010, 89, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; Cortes, J.; Ferrajoli, A.; Estrov, Z.; Borthakur, G.; Garcia-Manero, G.; Jabbour, E.; Ravandi, F.; O’Brien, S.; Kantarjian, H. Phase II trial of homoharringtonine with imatinib in chronic, accelerated, and blast phase chronic myeloid leukemia. Leuk Lymphoma 2017, 58, 1–6. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). A Phase I Study of Oral Asciminib (ABL001) in Patients with CML or Ph+ ALL. Identifier NCT02081378. Updated 18 March 2024. Available online: https://clinicaltrials.gov/study/NCT02081378#study-overview (accessed on 16 September 2024).
- Rousselot, P. PONAZA: A Combination of Ponatinib and 5-Azacitidine in Chronic Myelogenous Leukaemia in Accelerated Phase or in Myeloid Blast Crisis (PONAZA). ClinicalTrials.gov identifier NCT03895671. Last updated 7 August 2020. Available online: https://clinicaltrials.gov/study/NCT03895671?term=NCT03895671&rank=1 (accessed on 16 September 2024).
- ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Decitabine and HQP1351-Based Chemotherapy Regimen for the Treatment of Advanced CML. Identifier NCT05376852. Updated 8 December 2022. Available online: https://clinicaltrials.gov/study/NCT05376852?term=NCT05376852&rank=1 (accessed on 16 September 2024).
- ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Cladribine, Idarubicin, and Venetoclax in Treating Patients with Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome, or Blastic Phase Chronic Myeloid Leukemia. Identifier NCT02115295. Updated 25 April 2024. Available online: https://clinicaltrials.gov/study/NCT02115295?term=NCT02115295&rank=1 (accessed on 16 September 2024).
- ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Decitabine, Venetoclax, and Ponatinib for the Treatment of Philadelphia Chromosome-Positive Acute Myeloid Leukemia or Myeloid Blast Phase or Accelerated Phase Chronic Myelogenous Leukemia. Identifier NCT04188405. Updated 9 October 2024. Available online: https://clinicaltrials.gov/study/NCT04188405?term=NCT04188405&rank=1 (accessed on 16 September 2024).
- ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Hu8F4 in Treating Patients with Advanced Hematologic Malignancies. Identifier NCT02530034. Updated 5 June 2024. Available online: https://clinicaltrials.gov/study/NCT02530034?term=NCT02530034&rank=1 (accessed on 16 September 2024).
- ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). Safety and Anti-Leukemic Activity of Vodobatinib (K0706) for Treatment of Ph+ CML Resistant/Intolerant to ≥3 Prior CML Therapies. Identifier NCT02629692. Updated 31 July 2024. Available online: https://clinicaltrials.gov/study/NCT02629692?term=NCT02629692&rank=1 (accessed on 16 September 2024).
- Dhillon, S. Olverembatinib: First Approval. Drugs 2022, 82, 469–475. [Google Scholar] [CrossRef]
- Kadia, T.M.; Reville, P.K.; Borthakur, G.; Yilmaz, M.; Kornblau, S.; Alvarado, Y.; Dinardo, C.D.; Daver, N.; Jain, N.; Pemmaraju, N.; et al. Venetoclax plus intensive chemotherapy with cladribine, idarubicin, and cytarabine in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: A cohort from a single-centre, single-arm, phase 2 trial. Lancet Haematol. 2021, 8, e552–e561. [Google Scholar] [CrossRef]
- Senapati, J.; Ravandi, F.; Dinardo, C.D.; Issa, G.C.; Sasaki, K.; Konopleva, M.; Macaron, W.; Nasr, L.F.; Zoghbi, M.; Nasnas, C.C.; et al. A phase 2 study of the combination of decitabine (DAC), venetoclax (VEN), and ponatinib in patients (Pts) with chronic myeloid leukemia (CML) in accelerated phase (AP)/myeloid blast phase (MBP) or Philadelphia-chromosome positive (Ph+) acute myeloid leukemia (AML). J. Clin. Oncol. 2023, 41, e19044. [Google Scholar] [CrossRef]
- Kadia, T.M.; Kantarjian, H.; Alatrash, G.; Sergeeva, A.; He, H.; St. John, L.; Koppikar, P.; Kerros, C.; Maiti, A.; Dinardo, C.; et al. Abstract CT101: Phase I study of the T-cell receptor-like antibody Hu8F4 in patients with advanced hematologic malignancies. Cancer Res. 2023, 83, CT101. [Google Scholar] [CrossRef]
- Cortes, J.E.; Saikia, T.; Kim, D.-W.; Alvarado, Y.; Nicolini, F.E.; Rathnam, K.; Khattry, N.; Apperley, J.F.; Deininger, M.W.; de Lavallade, H.; et al. An Update of Safety and Efficacy Results from Phase 1 Dose-Escalation and Expansion Study of Vodobatinib, a Novel Oral BCR-ABL1 Tyrosine Kinase Inhibitor (TKI), in Patients with Chronic Myeloid Leukemia (CML) and Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia (Ph+ ALL) Failing Prior TKI Therapies. Blood 2021, 138, 309. [Google Scholar] [CrossRef]
- Radujkovic, A.; Dietrich, S.; Blok, H.J.; Nagler, A.; Ayuk, F.; Finke, J.; Tischer, J.; Mayer, J.; Koc, Y.; Sora, F.; et al. Allogeneic Stem Cell Transplantation for Blast Crisis Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: A Retrospective Study by the EBMT Chronic Malignancies Working Party. Biol. Blood Marrow Transplant. 2019, 25, 2008–2016. [Google Scholar] [CrossRef]
- Khoury, H.J.; Kukreja, M.; Goldman, J.M.; Wang, T.; Halter, J.; Arora, M.; Gupta, V.; Rizzieri, D.A.; George, B.; Keating, A.; et al. Prognostic factors for outcomes in allogeneic transplantation for CML in the imatinib era: A CIBMTR analysis. Bone Marrow Transplant. 2012, 47, 810–816. [Google Scholar] [CrossRef]
- Niederwieser, C.; Morozova, E.; Zubarovskaya, L.; Zabelina, T.; Klyuchnikov, E.; Janson, D.; Wolschke, C.; Christopeit, M.; Ayuk, F.; Moiseev, I.; et al. Risk factors for outcome after allogeneic stem cell transplantation in patients with advanced phase CML. Bone Marrow Transplant. 2021, 56, 2834–2841. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, F.; Modolo, L.; Raus, N.; Milpied, N.; Socie, G.; Yakoub-Agha, I.; Mohty, M.; Fegueux, N.; Tilly, H.; Blaise, D.; et al. Allogeneic Stem Cell Transplantation for Blast Crisis (BC) Chronic Myelogenous Leukemia (CML) In the Tyrosine Kinase Inhibitors (TKIs) Era. Analysis of Pre-Transplant Variables on Transplant Outcome. On Behalf of the Societe Française De Greffe De Moelle Et De Therapie Cellulaire and the French Group. of CML. Blood 2010, 116, 2266. [Google Scholar] [CrossRef]
- Kumar, R.; Krause, D.S. Recent advances in understanding chronic myeloid leukemia: Where do we stand? Fac. Rev. 2021, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; O’Hare, T.; Deininger, M.W. Mechanisms of Resistance to ABL Kinase Inhibition in Chronic Myeloid Leukemia and the Development of Next Generation ABL Kinase Inhibitors. Hematol. Oncol. Clin. N. Am. 2017, 31, 589–612. [Google Scholar] [CrossRef]
- Bavaro, L.; Martelli, M.; Cavo, M.; Soverini, S. Mechanisms of Disease Progression and Resistance to Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukemia: An Update. Int. J. Mol. Sci. 2019, 20, 6141. [Google Scholar] [CrossRef]
- Meenakshi Sundaram, D.N.; Jiang, X.; Brandwein, J.M.; Valencia-Serna, J.; Remant, K.C.; Uludag, H. Current outlook on drug resistance in chronic myeloid leukemia (CML) and potential therapeutic options. Drug Discov. Today 2019, 24, 1355–1369. [Google Scholar] [CrossRef]
- Ng, J.J.; Ong, S.T. Therapy Resistance and Disease Progression in CML: Mechanistic Links and Therapeutic Strategies. Curr. Hematol. Malig. Rep. 2022, 17, 181–197. [Google Scholar] [CrossRef]
- Braun, T.P.; Eide, C.A.; Druker, B.J. Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell 2020, 37, 530–542. [Google Scholar] [CrossRef]
- Sun, J.; Hu, R.; Han, M.; Tan, Y.; Xie, M.; Gao, S.; Hu, J.F. Mechanisms underlying therapeutic resistance of tyrosine kinase inhibitors in chronic myeloid leukemia. Int. J. Biol. Sci. 2024, 20, 175–181. [Google Scholar] [CrossRef]
- Milojkovic, D.; Apperley, J. Mechanisms of Resistance to Imatinib and Second-Generation Tyrosine Inhibitors in Chronic Myeloid Leukemia. Clin. Cancer Res. 2009, 15, 7519–7527. [Google Scholar] [CrossRef]
- Iqbal, Z.; Absar, M.; Mahmood, A.; Aleem, A.; Iqbal, M.; Jameel, A.; Akhtar, T.; Karim, S.; Rasool, M.; Mirza, Z.; et al. Discovery and Protein Modeling Studies of Novel Compound Mutations Causing Resistance to Multiple Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia. Asian Pac. J. Cancer Prev. 2020, 21, 3517–3526. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhao, Y.; Smith, C.; Gasparetto, M.; Turhan, A.; Eaves, A.; Eaves, C. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007, 21, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, C.H.; Ailles, L.E.; Dylla, S.J.; Muijtjens, M.; Jones, C.; Zehnder, J.L.; Gotlib, J.; Li, K.; Manz, M.G.; Keating, A.; et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 2004, 351, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Wagle, M.; Eiring, A.M.; Wongchenko, M.; Lu, S.; Guan, Y.; Wang, Y.; Lackner, M.; Amler, L.; Hampton, G.; Deininger, M.W.; et al. A role for FOXO1 in BCR-ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Leukemia 2016, 30, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Eiring, A.M.; Khorashad, J.S.; Anderson, D.J.; Yu, F.; Redwine, H.M.; Mason, C.C.; Reynolds, K.R.; Clair, P.M.; Gantz, K.C.; Zhang, T.Y.; et al. beta-Catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Leukemia 2015, 29, 2328–2337. [Google Scholar] [CrossRef]
- Poudel, G.; Tolland, M.G.; Hughes, T.P.; Pagani, I.S. Mechanisms of Resistance and Implications for Treatment Strategies in Chronic Myeloid Leukaemia. Cancers 2022, 14, 3300. [Google Scholar] [CrossRef]
- Bewry, N.N.; Nair, R.R.; Emmons, M.F.; Boulware, D.; Pinilla-Ibarz, J.; Hazlehurst, L.A. Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol. Cancer Ther. 2008, 7, 3169–3175. [Google Scholar] [CrossRef]
- Burchert, A.; Wang, Y.; Cai, D.; von Bubnoff, N.; Paschka, P.; Muller-Brusselbach, S.; Ottmann, O.G.; Duyster, J.; Hochhaus, A.; Neubauer, A. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005, 19, 1774–1782. [Google Scholar] [CrossRef]
- Yang, T.; Sim, K.Y.; Ko, G.H.; Ahn, J.S.; Kim, H.J.; Park, S.G. FAM167A is a key molecule to induce BCR-ABL-independent TKI resistance in CML via noncanonical NF-kappaB signaling activation. J. Exp. Clin. Cancer Res. 2022, 41, 82. [Google Scholar] [CrossRef]
- Xia, L.; Liu, J.Y.; Yang, M.Y.; Zhang, X.H.; Jiang, Y.; Yin, Q.Q.; Luo, C.H.; Liu, H.C.; Kang, Z.J.; Zhang, C.T.; et al. Osimertinib Covalently Binds to CD34 and Eliminates Myeloid Leukemia Stem/Progenitor Cells. Cancer Res. 2024, 84, 479–492. [Google Scholar] [CrossRef]
- Xie, H.; Peng, C.; Huang, J.; Li, B.E.; Kim, W.; Smith, E.C.; Fujiwara, Y.; Qi, J.; Cheloni, G.; Das, P.P.; et al. Chronic Myelogenous Leukemia- Initiating Cells Require Polycomb Group Protein EZH2. Cancer Discov. 2016, 6, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Copland, M. The Bone Marrow Immune Microenvironment in CML: Treatment Responses, Treatment-Free Remission, and Therapeutic Vulnerabilities. Curr. Hematol. Malig. Rep. 2023, 18, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, E.; Azab, A.K.; Manley, P.W.; Kung, A.L.; Christie, A.L.; Bronson, R.; Ghobrial, I.M.; Griffin, J.D. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 2012, 26, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, M.; McDonald, T.; Holyoake, T.L.; Moon, R.T.; Campana, D.; Shultz, L.; Bhatia, R. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood 2013, 121, 1824–1838. [Google Scholar] [CrossRef]
Abnormality | Mechanism | |
---|---|---|
Genetic events | ||
BCR-ABL1 kinase domain, RUNX1, GATA, UBE2A | Mutation | |
p53 | Genetic or functional inactivation | |
EVI1, c-MYC, SOCS2, CD52, MHC class II complex-related genes, CD34 | Upregulation | |
IKZF1 | Deletion | |
PP2A | Inactivation | |
MPO | Downregulation | |
Chromosomal abnormalities | ||
Major route (+8, i(17q), +19, and +Ph) | - | |
Minor route (+21, t(3;12), t(4;6), t(2;16), t(1;21), (−Y)) | - | |
Telomeres | ||
Telomere length | Reduction | |
Telomerase activity | Reduction | |
Epigenetic modifications | ||
DNA methylation | Upregulation or downregulation | |
Histone modification | Upregulation | |
miRNA | Dysregulation |
Author | # of Patients | Combination Treatment | HR ** (%) | CHR ** (%) | CCyR (%) | AlloHSCT (%) | Median OS (Months) |
---|---|---|---|---|---|---|---|
Fruehauf et al. [73] | 16 | Mitoxantrone, Etoposide, Cytarabine + Imatinib | 81.2 | NA | NA | 37.5 | 6.4 |
Quintás-Cardama et al. [74] | 19 | Low-dose Cytarabine, Idarubicin + Imatinib | 73.7 | 47.3 | 15.8 | 31.6 | 5.8 |
Deau et al. [75] | 36 | Daunorubicin, Cytarabine (3 + 7) + Imatinib | 77.7 | 55.5 | 30.6 | 30.6 | 16 |
Milojkovic et al. [76] | 4 a | Fludarabine, Cytarabine, Idarubicin, G-CSF (FLAG-IDA) + Dasatinib | 100 | NA | 75 | 100 | NA |
Copland et al. [77] | 9 | Fludarabine, Cytarabine, Idarubicin, G-CSF (FLAG-IDA) + Ponatinib | NA | 11.1 | 44.4 | 66.7 | 12 b |
Oki et al. [78] | 10 | Decitabine + Imatinib | 30 | 20 | NA | NA | 3.5 |
Ghez et al. [79] | 5 | Azacitidine + Dasatinib or Nilotinib | NA | 100 | 40 | 20 | NR |
Ruggiu et al. [80] | 7 | Azacitidine + Dasatinib or Nilotinib or Ponatinib | 71.4 | NA | 42.9 | NA | 27.4 |
Abaza et al. [81] | 18 | Decitabine + Dasatinib | 76.4 | 41.2 | 41.2 | 26.7 c | 13.8 c |
Saxena et al. [12] | 40 | IC + TKI (20) HMA + TKI (20) | 60 d 55 d | NA | NA | 35 30 | 12.9 10.1 |
Maiti et al. [82] | 9 | IC or Decitabine + Venetoclax + TKI | NA | NA | 33.3 | 22.2 | 10.9 |
Fang et al. [83] | 12 | G-CSF + HHT + Imatinib | 91.7 | 58.3 | 25 | 75 | NA |
Maiti et al. [84] | 3 | HHT + Imatinib | NA | 66.7 | 33.3 | NA | NA |
NCT Number & Trial Name | Phase | Drugs | Patient Populations | Estimated Enrollment | Primary Endpoint | Status |
---|---|---|---|---|---|---|
NCT03895671 [86] Ponaza: A combination of ponatinib and 5-azacitidine in CML in AP or in MBP | 2 | Azacitidine Ponatinib | First-line MBP-CML AP-CML | 40 | OS (2 yr) | R |
NCT05376852 [87] Decitabine and HQP1351-based chemotherapy regimen for the treatment of advanced CML | 2 | Decitabine Olverembatinib (HQP1351) | First line, R/R MBP-CML MAP-CML | 40 | CR/CRi (12 wk) | R |
NCT02115295 [88] Cladribine, idarubicin, cytarabine, and venetoclax in treating patients with AML, HR-MDS, or BP-CML | 2 | Cladribine Idarubicin Cytarabine Venetoclax | First line, R/R MBP-CML AML BPAL HR-MDS | 508 | CR (by 12 mo) | R |
NCT04188405 [89] Decitabine, venetoclax, and ponatinib for the treatment of Ph+ AML or MBP or AP-CML | 2 | Decitabine Venetoclax Ponatinib | First line, R/R MBP-CML AP-CML Ph+ AML | 30 | CR/CRi (8 wk) | Active, NR |
NCT02530034 [90] Hu8F4 in treating patients with advanced hematologic malignancies | 1 | Hu8F4 | R/R BP-CML HR-MDS CMML AML HR-MF | 72 | DLTs, minimum safe and biologically effective dose | Active, NR |
NCT02629692 [91] Safety and anti-leukemic activity of vodobatinib (K0706) for the treatment of resistant/intolerant Ph+ CML to ≥3 prior CML therapies | 1, 2 | Vodobatinib | R/I CP-CML AP-CML BP-CML | 122 | MTD AEs MaHR a NEL a | Active, NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pamuk, G.E.; Ehrlich, L.A. An Overview of Myeloid Blast-Phase Chronic Myeloid Leukemia. Cancers 2024, 16, 3615. https://doi.org/10.3390/cancers16213615
Pamuk GE, Ehrlich LA. An Overview of Myeloid Blast-Phase Chronic Myeloid Leukemia. Cancers. 2024; 16(21):3615. https://doi.org/10.3390/cancers16213615
Chicago/Turabian StylePamuk, Gulsum E., and Lori A. Ehrlich. 2024. "An Overview of Myeloid Blast-Phase Chronic Myeloid Leukemia" Cancers 16, no. 21: 3615. https://doi.org/10.3390/cancers16213615
APA StylePamuk, G. E., & Ehrlich, L. A. (2024). An Overview of Myeloid Blast-Phase Chronic Myeloid Leukemia. Cancers, 16(21), 3615. https://doi.org/10.3390/cancers16213615