Membrane Antigen Targeting in Acute Myeloid Leukemia Using Antibodies or CAR-T Cells
Simple Summary
Abstract
1. Introduction
- Patients with complex karyotypes (CKs) formed a group of 10.3% of AMLs and were characterized by ≥3 unbalanced cytogenetic alterations, frequent TP53 mutations (65%), a paucity of other somatic mutations and were usually observed in older patients and were associated with poor outcomes [1].
- A second subgroup was characterized by <3 trisomies and frequently involved +8, +11, +13, +21, and +23 but not deletions (about 11% of total AMLs); this group displays infrequent TP53 alterations (4%) and is associated with a more favorable prognosis [6].
- Other groups are characterized by chromosomal translocations: The inv(16)(p13q22) and the less frequent t(16;16)(p13q22) determine the formation of a chimeric gene CBFB-MY11 consisting of the 5′ portion of the smooth muscle myosin heavy chain gene (MYH11), characterizing 4–5% of total AMLs, in association with a favorable prognosis;
- t(8;21)(q22;q22.1) determines the formation of RUNX1-RUNX1T1 fusion, characterizing 5–6% of AMLs, associated with favorable or intermediate prognosis;
- AMLs characterized by rearrangement of the KMT2A gene [KMT2A_MLLT3 fusion caused by t(9;11)(q21.3;q23.3) is the most frequent] represent 3–4% of adult AMLs and are associated with intermediate prognosis;
- The t(6;9)(q23;q34) translocation, observed in about 1% of adult AMLs, generates the DEK/NUP214 fusion gene, causes an aggressive disease with poor prognosis; AML with inv(83) or t(3;3) is an extremely aggressive and rare AML subtype (0.5–1% of AMLs) related to the juxtaposition of the GATA2 gene enhancer in proximity to the MECOM/EVI1 promoter [6].
- Other AML molecular subtypes are characterized by some recurrent mutations:
- A large cluster of AMLs (>28% of AMLs) is characterized by the presence of secondary AML (sAML) type mutations, such as SRFSF2, SF3B1, U2AF1, ZRSFR2, ASXL1, EZH2, BCOR, STATG2, RUNX1, SETBP1, and MLLPTD mutations; patients in this cluster were older and displayed a higher incidence of antecedent hematologic diseases compared to the rest of AML patients [1]. These patients were subdivided into two groups, sAML1 (secondary AML1, about 5% of total AMLs) with a single-class-defining mutation and sAML2 (about 24% of total AMLs) with ≥2 class-defining mutations; sAML1 patients had a better prognosis than sAML2 patients [6].
- A group of AMLs, corresponding to about 2% of adult AMLs, is characterized by biallelic mutations of the CEBPA gene and is associated with favorable prognosis; particularly, bZIP in-frame insertions/deletions are associated with good prognosis [6].
- The largest group of AMLs is characterized by mutations of the nucleophosmin 1 gene (NPM1) gene (30–35% of total AMLs), is associated with a normal karyotype, and usually occurs in de novo AMLs; this is a clinically heterogeneous group associated with variable prognosis, related to variability of co-associated mutations [6].
- A rare group of AMLs (<1%) is characterized by the presence of DNMT3A/IDH1-2 mutations, in the absence of other mutations, and is associated with intermediate/poor outcomes [1]. A total of 6% of patients, not clustering with any AML molecular class, were defined as Molecularly Not Otherwise Specified. Finally, about 2% of patients had no identifiable mutation [6].
2. Experimental and Clinical Studies of AML Immunotherapy Through Targeting of Membrane Antigens
2.1. Targeting of CD38 in AML
2.2. Targeting of CD33 in AML
2.3. Targeting of CLL1 in AML
2.4. TIM-3
2.5. CD123
2.6. Targeting of NKG2D in AML
2.7. Other Membrane Antigens Targetable in AML Patients
3. Reasons for Immunotherapy Failure for AML and Potential Strategies for Overcoming These Limitations
3.1. AML Blast Genetic and Epigenetic Heterogeneity and Multi-Target Therapy
3.2. Limited Effector Function Through T Cell Intrinsic and Extrinsic (Immunosuppressive Microenvironment) Mechanisms
3.3. Minimizing On-Target/Off-Target Toxicities of AML Immunotherapies
3.4. Multiple AML Targeting Involving Membrane Antigens and Oncogenic Proteins
3.5. AML Immunotherapy Post-Transplantation
3.6. Cytokine-Mediated CAR-T Therapy Resistance in AML
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cancer Genome Atlas Research; Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mingall, A.J.; Robertson, A.G.; Hoadley, A.S.K.; Triche, T.J.; Laird, P.W.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 20959–22074. [Google Scholar]
- Hou, H.A.; Lin, C.C.; Chou, W.C.; Liu, C.Y.; Chen, C.Y.; Tang, J.L.; Lai, Y.J.; Tseng, M.H.; Huang, C.F.; Chiang, Y.C.; et al. Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia. Leukemia 2014, 28, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, K.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Hauser, M.; Thol, F.; Bolli, N.; et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Bullinger, L.; Dohner, K.; Dohner, H. Genomics of acute myeloid leukemia diagnosis and pathways. J. Clin. Oncol. 2017, 35, 934–946. [Google Scholar] [CrossRef]
- Kishtagari, A.; Levine, R.L.; Viny, A.D. Driver mutations in acute myeloid leukemia. Curr. Opin. Hematol. 2020, 27, 49–57. [Google Scholar] [CrossRef]
- Tazi, Y.; Arango-Ossa, J.E.; Zhou, Y.; Bernard, E.; Thomas, I.; Gilkes, A.; Freeman, S.; Pradat, Y.; Johnson, S.J.; Hills, R.; et al. Unified classification and risk-stratification in acute myeloid leukemia. Nat. Commun. 2022, 13, 4622. [Google Scholar] [CrossRef]
- Craddock, C. Transplant in AML with measurable residual disease: Proceed or defer? Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 528–533. [Google Scholar] [CrossRef]
- Kolb, H.J.; Mittermuller, J.; Clemm, C.; Holler, E.; Ledderrose, G.; Brehm, G. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990, 76, 2462–2465. [Google Scholar] [CrossRef]
- Schmid, C.; Labopin, M.; Schaap, N.; Veelken, H.; Brecht, A.; Stadler, M. Long-term results and GvHD after prophylactic and preemptive donor lymphocyte infusion after allogeneic stem cell transplantation for acute leukemia. Bone Marrow Transplant. 2022, 57, 215–223. [Google Scholar] [CrossRef]
- Subklewe, M.; Bucklein, V.; Sallman, D.; Daver, N. Novel immunotherapies in the treatment of AML: Is there hope? Hematol. Am. Soc. Hematol. Educ. Program 2023, 2023, 691–701. [Google Scholar] [CrossRef]
- Restelli, C.; Ruella, M.; Paruzzo, L.; Tarella, C.; Pelicci, P.G.; Colombo, E. Recent advances in immune-based therapies for acute myeloid leukemia. Blood Cancer Discov. 2024, 5, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Khaldoyanidi, S.; Nagorsen, D.; Stein, A.; Ossenkoppele, G.; Subklewe, M. Immune biology of acute myeloid leukemia: Implications for immunotherapy. J. Clin. Oncol. 2021, 39, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Dufva, O.; Polonen, P.; Bruck, O.; Keranen, M.; Klievink, J.; Mehtonen, J.; Huuhtanen, J.; Kumar, A.; Malani, D.; Siitonen, S.; et al. Immunogenomic landscape of hematological malignancies. Cancer Cell 2020, 38, 380–399. [Google Scholar] [CrossRef] [PubMed]
- Vadakekolathu, J.; Minden, M.; Hood, T.; Church, S.; Redder, S.; Altmann, H.; Sullivan, A.H.; Viboch, E.J.; Patel, T.; Irahimova, N.; et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci. Transl. Med. 2020, 12, eaaz0463. [Google Scholar] [CrossRef]
- Rutella, S.; Vadakekolathu, J.; Mazziotta, F.; Reeder, S.; Yau, T.O.; Mukhopadhyay, R.; Dickins, B.; Altmann, B.; Kramer, M.; Knaus, H.A.; et al. Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvonments in acute myeloid leukemia. J. Clin. Investig. 2022, 132, e159979. [Google Scholar] [CrossRef]
- Lasry, A.; Nadorp, B.; Fornerod, M.; Nicole, D.; Wu, H.; Walker, C.J.; Sun, Z.; Witkowski, M.T.; Tikhonova, A.N.; Guillamot-Ruano, M.; et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat. Cancer 2023, 4, 27–42. [Google Scholar] [CrossRef]
- Vadakekolathu, J.; Rutella, S. Escape from T-cell-targeting immunotherapies in acute myeloid leukemia. Blood 2024, 143, 2689–2700. [Google Scholar] [CrossRef]
- Naik, J.; Themeli, M.; de Jorg-Korlaar, R.; Ruiter, R.; Puddighe, P.; Yuan, H.; de Bruijn, J.; Ossenkoppele, G.; Zweegman, S.; Smit, L.; et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica 2019, 104, e100–e103. [Google Scholar] [CrossRef]
- Mistry, J.J.; Moore, J.A.; Kumar, P.; Marlein, C.R.; Helmich, C.; Pillinger, G.; Jibril, A.; Di Palma, F.; Collins, A.; Bowles, K.M.; et al. Daratumumab inhibits acute myeloid leukemia metabolic capacity by blocking mitochondrialk transfer from mesenchymal stromal cells. Haematologica 2021, 106, 589–592. [Google Scholar] [CrossRef]
- Hu, N.; Gao, C.; Zhang, Y.; Teng, G.; Wang, Y.; Du, C.; Bai, J. Targeted therapy in CD38+ acute myeloid leukemia. Blood 2021, 138 (Suppl. S1), 4425. [Google Scholar] [CrossRef]
- Mistry, J.J.; Hellmich, C.; Lambert, A.; Moore, J.A.; Jibril, A.; Collins, A.; Bowles, K.M.; Rushworth, S.A. Venetoclax and daratumumab combination treatment demonstrates pre-clinical efficacy in mouse models of acute myeloid leukemia. Biomark. Res. 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Farber, M.; Chen, Y.; Arnold, L.; Mollmann, M.; Bogg-Whiteside, E.; Lin, Y.A.; Reinhardt, H.C.; Duhrsen, U.; Hanoun, M. Targeting CD38 in acute myeloid leukemia interferes with leukemia trafficking and induces phagocytosis. Sci. Rep. 2021, 11, 2206. [Google Scholar] [CrossRef] [PubMed]
- Murtadha, M.; Park, M.; Zhu, Y.; Caserta, E.; Napolitano, O.; Tandoh, T.; Moloudizargari, M.; Pozhitkov, A.; Singer, M.; Dona, A.A.; et al. A Cd38-directed, single-chain T-cell engager targets leukemia stem cells through IFN-γ-induced CD38 expression. Blood 2024, 143, 1599–16115. [Google Scholar] [CrossRef] [PubMed]
- Murthy, G.S.G.; Leonard, J.T.; Badar, T.; Arana Yi, C.Y.; Duvall, A.S.; Shah, B.D.; Baim, A.; Kearl, T.; Harrington, A.M.; Szabo, A.; et al. A phase 1 study of CD38-bispecific antibody (XmAb) for patients with CD38 expressing relapsed/refractory acute myeloid leukemia. Blood 2023, 142 (Suppl. S1), 1541–1542. [Google Scholar] [CrossRef]
- Martin-Sanchez, E.; Blanco, L.; Kim, P.S.; Bisht, K.; Wang, H.; Van de Velde, H.; Jelinek, T.; Simoes, C.; Prosper, F.; San Miguel, J.F. Targeting CD38 with isotuximab and a novel CD38/CD3xCD28 trispecific T-cell engager in older patients with acute myeloid leukemia. Blood Adv. 2024, 8, 3875–3879. [Google Scholar] [CrossRef]
- Glisovic-Aplenc, T.; Diorio, C.; Chukinas, J.A.; Veliz, K.; Shestova, O.; Shen, F.; Nunez-Cruz, S.; Vincent, T.L.; Miao, F.; Milone, M.C.; et al. CD38 as a pan-hematologic target for chimeric antigen receptor T cells. Blood Adv. 2023, 7, 4416–4430. [Google Scholar] [CrossRef]
- Cui, Q.; Qian, C.; Xu, N.; Kang, L.; Dai, H.; Cui, W.; Song, B.; Yin, L.; Li, Z.; Zhu, X.; et al. CD38-directed CAR-T cell therapy: A novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. J. Hematol. Oncol. 2021, 14, 82. [Google Scholar] [CrossRef]
- Dohner, H.; Weber, D.; Krzykalla, J.; Fiedler, W.; Kuhn, M.; Schroeder, M.; Mayer, K.; Lubbert, M.; Wattad, M.; Gotze, K.; et al. Intensive chemotherapy with or without gemtuzumab ozogamicin in patients with NPM1-mutated acute myeloid leukemia (AMLSG 09-09): A randomized, open-label, multicentre, phase I trial. Lancet Hematol. 2023, 10, e495–e509. [Google Scholar] [CrossRef]
- Swaminathan, M.; Cortes, J.E. Update on the role of gemtuzumab-ozogamicin in the treatment of acute myeloid leukemia. Ther. Adv. Hematol. 2023, 14, 20406207231154708. [Google Scholar] [CrossRef]
- Ravandi, F.; Subklewe, M.; Walter, R.B.; Vachani, P.; mOssenkoppele, G.; Bueklein, V.; Dohner, H.; Jongen-Lavrencic, M.; Baldus, C.D.; Frensecky, L.; et al. Safety and tolerability of AMG330 in adults with relapsed/refractory AML: A phase 1a dose-escalation study. Leuk. Lymphoma 2024, 65, 1281–1291. [Google Scholar] [CrossRef]
- Subklewe, M.; Stein, A.; Walter, R.B.; Bhatia, R.; Wei, A.H.; Ritchie, D.; Bucklein, V.; Vachhani, P.; Dai, T.; Hindoyan, A.; et al. Preliminary results from a phase 1 first-in-human of AMG 673,m a novel half-life extended (HLE) anti-CD33/CD3 BiTE (bispecific T-cell engager) in patients with relapsed/refractory (R/) acute myeloid leukemia (AML). Blood 2019, 134 (Suppl. S1), 833. [Google Scholar] [CrossRef]
- Eissenebrg, L.G.; Ritchey, J.K.; Rettig, M.P.; Patel, D.A.; Vij, K.; Gao, F.; Smith, V.; Han, T.H.; DiPersio, J.F. Control of acute myeloid leukemia and generation of immune memory in vivo using AMV564, a bivalent bispecific CD33xCD3 T cell engager. PLoS ONE 2024, 19, e300174. [Google Scholar]
- Westervelt, P.; Cortes, J.E.; Altman, J.K.; Long, M.; Oehler, V.G.; Gojo, I.; Guenot, J.; Chun, P.; Roboz, G.J. Phase 1 first-in-human trial of AMV564, a bivalent bispecific (2:2)CD33/CD3 T-cell engager, in patients with relapsed/refractory acute myeloid leukemia (AML). Blood 2019, 134 (Suppl. S1), 834. [Google Scholar] [CrossRef]
- Zeng, Z.; Roobrouck, A.; Deschamps, G.; Bonnevaux, H.; Guerif, S.; De Brabandere, V.; Amara, C.; Dejonckheere, E.; Virone-Oddos, A.; Chiron, M.; et al. Dual-targeting CD33/CD123 NANOBODY T-cell engager with potent anti-AML activity and good safety profile. Blood Adv. 2024, 8, 2059–2068. [Google Scholar] [CrossRef]
- Appelbaum, J.; Price, A.E.; Oda, K.; Zheng, J.; Leung, W.H.; Tampella, G.; Xia, D.; So, P.; Hilton, S.; Evandy, C.; et al. Drug-regulated CD33-targeted CAR T cells control AML using clinically optimized rapamycin dosing. J. Clin. Investig. 2024, 134, e162593. [Google Scholar] [CrossRef]
- Freeman, R.; Shahid, S.; Khan, A.G.; Mattehw, S.C.; Souness, S.; Bums, E.R.; Ums, J.S.; Tanaka, K.; Cai, W.; Yoo, S.; et al. Developing a membrane-proximal CD33-targeting CAR T cell. J. Immunother. Cancer 2024, 12, e009013. [Google Scholar] [CrossRef]
- Fiorenza, S.; Lim, S.; Laszlo, G.S.; Kimble, E.; Phi, T.D.; Lunn-Halbert, M.; Kirchmeier, D.; Huo, J.; Kiem, H.P.; Turtle, C.J.; et al. Targeting the membrane-proximal C2-set domain of CD33 for improved CAR T cell therapy. Mol. Ther. Oncol. 2024, 32, 200854. [Google Scholar] [CrossRef]
- Kenderian, S.S.; Ruella, M.; Sheston, O.; Klichinsky, M.; Aikawa, V.; Morrissette, J.J.D.; Schuller, J.; Song, D.; Porter, D.L.; Carroll, M.M.; et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 2015, 29, 1637–1647. [Google Scholar] [CrossRef]
- Tambaro, F.P.; Singh, H.; Jenes, E.; Rytting, M.; Mahedeo, K.M.; Thompson, P.; Daver, N.; Di Nardom, C.; Kadia, T.; Garcia-Manero, G.; et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia 2021, 35, 3282–3286. [Google Scholar] [CrossRef]
- Qin, H.; Yang, L.; Chukinas, J.A.; Shah, N.N.; Tarun, S.; Pourolles, M.; Chien, C.D.; Niswander, L.M.; Welch, A.R.; Taylor, N.A.; et al. Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T-cell immunotherapy for acute myeloid leukemia defines optimized construct design. J. Immunother. Cancer 2021, 9, e003149. [Google Scholar] [CrossRef]
- Shah, N.N.; Tasian, S.K.; Kohler, E.; Baumeister, S.; Sammers, C.; Sholabi, H.; Pallard, J.; Yates, B.; Brazanskas, R.; Ndifan, E.; et al. CAR-T cells (CD3CART) for children and young adults with relapsed/refractory AML: Dose-escalation results from a phase I/II multicenter trial. Blood 2023, 142 (Suppl. S1), 771–773. [Google Scholar] [CrossRef]
- Pan, J.; Zuo, S.; Li, C.; Ling, Z.; Xu, J.; Duan, J.; Wu, T.; Feng, X. Phase I study of functionally enhanced CD33 CAR T cells in patients refractory acute myeloid leukemia. J. Clin. Oncol. 2024, 42 (Suppl. S16), 6518. [Google Scholar] [CrossRef]
- Zuo, S.; Li, C.; Sun, X.; Deng, B.; Zhang, Y.; Han, Y.; Ling, Z.; Xu, J.; Duan, J.; Wang, Z.; et al. C-JUN overexpressing CAR-T cells in acute myeloid leukemia: Preclinical characterizartion and phase I trial. Nat. Commun. 2024, 15, 6155. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Cao, Y.; Pinz, K.; Ma, Y.; Wada, M.; Chen, K.; Ma, G.; Shen, J.; Tse, C.O.; Su, Y.; et al. First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: Update on phase 1 clinical trial. Blood 2018, 132 (Suppl. S1), 901. [Google Scholar] [CrossRef]
- Wang, H.; Feng, S.; Zhu, Y.; Zhang, Y.; Zhou, Z.; Nian, Z.; Lu, X.; Peng, P.; Wu, S.; Zhou, L. The tandem CD33-CLL1 CAR-T as an approach to treat acute myeloid leukemia. Blood Trasfu. 2024, in press. [Google Scholar]
- Boucher, J.C.; Shretsha, B.; Vishwasrao, P.; Leick, M.; Cervantes, E.V.; Ghafoor, T.; Reid, K.; Spitler, K.; Yu, R.; Betts, B.C.; et al. Bispecific CD33/CD123 targeted chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Mol. Ther. Oncolytics 2023, 31, 100751. [Google Scholar] [CrossRef]
- Borot, F.; Wang, H.; Ma, Y.; Jafarov, T.; Raza, A.; Ali, A.M.; Mukherjee, S. Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proc. Natl. Acad. Sci. USA 2019, 116, 11978–11987. [Google Scholar] [CrossRef]
- Kim, M.Y.; Yu, K.R.; Kenderian, S.S.; Ruella, M.; Chen, S.; Shin, T.H.; Aljanahi, A.A.; Screeder, D.; Klicinsky, M.; Shestova, O.; et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 2018, 173, 1439–1453.e19. [Google Scholar] [CrossRef]
- Koehne, G.; Tominson, B.; Suh, H.; Koura, D.; Cho, C.; Bambace, N.M.; Bernard, L.; Shah, N.N.; Walter, R.; Dipersio, J.; et al. CD33-deleted hematopoietic stem and progenitor cells display normal engraftment after hematopoietic transplant (HCT) and tolerate post-HCT gemtuzumab ozogamicin (GO) without cytopenias. HemaSphere 2023, 7, 2706–2707. [Google Scholar] [CrossRef]
- DiPersio, J.F.; Cooper, B.; Suh, H.C.; Koura, D.; Bernard, L.; Shah, N.; Walter, R.B.; Perales, M.A.; Mapara, M.Y.; Tamori, R.; et al. Trem-Cel, a CRISPR/Cas9 gene-edited allograft lacking CD33, shows rapid nprimary engraftment with CD33-negative hematopoiesis in patients in patients with high-risk acute myeloid leukemia (AML) and avoids hematopoietic toxicity during gemtuzumab ozogamicin (GO) maintenance post-hematopoietic cell transplant (HCT). Transplant. Cell. Ther. Off. Publ. Am. Soc. Transplant. Cell. Ther. 2024, 30, S237–S238. [Google Scholar]
- Albinger, N.; Pfeifer, R.; Nitsche, M.; Mertlitz, S.; Campe, J.; Stein, K.; Kreyenberg, H.; Schubert, R.; Quadflieg, M.; Schneider, D.; et al. Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia. Blood Cancer J. 2022, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Albinger, N.; Muller, S.; Kostyra, J.; Kuska, J.; Maertlitz, S.; Penack, O.; Zhang, C.; Moker, N.; Ullrich, E. Manufacturing of primary CAR-NK cells in an automated system for the treatment of acute myeloid leukemia. Bone Marrow Transplant. 2024, 59, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Wen, Q.; Wang, X.; Yan, H.; Ma, Y.; Mai-Hong, W.; Han, X.; Gao, L.; Gao, L.; Zhang, C.; et al. Off-the-shelf CD33 CAR-NK cell therapy for relapse/refractory AML: First-in-human, phase I trial. Blood 2022, 140 (Suppl. S1), 7450–7451. [Google Scholar] [CrossRef]
- Bexte, T.; Albinger, N.; Al Ajami, A.; Wendel, P.; Buchinger, L.; Gessner, A.; Alzubi, J.; Sarchen, V.; Vogler, M.; Rasheed, H.M.; et al. CRISPR/Cas9 editing of NKG2A improves the efficacy of primary CD33-directed chimeric antigen receptor natural killer cells. Nat. Commun. 2024, 15, 8439. [Google Scholar] [CrossRef]
- Van Loo, P.F.; Hangalapura, B.N.; Thordardottir, S.; Gibbins, J.D.; Veninga, H.; Hendricks, L.; Kramer, A.; Roovers, R.C.; Leenders, M.; de Kruif, J.; et al. MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukemic stem cell antigen, induces T cell-mediated AML blas lysis. Expert Opin. Biol. Ther. 2019, 19, 721–733. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Cortes, J.; Huls, G.; Venditti, A.; Breems, D.; De Botton, S.; DeAngelo, D.J.; Loosdrecht, A.; Jongen-Lavrencic, M.; Borthakur, G.; et al. Update from the Ongoing Phase I Multinational Study of MCLA-117, a Bispecific CLEC12A x CD3 T-Cell Engager, in Patients with Acute Myelogenous Leukemia; European Hematology Association: The Hague, The Netherlands, 2020. [Google Scholar]
- Lee, E.; Lee, S.; Park, S.; Son, Y.G.; Yoo, J.; Koh, Y.; Shin, D.Y.; Lim, Y.; Won, J. Asymmetric anti CLL1xCD3 bispecific antibody, ABL602 2+2, with attenuated CD3 affinity endows potent antitumor activity but limited cytokine release. J. Immunother. Cancer 2023, 11, e007494. [Google Scholar] [CrossRef]
- Wang, J.; Qi, J.; Wei, X.; Jin, J.; Feng, X.; Sun, M.; Mi, R.; Wang, H.; Cao, Y.; Liu, S.; et al. A Phase 1, Dose-Escalation Study of QLF32101, a CLL1/CD3 Bispecific Antibody, in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML); European Hematology Association: The Hague, The Netherlands, 2024; p. 582. [Google Scholar]
- Zhang, H.; Wang, P.; Li, Z.; He, Y.; Gan, W.; Jiang, H. Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia. Clin. Cancer Res. 2021, 27, 3549–3555. [Google Scholar] [CrossRef]
- Pei, K.; Xu, H.; Wang, P. Anti-CLL1-based CAR T-cells with 41BB or CD28/CD27 stimulatory domains in treating childhood refractory/relapsed acute myeloid leukemia. Cancer Med. 2023, 12, 9655–9661. [Google Scholar] [CrossRef]
- Zhao, Y.; Bai, X.; Guo, S.; Zhang, X.; Liu, J.; Zhao, M.; Xie, T.; Meng, H.; Zhang, Y.; He, X.; et al. Efficacy and safety of CAR-T therapy targeting CLL1 in patients with extramedullary diseases of acute myeloid leukemia. J. Transl. Med. 2024, 22, 888. [Google Scholar] [CrossRef]
- Zhang, H.; Bu, C.; Peng, Z.; Li, G.; Zhou, Z.; Ding, W.; Zheng, Y.; He, Y.; Hu, Z.; Pei, H.; et al. Characteristics of anti-CLL1 based CAR-T therapy for children with relapsed or refractory acute myeloid leukemia: The multi-center efficacy and safety interim analysis. Leukemia 2022, 36, 2596–2604. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, H.; Sun, L.; Li, Y.; Zhang, S.; He, G.; Yi, H.; Wada, M.; Pinz, K.; Chen, K.H.; et al. First in Human CLL1-CD33 Compound CAR (CCAR) T Cell Therapy in Relapsed and Refractory Acute Myeloid Leukemia; The European Hematology Association (EHA): The Hague, The Netherlands, 2020; p. abst. S149. [Google Scholar]
- Jin, X.; Zhang, M.; Sun, R. First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia. J. Hematol. Oncol. 2022, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lv, H.; Xiao, X.; Bai, X.; Liu, P.; Pu, Y.; Meng, J.; Zhu, H.; Wang, Z.; Zhang, H.; et al. A phase I clinical trial of CLL1 CAR-T cells for the treatment of relapsed/refractory acute myeloid leukemia in adults. Blood 2023, 142 (Suppl. S1), 2106. [Google Scholar] [CrossRef]
- Xie, D.; Jin, X.; Sun, R.; Zhang, M.; Liu, W.; Cao, X.; Guo, R.; Zhang, Y.; Zhao, M. Bicistronic CAR-T cells targeting CD123 and CLL1 for AML to reduce the risk of antigen escape. Transl. Oncol. 2023, 34, 101695. [Google Scholar] [CrossRef] [PubMed]
- Francica, B.; Garner, E.; Namburi, S.; Colgan, C.; Fowler, T.; Mutha, D.; Aviles, A.; Stanaway, M.; Guo, R.; An, Z.; et al. CLL-1-targeted allogeneic CAR-T cells exhibit high on-target specificity and potent cytotoxicity in preclinical models of acute myeloid leukemia. Blood 2023, 142 (Suppl. S1), 6838. [Google Scholar] [CrossRef]
- Wolf, Y.; Anderson, A.C.; Kudree, V.K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 2020, 20, 173–185. [Google Scholar] [CrossRef]
- Brunner, A.M.; Esteve, J.; Porkka, K.; Knapper, S.; Traer, E.; Scholl, S.; Garcia-Manero, G.; Vey, N.; Wermke, M.; Janssen, J.; et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (pts) with very-high/high risk myelodysplastic syndrome (VHR/HR-MDS): Final analysis from a phase 1b study. Blood 2021, 138 (Suppl. S1), 244. [Google Scholar] [CrossRef]
- Santini, V.; Platzbecker, U.; Fenaux, P.; Giagounidis, A.; Miyazaki, V.; Sekeres, M.A.; Xiuao, Z.; Sanz, G.; Van Hoef, M.; Ma, F.; et al. Diasease characteristics and International Prognostic Scoring System (IPSS, IPSS-R, IPSS-M) in adult patients with higher risk myelodysplastic syndromes (MDS) participating in two randomized, double-blind, placebo-controlled studies with intravenous sabatolimab added to hypomethylating agents (HMA) (STIMULUS-MDS1 and MDS2). Blood 2022, 140 (Suppl. S1), 1340–1342. [Google Scholar]
- Zeidan, A.M.; Ando, K.; Rauzy, O.; Tugut, M.; Wang, M.C.; Cairoli, R.; Hou, H.A.; Kwong, Y.L.; Arnan, M.; Meers, S.; et al. Sabatolimab plus hypomethylating agents in previously untreated patients with higher-risk myelodysplastic syndromes (STIMULUS-MDS1): A randomized, double-blind, placebo-controlled, phase 2 trial. Lancet Hematol. 2024, 11, E38–E50. [Google Scholar] [CrossRef]
- Zeiser, R.; Devillier, R.; Mico, M.C.; Valcarcel, D.; Call, S.; Niederweiser, C.; Nourry, C.; Xu, Y.; Medts, T.; Guichard, N.; et al. TIM-3 inhibitor sabatolimab in patients with acute myeloid leukemia (AML) with measurable residual disease (MRD) detected after allogeneic stem cell transplantation (AlloSCT): Preliminary findings from the phase Ib/II Stimulus-AML2 study. Blood 2023, 142 (Suppl. S1), 59. [Google Scholar] [CrossRef]
- Lee, W.H.S.; Ye, Z.; Cheung, A.; Go, Y.S.; Ho, H.L.J.; Rajarethinan, R.; Yoo, S.P.; Soh, N.K.; Chan, E.H.L.; Tan, L.K.; et al. Effective killing of acute myeloid leukemia by TIM-3 targeted chimeric antigen receptor T cells. Mol. Cancer Ther. 2021, 20, 1702–1712. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, W.; Rohrbacher, L.; Flaswinkel, H.; Emhardt, A.J.; Magno, G.; Habner, S.; Kobold, S.; Leonhardt, H.; Hopfner, K.P.; et al. CD33-TIM3 dual CAR T cells: Enhancing specificity while maintaining efficacy against AML. Blood 2023, 142 (Suppl. S1), 3449. [Google Scholar] [CrossRef]
- Jordan, C.T.; Upchurch, D.; Szilvassy, S.J.; Guzman, M.L.; Howard, D.S.; Pettigrew, A.L.; Meyerrose, T.; Rossi, R.; Grimes, B.; Rizzieri, D.A.; et al. The interleukin-3 receptor alpha is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000, 14, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Riccioni, R.; Coccia, E.; Stellacci, E.; Samoggia, P.; Latagliata, R.; Mariani, G.; Rossini, A.; Battistini, A.; Lo-Coco, F.; et al. Elevated expression of IL-3R alpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity and poor prognosis. Blood 2002, 100, 2980–2988. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, E.; Castelli, G.; Testa, U. CD123 a therapeutic target for acute myeloid leukemia and plasmocytoid dendritic neoplasm. Int. J. Mol. Sci. 2023, 24, 2718. [Google Scholar] [CrossRef]
- Frankel, A.; Liu, J.S.; Rizzieri, D.; Hogge, D. Phase I clinical study of diphteria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk. Lymphoma 2008, 49, 543–553. [Google Scholar] [CrossRef]
- Pemmaraju, N.; Lane, A.A.; Sweet, K.L.; Stein, A.S.; Vasu, S.; Blum, W.; Rizzieri, D.A.; Wang, E.S.; Dovic, M.; Sloan, J.M.; et al. Tagraxofusp in blastic plasmocytoid dendritic cell neoplasm. N. Engl. J. Med. 2019, 380, 1228–1237. [Google Scholar] [CrossRef]
- Lane, A.A.; Garcia, J.S.; Raulston, E.G.; Garzon, J.L.; Galinsky, I.; Baxter, E.W.; Leonard, R.; DeAngelo, D.J.; Luskin, M.R.; Reilly, C.R.; et al. Phase 1b trial of tagraxofusp in combination with azacitidine or without venetoclax in acute myeloid leukemia. Blood Adv. 2024, 8, 591–600. [Google Scholar] [CrossRef]
- Uy, G.L.; Rettig, M.P.; Vey, N.; Godwin, J.; Foster, M.C.; Rizzieri, D.A.; Arellano, M.L.; Topp, M.S.; Huls, G.; Jongen-Lavrencic, M.; et al. Phase 1 cohort expansion of Flotetuzumab, a CD123 × CD3 bispecific DART protein in patients with relapsed/refractory acute myeloid leukemia (AML). Blood 2018, 132, 764. [Google Scholar] [CrossRef]
- Uy, G.L.; Aloss, I.; Foster, M.C.; Sayre, P.H.; Wieduwalt, M.J.; Advani, A.S.; Godwing, J.E.; Arellano, M.L.; Sweet, K.L.; Emadi, A.; et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021, 137, 751–762. [Google Scholar] [CrossRef]
- Vadakekolathu, J.; Patel, T.; Reeder, S.; Schrarschmidt, H.; Schmitz, M.; Bornhauser, M.; Warren, S.E.; Hood, T.; Donaher, P.; Cesano, A.; et al. Immune gene expression profiling in children and adults with acute myeloid leukemia identifies distinct phenotypic patterns. Blood 2017, 130, 3942. [Google Scholar]
- Rutella, S.; Church, S.E.; Vadakekolathu, J.; Viboch, E.; Sullivan, A.H.; Hood, T.; Warrem, S.E.; Cesano, A.; La Motte-Mohs, R.; Muth, J.; et al. Adaptive immune gene signatures correlate with response to Flotetuzumab, a CD123 × CD3 bispecific DART molecule, in patients with relapsed/refractory acute myeloid leukemia. Blood 2018, 132, e444. [Google Scholar] [CrossRef]
- Penter, L.; Wu, C.J. Therapy response in AML: A tale of two T cells. Blood 2024, 144, 1134–1136. [Google Scholar] [CrossRef] [PubMed]
- Vadadekolathu, J.; Lai, C.; Reeder, S.; Church, S.E.; Hood, T.; Lourdusamy, A.; Rettig, M.P.; Aldoss, I.; Advani, A.S.; Godwin, J.; et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020, 4, 5011–5020. [Google Scholar] [CrossRef] [PubMed]
- Vadakekolathu, J.; Altmann, H.; Wobus, M.; von Bonin, M.; Schmitz, M.; Baretton, G.; Zeiser, R.; Bornhauser, M.; Rutella, S. Spatially resolved transcriptomics unveils unique T-cell dysfunctional states and prognostic gene expression signatures in TP53-mutated acute myeloid leukemia. Blood 2023, 142, 291. [Google Scholar] [CrossRef]
- Daver, N.; Montesinos, P.; Altman, J.K.; Wang, E.S.; Martinelli, G.; Roboz, G.; Begna, K.; Vyas, P.; Lunghi, M.; Platzbecker, U.; et al. Pivekimab sunirine (PVEK, IMGN632), a CD123-targeting antibody-drug conjugate, in combination with azacitidine and ven in patients with newly diagnosed acute myeloid leukemia. Blood 2023, 142, 2906. [Google Scholar] [CrossRef]
- Pratz, K.W.; Jonas, B.A.; Pulalrkat, V.; Recher, C.; Schuh, A.C.; Thirman, M.J.; Garcia, J.S.; DiNardo, C.D.; Vorobyev, V.; Fracchiolla, N.S.; et al. Measurable residual disease response and prognosis in treatment-naïve acute myeloid leukemia with venetoclax and azacitidine. J. Clin. Oncol. 2021, 40, 855–865. [Google Scholar] [CrossRef]
- Daver, N.G.; Montesinos, P.; De Angelo, D.J.; Wang, E.S.; Papadantonakis, N.; Todisco, E.; Sweet, K.L.; Pemmaraju, N.; Lane, A.A.; Torres-Minana, L.; et al. Pivekimab sunirine (IMGN632), a novel CD123-targeting antibody-drug conjugate, in relapsed or refractory acute myeloid leukemia: A phase 1/2 study. Lancet Oncol. 2024, 25, 388–400. [Google Scholar] [CrossRef]
- Anderson, R.F.; Huang, L.; Zhang, X.; Li, H.; Kaufman, T.; Diedrich, G.; Moore, P.; Bonvini, E. Combinatorial anti-tumor activity in animal models of novel CD123 × CD3 bispecific Dart molecule (MGD024) with cytarabine, venetoclax or azacitidine supports combination therapy in acute myeloid leukemia. Blood 2021, 138, 1165–1166. [Google Scholar] [CrossRef]
- Winer, E.S.; Maris, M.; Sharma, M.R.; Kaminker, P.; Pan, E.; Ward, A.; Sochacki, A.L. A phase 1, first-in-human, dose-escalation study of MGD-024, a CD123 × CD3 bispecific Dart molecule, in patients with relapsed or refractory CD123-positive (+) hematologic malignancies. Blood 2022, 140 (Suppl. S1), 11753–11754. [Google Scholar] [CrossRef]
- Ravandi, F.; Bashley, A.; Foran, J.M.; Stock, W.; Mawad, R.; Blum, W.; Saville, W.; Johnson, C.M.; Vanasse, G.J.; Ly, T.; et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb14045, a CD123 × CD3 T cell-engaging bispecific antibody: Initial results of a phase I study. Blood 2018, 132 (Suppl. S1), 763. [Google Scholar] [CrossRef]
- Ravandi, F.; Bashey, A.; Stock, W.; Foran, J.M.; Mawad, R.; Egan, D.; Blum, W.; Yang, A.; Pastore, A.; Johnson, C. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of vibecotamab (XmAb14045), a CD123 × CD3 T cell-engaging bispecific antibody; initial results of a phase 1 study. Blood 2020, 136 (Suppl. S1), 4–5. [Google Scholar] [CrossRef]
- Ravandi, F.; Nashley, A.; Foran, J.; Stock, W.; Mawad, R.; Short, N.; Yilmaz, M.; Kantarjan, H.; Odenike, O.; Patel, A.; et al. Phase I study of vibecotamab identifies an optimized dose for treatment of relapsed/refractory acute myeloid leukemia. Blood Adv. 2023, 7, 6492–6505. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Ravandi, F.; Wang, S.; Jorgensen, J.; Wang, W.; Chien, K.S.; Montalban-Bravo, G.; Issa, G.C.; Maiti, A.; Valero, J.A.; et al. Phase II study of vibecotamab, a CD3-CD123 bispecific T-cell engaging antibody, for MDS or CMML after hypomethylating failure and in MRD-positive AML. Blood 2023, 142 (Suppl. S1), 322. [Google Scholar] [CrossRef]
- Comeau, M.R.; Gottschalk, R.; Daugherty, M.; Sewerty, T.; Sewell, T.; Misher, L.; Banninck, J.; Johnson, S.; Parr, L.; Kumar, J.; et al. APV0436, a bispecific anti-CD123 × CD3 ADAPTIRTM molecule for redirected T-cell cytotoxicity with limited cytokine release, is well tolerated in repeated dose toxicology studies in cynomolgus macaques. In Proceedings of the American Association for Cancer research Annual Meeting 2019, Atlanta, GA, USA, 29 March–3 April 2019; AACR: Philadelphia, PA, USA, 2019. [Google Scholar]
- Uckun, F.M.; Lin, T.L.; Mims, A.S.; Patel, P.; Lee, C.; Shadidzaeh, A.; Shami, P.J.; Cull, E.; Cogle, C.R.; Watts, J. A clinical phase 1B study of the CD3xCD123 bispecific antibody APV0463 in patients with relapsed/refractory acute myeloid leukemia or myelodysplastic syndrome. Cancers 2021, 13, 4113. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.; Maris, M.; Lin, T.L.; Patel, P.; Madenat, Y.F.; Cogle, C.R.; Borthakur, G.; Huebner, D.; Khashely, N.; Bonham, L.; et al. Updated results from a Phase 1 study of APVO436, a novel bispecific anti-CD123xanti-CD3 AdaptirTM molecule, in relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Blood 2022, 140 (Suppl. S1), 6204–6205. [Google Scholar] [CrossRef]
- Stein, A.S.; Bajel, A.; Fleming, S.; Jongen-Lavrencic, M.; Garciaz, S.; Maiti, A.; Boisset, N.; De Botton, S.; Huls, G.A.; de Leeuw, D.C.; et al. An open-label, first-in-human, dose-escalation study of SAR443579 administered as single agent by intravenous infusion in patients with relapsed or refractory acute myeloid leukemia (R/R AML), B-cell acute lymphoblastic leukemia (B-ALL) or high-risk myelodysplasia (HR-MDS). Blood 2022, 140 (Suppl. S1), 7476–7477. [Google Scholar]
- Bajel, A.; Garciaz, S.; Desai, P.; Huls, G.A.; Maiti, A.; Jongen-Lavrencic, M.; Boissel, N.; De Botton, S.; de Leeuw, D.; Fleming, S.; et al. First-in-human study of the CD123 NK cell engager SAR443579 in relapsed or refractory acute myeloid leukemia, B-cell acute lymphoblastic leukemia or high risk-myelodysplasia: Updated safety, efficacy, pharmacokinetics and pharmacodynamics. Blood 2023, 142 (Suppl. S1), 3474. [Google Scholar] [CrossRef]
- Gauthier, L.; Virone-Oddos, A.; Beninga, J.; Rossi, B.; Nicolazzi, C.; Amara, C.; Blanchard-Alvarez, A.; Gourdin, N.; Courta, J.; Basset, A.; et al. Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat. Biotechnol. 2023, 41, 1296–1306. [Google Scholar] [CrossRef]
- Budde, L.E.; Song, J.; Del Real, M.; Kim, Y.; Toribio, C.; Wood, B.; Wagner, J.; Marcucci, E.; Stein, A.; Marcucci, G.; et al. CD123CAR displays clinical activity in relapsed refractory (r/r) acute myeloid leukemia (AML) and blastic plasmocytoid dendritic cell neoplasm (BPDCN): Safety and efficacy results from a phase 1 study. Cancer Immunol. Res. 2020, 8 (Suppl. S4), PR14. [Google Scholar] [CrossRef]
- Werke, M.; Metzelder, S.; Kraus, S.; Sala, E.; Vucinic, V.; Fiedler, W.; Wetzko, K.; Schafer, J.; Goebeler, M.E.; Koedam, J.; et al. Updated results of a phase I dose escalation study of the rapidly-switchable universal CAR-T therapy UniCAR-T-CD123 in relapsed/refractory AML. Blood 2023, 142 (Suppl. S1), 3465–3467. [Google Scholar] [CrossRef]
- Salmman, D.A.; Kerre, T.; Havelange, V.; Poiré, X.; Lewalle, P.; Wang, E.S.; Brayer, J.B.; Davila, M.L.; Moors, I.; Machiels, J.P.; et al. CYAD-01, an autologous NKG2D-based CAR-T-cell therapy, in relapsed or refractory acute myeloid leukemia and myelodysplastic syndromes or multiple myeloma (THINK): Hematological cohorts of the dose escalation segmant of a phase 1 trial. Lancet Hematol. 2023, 10, e191–e202. [Google Scholar] [CrossRef] [PubMed]
- Paczulla, A.M.; Rothfelder, K.; Raffel, S. Absence of NKG2D ligands defines leukemia stem cells and mediates their immune evasion. Nature 2019, 572, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Deeren, D.; Maertens, J.A.; Lin, T.; Beguin, Y.; Demoulin, B.; Fontaine, M.; Sotiropoulou, P.A.; Alcantar-Oroczo, E.; Breman, E.; Dheur, M.S.; et al. First results from the dose escalation segment of the phase I clinical study evaluating Cyad-02, an optimized non gene-edited engineered NKG2D CAR-T cell product, in relapsed or refractory acute myeloid leukemia and myelodysplastic syndrome patients. Blood 2020, 136 (Suppl. S1), 36. [Google Scholar] [CrossRef]
- Jin, X.; Xie, D.; Sun, R.; Lu, W.; Xiao, X.; Yu, Y.; Meng, J.; Zhao, M. CAR-T cells dual-target CD123 and NKG2DLs to eradicate AML cells and selectively target immunosuppressive cells. Oncoimmunology 2023, 12, 2248926. [Google Scholar] [CrossRef]
- Sauter, C.S.; Borthakur, G.; Mountjoy, L.; Rotta, M.; Liu, H.; Murthy, H.S.; Lin, M.; Trager, J.; Chang, C.; Kothari, N.; et al. A phase 1 study of NKX101, a chimeric antigen receptor natural killer (CAR-NK) cell therapy, with fludarabine and cytarabine in patients with aciute myeloid leukemia. Blood 2023, 142, 2097–2099. [Google Scholar] [CrossRef]
- Coustan-Smith, E.; Song, G.; Shurtleff, S.; Yeoh, A.; Chng, W.J.; Chen, S.P.; Rubnitz, J.; Pui, C.H.; Downing, J.R.; Campana, D. Universal monitoring of minimal residual sisease in acute myeloid leukemia. JCI Insight 2018, 3, e98561. [Google Scholar] [CrossRef]
- Iwasaki, M.; Liedtke, M.; Gentles, A.J.; Cleary, M.L. CD93 marks a non-quiescent human leukemia stem cell population and is required for development of MLL-rearranged acute myeloid leukemia. Cell Stem Cell 2015, 17, 412–421. [Google Scholar] [CrossRef]
- Richards, R.M.; Zhao, F.; Freitas, K.A.; Parker, B.R.; Xu, P.; Fan, A.; Sotillo, E.; Daugaard, M.; Zarni Oo, H.; Liu, J.; et al. NOT-gated CD93 CAR T cells effectively target AML with minimized endothelial cross-reactivity. Blood Cancer Discov. 2021, 26, 648–665. [Google Scholar] [CrossRef]
- Riether, C.; Schurch, C.M.; Buhrer, E.D.; Interbrnder, M.; Huguenin, A.L.; Hoepner, S.; Zlobec, I.; Pabst, T.; Radpou, R.; Ochsenbein, A.F. CD70/CD27 signaling promotes blast stemness and is a vible therapeutic target in acute myeloid leukemia. J. Exp. Med. 2017, 214, 359–380. [Google Scholar] [CrossRef]
- Riether, C.; Pabst, T.; Hopner, S.; Bacher, U.; Hinterbrandner, M.; Banz, Y.; Muller, R.; Manz, M.G.; Gharib, W.H.; Francisco, D.; et al. Targeting CD70 with cusatuzumab eliminates acyte myeloid leukemia stem cells in aptients with hypomethylating agents. Nat. Med. 2020, 26, 1458–1467. [Google Scholar] [CrossRef]
- Pabst, T.; Vey, N.; Adès, L.; Bacher, U.; Bargetzi, M.; Fung, S.; Gaidano, G.; Gandini, D.; Hultberg, A.; Johnson, A.; et al. Reuslts from a phase I/II trial of cusatuzumab combined with azacitidine in patients with newly diagnosed acute myeloid leukemia who are inelegible for intensive chemotherapy. Haematologica 2023, 108, 1793–1802. [Google Scholar] [CrossRef] [PubMed]
- Sauer, T.; Parikh, K.; Sharma, S.; Omer, B.; Sedloev, D.; Chen, Q.; Angenendt, L.; Schliemann, C.; Schmitt, M.; Muller-Tidow, C.; et al. CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood 2021, 138, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Guo, S.; Luo, Q.; Wang, X.; Deng, W.; Ouyang, G.; Pu, J.J.; Lei, W.; Qian, W. Preclinical evaluation of CD70-specific CAR T cells targeting acute myeloid leukemia. Front. Immunol. 2023, 14, 1093750. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Reichen, C.; Croset, A.; Fischer, S.; Eggensweitz, A.; Gribler, Y.; Marpakwar, R.; Looser, T.; Spitzli, P.; Herzog, C.; et al. The CD33xCD123xCD70 multispcific CD3-engaging DARPin MP05333 induces selective T cell-mediated killing of AML leukemic stem cells. Cancer Immunol. 2024, 12, 921–943. [Google Scholar] [CrossRef] [PubMed]
- Pabst, T.; Jongen-Lavrencic, M.; Boettcher, S.; Huls, G.A.; De Leeuw, D.C.; Legenne, P.; Dymsowska, M.; Andrieu, C.; Schonborn-Kellenberger, O.; Baverel, P.G.; et al. MPo533, a CD3-engaging darpin targeting CD33, CD123, and CD70 in patients with relapsed/refractory AML or MDS/AML: Preliminary results of a phase 1/2a study. Blood 2023, 142 (Suppl. S1), 2921–2922. [Google Scholar] [CrossRef]
- Barreyro, L.; Will, B.; Bartholdy, B.; Zhou, L.; Todorova, T.I.; Stanley, R.F.; Ben-Neriah, S.; Montagna, C.; Parekh, S.; Pellegatti, A.; et al. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood 2021, 120, 1290–1298. [Google Scholar] [CrossRef]
- Askmyr, M.; Agerstam, H.; Hansen, N.; Grodon, S.; Avranitakis, A.; Rissler, M.; Juliusson, G.; Richter, J.; Jaras, M.; Fioretos, T. Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood 2013, 121, 3709–3713. [Google Scholar] [CrossRef]
- West, K.A.; Kumar, S.; Scott, M.; Emery, J.G.; Steidl, U.G.; Narayanagari, S.R.; Mitchell, K.; Ren, F.; Ying, H.; Fei, Q.; et al. BOS-371, a monoclonal antibody against IL1RAP: Characterization in preclinical models of AML. J. Clin. Oncol. 2023, 41 (Suppl. S16), 7030. [Google Scholar] [CrossRef]
- Nicod, C.; Neto da Rocha, M.; Warda, W.; Roussel, X.; Haderbache, R.; Seffar, E.; Trad, R.; Bouquet, L.; Goncalves, M.; Bosdure, L.; et al. CAR-T cells targeting IL-RAP produced in a closed semiautomatic system are erady for the first phase I clinical invetsigation in humans. Curr. Res. Transl. Med. 2023, 71, 103385. [Google Scholar]
- Zhang, Y.; Park, M.; Ghoda, L.Y.; Zhao, D.; Valerio, M.; Nafie, E.; Gonzalez, A.; Ly, K.; Parcutela, B.; Choi, H.; et al. IL1RAP-speicfic T cellengager depletes acute myeloid leukemia stem cells. J. Hematol. Oncol. 2024, 17, 67. [Google Scholar] [CrossRef]
- Jiang, L.; Li, X.P.; Dai, Y.T.; Chen, B.; Weng, X.Q.; Xiong, S.M.; Zhang, M.; Huang, J.Y.; Chen, Z.; Chen, S.J. Multidimensional study of the heterogeneity of leukemia cells in t(8;21) acute myelogenous leukemia identifies the subtype with poor outcome. Proc. Natl. Acad. Sci. USA 2020, 117, 20117–20126. [Google Scholar] [CrossRef] [PubMed]
- LI, X.P.; Song, J.T.; Dai, Y.T.; Zhang, W.N.; Zhao, B.T.; Mao, J.Y.; Gao, Y.; Jiang, L.; Liang, Y. Integrative single-cell analysis of longitudinal t(8;21) AML reveals heterogeneous immune cell infitration and prognostic signatures. Front. Immunol. 2024, 15, 1424933. [Google Scholar]
- Bordeleau, M.E.; Audemard, E.; Metois, A.; Theret, L.; Lisi, V.; Farah, A.; Spinella, J.F.; Chagraoui, J.; Moujaber, O.; Aubert, L.; et al. Immunotherapeutic targeting of surfaceome heterogeneity in AML. Cell Rep. 2024, 43, 114260. [Google Scholar] [CrossRef] [PubMed]
- Pabst, C.; Bergeron, A.; Lavallée, V.P.; Yeh, J.; Gendron, P.; Norddahl, G.L.; Krosl, J.; Boivin, I.; Deneault, E.; Simard, J.; et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 2016, 127, 2018–2027. [Google Scholar] [CrossRef]
- Daga, S.; Rosenberger, A.; Quehenbergere, F.; Krisper, N.; Prietl, B.; Reinisch, A.; Zebisch, A.; Sill, H.; Wolfler, A. High GPR56 surface expression correlates with a leukemic stem cell gene signature in CD34-positive AML. Cancer Med. 2019, 8, 1771–1778. [Google Scholar] [CrossRef]
- Jentzsch, M.; Bill, M.; Grimm, J.; Schulz, J.; Schuhmann, L.; Brauer, D.; Goldmann, K.; Wilke, F.; Franke, G.N.; Behre, G.; et al. High expression of the stem cell marker GPR56 at diagnosis identifies acute myeloid leukemia patients at higher relapse risk after allogeneic stem cell transplantation in context with the CD34+/CD38− population. Haematologica 2020, 105, e507–e511. [Google Scholar] [CrossRef]
- Mathioudaki, A.; Wang, X.; Sedloev, D.; Huth, R.; Kamal, A.; Hundemer, M.; Liu, Y.; Vasileiou, S.; Lulla, P.; Muller-Tidow, C.; et al. The remission status of AML patients after allo-HCT is associated with a distinct single-cell bone marrow T-cell signature. Blood 2024, 143, 1269–1278. [Google Scholar] [CrossRef]
- Mei, Y.; Liu, Y.; Chen, M.; Liu, X.; Wang, S.; Mou, J.; Xing, H.; Tang, K.; Tian, Z.; Rao, Q.; et al. Identifying ADGRG1 as a specific marker for tumor-reactive T cells in acute myeloid leukemia. Exp. Hematol. Oncol. 2024, 13, 92. [Google Scholar] [CrossRef]
- Iness, A.N.; Bachireddy, P. GPR56 in GVL: Marker or mechanism? Blood 2024, 143, 1206–1207. [Google Scholar] [CrossRef]
- Haubner, S.; Perna, F.; Kohnke, T.; Schmidt, C.; Berman, S.; Augsberger, C.; Schnorfeil, F.M.; Krupka, K.; Lichtenegger, F.S.; Liu, X.; et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia 2019, 33, 64–74. [Google Scholar] [CrossRef]
- Haubner, S.; Monsilla-Sato, J.; Nataraj, S.; Kogel, F.; Chang, Q.; deStanchina, E.; Lopez, M.; Ng, M.R.; Fraser, K.; Subklewe, M.; et al. Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell 2023, 41, 1871–1891. [Google Scholar] [CrossRef] [PubMed]
- Shahswar, R.; Kloos, A.; Gabdoulline, R.; Mohanty, S.; Koenecke, C.; Wichmann, M.; Neziri, B.; Klement, P.; Schiller, J.; Klesse, S.; et al. Frequency and clinical characteristics associated with putative CAR targets ADGRE2, CCR1, CD70 and LILRB2 in acute myeloid leukemia. Blood 2018, 132 (Suppl. S1), 5259. [Google Scholar] [CrossRef]
- Huang, D.; Yu, Z.; Lu, H.; Jiang, P.; Qian, X.; Han, Y.; Qian, P. Adhesion GPRC ADGRE2 maintains proteostasis to promote progression in acute myeloid leukemia. Cancer Res. 2024, 84, 2090–2108. [Google Scholar] [CrossRef] [PubMed]
- Haubner, S.; Mansilla-Soto, J.; Nataraj, S.; Kogel, F.; Chang, Q.; De Stanchina, E.; Lopez, M.; Fraser, K.; Park, J.; Wang, X.; et al. Differential target profiles and efficacy of ADCLEC.SYN1 and CD33-Cars in humanized AML models. HemaSphere 2023, 7, e776231c. [Google Scholar] [CrossRef]
- Seitz, C.M.; Mittelstaet, J.; Atar, D.; Han, J.; Reiter, S.; Illi, C.; Kieble, V.; Eugert, F.; Drees, B.; Bender, G.; et al. Novel adapter CAR-T cell technology for precisely controllable multiplex cancer targeting. Oncoimmunology 2021, 10, 2003532. [Google Scholar] [CrossRef]
- Nixdorf, D.; Sponheimer, M.; Berghammer, D.; Engert, F.; Bader, U.; Philipp, N.; Kazerani, M.; Straub, T.; Rohrbacher, L.; Wange, L.; et al. Adapter CAR T cells to counteract T-cell exhauistion and enable flexible targeting IN AML. Leukemia 2023, 37, 1298–1310. [Google Scholar] [CrossRef]
- Atar, D.; Ruoff, L.; Mast, A.S.; Krost, S.; Moustafa-Ouglas, M.; Scaumann, S.; Kristmann, B.; Felge, M.; Canak, A.; Wolsing, K.; et al. Rational combinatorial targeting by adapter CAR-T cells (AdCAR-T) prevents antigen escape in acute myeloid leukemia. Leukemia 2024, 142, 6834. [Google Scholar] [CrossRef]
- Siddiqui, M.Y.; Chen, J.; Loffredo, M.; Lee, S.; Deng, H.; Li, Y.; Leemans, N.; Lu, T.; Garrson, B.S.; Ayala, M.G.; et al. Tunable universal OR-gated CAR T cells for AML. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kazerani, M.; Marcinek, A.; Philipp, N.; Brauchle, B.; Taylor, J.J.; Dominguez Moleno, H.; Terrasi, A.; Tast, B.; Rohrbacher, L.; Wang, Y.; et al. Evolution of T-cell fitness through AML progression enhanced bispecific T-cell engaer-mediated function of bone marrow T cells at remission compared to initial diagnosis and relapse. Leukemia 2024, 38, 2270–2275. [Google Scholar] [CrossRef]
- Desai, P.N.; Wang, B.; Fonseca, A.; Borges, P.; Jelloul, F.Z.; Reville, P.K.; Lee, E.; Ly, C.; Basi, A.; Root, J.; et al. Single-cell profiling of CD8+ T cells in acute myeloid leukemia reveals a continuous spectrum of differentiation and clonal hyperexpansion. Cancer Immunol. Res. 2023, 11, 1011–1028. [Google Scholar] [CrossRef]
- Mazziotta, F.; Biavati, L.; Rimando, J.; Rutella, S.; Borcehrdeing, N.; POarbhoo, S.; Mukhopadhyay, R.; Chowdhury, S.; Knaus, H.A.; Valent, P.; et al. CD8+ T-cell differentiation and dysfunction inform treatment response in acute myeloid leukemia. Blood 2024, 144, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Garcia-Manero, G.; Basu, S.; Boddu, P.C.; Alfayez, M.; Cortes, J.E.; Konopleva, M.; Ravandi-Kashani, F.; Jabbour, E.; Kadia, T.; et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory myeloid leukemia: A nonrandomized, open-label, phase II sstudy. Cancer Discov. 2019, 9, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Casirati, G.; Cosentino, A.; Mucci, A.; Mahmoud, M.S.; Zabala, I.U.; Zeng, J.; Ficxarro, S.B.; Klatt, D.; Brendel, C.; Rambaldi, A.; et al. Epitope editing enables targeted immunotherapy of acute myeloid leukemia. Nature 2023, 621, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Sugita, M.; Galetto, R.; Zong, H.; Ewing-Crystal, N.; Trujillo-Alonso, V.; Mencia-Trinchant, N.; Yip, W.; Filipe, S.; Lebuhotel, C.; Gouble, A.; et al. Allogeneic TCRαβ deficient CAR T cells targeting CD123 in acute myeloid leukemia. Nat. Commun. 2022, 13, 2227. [Google Scholar] [CrossRef] [PubMed]
- Cartellieri, M.; Feldmann, A.; Koristka, S.; Arndt, C.; Loff, S.; Ehninger, A.; von Bonin, M.; Bejestani, E.P.; Enhnionger, G.; Bachmann, M.P. Switching CAR-T cells on and off: A novel modular platform for targeting of T cells to AML blasts. Blood Cancer J. 2016, 6, e458. [Google Scholar] [CrossRef]
- Van der Lee, D.; Rejmers, R.M.; Honders, M.W.; Hogedoorns, R.S.; de Jong, R.; Kester, M.; van der Steen, D.; de Ru, A.H.; Kweekel, C.; Bijen, H.M.; et al. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J. Clin. Investig. 2019, 129, 774–785. [Google Scholar] [CrossRef]
- Teppert, K.; Ogosuku, I.E.; Brandes, C.; Herbel, V.; Winter, N.; Werchau, N.; Khorkova, S.; Whole, C.; Jelveh, N.; Bisdorf, K. CAR’TCR-T cells co-expressing CD33-CAR and dNPM1-TCR as superior dual-targeting approach for AML treatment. Mol. Ther. Oncol. 2024, 32, 200797. [Google Scholar]
- Shah, N.N.; Azzi, J.; Cooper, B.W.; Deol, A.; Di Persio, J.; Koura, D.; McClune, B.; Muffly, L.S.; Mushtaq, M.U.; Narayan, R.; et al. Phase 1-2 study of donor-derived anti-CD33 chimeric antigen receptor expressing T cells (VCAR33) in patients with relapsed or refractory acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Blood 2023, 142 (Suppl. S1), 4862–4864. [Google Scholar] [CrossRef]
- Bhagwat, A.S.; Torres, L.; Shestova, O.; Shestov, M.; Mellors, P.W.; Fisher, H.R.; Farooki, S.N.; Frost, B.F.; Loken, M.R.; Gaymon, A.L.; et al. Cytokine-mediated CAR T therapy resistance in AML. Nat. Med. 2024, in press. [CrossRef]
Risk Category | Cytogenetic Abnormality |
---|---|
Favorable | t(15;17) PML-RARA t(8;21) RUNX1-RUNX1T1 Inv(16) or t(16;16) CBFB-MYH11 |
Intermediate | Trisomy 8 alone t(9;11) MLLT3-KMT2A |
Adverse | t(6;9) DEK-NUP214 t(v;11q23.3) KMT2A-rearranged t(9;22) BCR-ABL1 t(3;3) MECOM Monosomal karyotype (-5, 5q-, -7, 7q-, -17)/abnormality (17p) Inv(3) Complex karyotype (≥3 clonal chromosomal abnormalities) |
Target Antigen | Physiological Role | Expression on Bulk AML Cells | Expression on LSCs | Expression on Normal HSC/HPC | Expression in Non- Hematopoietic Tissues | Immunotherapy Applications |
---|---|---|---|---|---|---|
CD33 (Siglec-3) | Sialic acid-dependent cell interactions and adhesion of myeloid cells | ++/+++ (95%) | + (88%) | +/++ | Kupffer cells, microglia | Abs, BiTEs, trispecific Abs, CAR-T, bispecific CAR-T |
CLL1 (C-type lectin-like molecule 1) | Inhibitory lectin-like receptor. Immune regulation as an inhibitory receptor | ++/+++ (80%) | ++ (45%) | −/− Expression on few lymphoid progenitors | Absent | Abs, BiTEs, trispecific Abs, CAR-T, bispecific CAR-T |
TIM-.3 (T cell immunoglobulin and mucin domain 3) | Immunoregulatory protein (it inhibits excessive or prolonged immune activation) | ++ (87%) | ++ (78%) | −/+ | Absent | Abs, CAR-T |
CD123 | Interleukin-3 receptor alpha chain | ++/+++ 96% Overexpressed in 60–70% of cases | ++ (95) | +/+ | Endothelial cells | Abs, BiTEs, trispecific Abs, CAR-T, bispecific CAR-T, NK-CAR |
CD38 | Adhesion partner for CD31. Enzymatic activity (NAD and NADP catabolism) | +++ (80–90%) | Low + | −/++ | Mature hematopoietic cells | Abs, BiTEs, trispecific Abs, CAR-T |
ADGRE2 (Adhesion G Protein-Coupled Receptor 2) | Cell membrane receptor that binds to glycosaminoglycan chains and promotes cell attachment | ++/+++ (82%) | ++/+++ (82%) | +/+ | Absent | ADCLEC-syn1 CAR-T |
Clinical Trial | Patient Number (Age) | Source | Co-Stimulatory Domain | Safety | Efficacy |
---|---|---|---|---|---|
NCT 031268649 | 10 (18–73 yr) Only 3 patients infused | Autologous | 4-1BB | CRS 66% ICANs 33% | No response |
NCT 03971799 | 19 DL1 3 × 105/Kg DL2 1 × 106/Kg DL3 3 × 106/Kg DL4 1 × 107/Kg (18–73 yr) | Autologous | CD28 | CRS 68% CRS3 21% | 2 CRs at DL4 Optimal CAR-T cell expansion at DL4 |
NCT 0485519 | 4 | Autologous | Not reported | CRS 1–2 75% CRS 4 25% ICANS1 50% | Cri, MRD− 50% |
NCT 03927261 | 11 | Autologous | Second generation Not reported | CRS 69% CRS3 6% ICANS 6% | CR + CRi 3pts |
NCT 038335519 | 4 (3–12 yr) CAR-T cells overexpressing c-JUN | Autologous | CD28 | CRS 1–2 75% CRS4 25% ICANS 50% | Cri, MRD− 50% PR 25% |
NCT 04849910 VBP01 | 6 | Autologous | Not reported | Not reported | Positive engraftment of allo-HSCT |
CD33 CAR-NK cell therapy | 10 (10–65 yr) | Autologous | Not reported | CRS2 10% | CD, MRD− 60% |
Clinical Trial | Patient Number (Age) | Source | Co-Stimulatory Domain | Safety | Efficacy |
---|---|---|---|---|---|
NCT 093222674 | 7 (6–12 yrs) | Autologous | CD28/CD27 (4pt) 4-1BB (3pt) | CD28/CD27: CRS1 75% CRS2 25% ICANS 0% 4-11B: CRS1 66% CRS2 33% ICANS 33% | CD28/CD27: PR 25% CR, MRD− 75% 4-1BB: PR 33% CR MRD+ 33% CR MRD− 33% |
Not reported Zhang et al. [62] | 8 | Autologous | 4-1BB | CRS 1–2 100% | MLFS MRD− 50% MLFS MRD+ 12.5% CRi MRD+ 12.5% PR 12.5% SD. 12.5% |
Chi CTR20000041054 | 10 (18–73 yrs) | Autologous | 4-1BB | CRS 100% CRS3 60% ICANS 0% | CRi 70% (6/7 pts in CRi allo-HSCT) |
Chi CTR20000041054 | 30 (18–73 yrs) DL1 0.5 × 106/Kg DL2 1 × 106/Kg DL3 1.5 × 106/Kg DL4 2 × 106/Kg | Autologous | 4-1BB | CRS 1–2 60% CRS3 36.7% CRS4: 3.3% | CR + Cri DL1 44.4% DL2 55.5% DL3 50% DL4 0% |
NCT03018405 | 9 | Autologous | Not defined | CRS 89% ICANS 44% | CR MRD− 7/9 pt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testa, U.; Castelli, G.; Pelosi, E. Membrane Antigen Targeting in Acute Myeloid Leukemia Using Antibodies or CAR-T Cells. Cancers 2024, 16, 3627. https://doi.org/10.3390/cancers16213627
Testa U, Castelli G, Pelosi E. Membrane Antigen Targeting in Acute Myeloid Leukemia Using Antibodies or CAR-T Cells. Cancers. 2024; 16(21):3627. https://doi.org/10.3390/cancers16213627
Chicago/Turabian StyleTesta, Ugo, Germana Castelli, and Elvira Pelosi. 2024. "Membrane Antigen Targeting in Acute Myeloid Leukemia Using Antibodies or CAR-T Cells" Cancers 16, no. 21: 3627. https://doi.org/10.3390/cancers16213627
APA StyleTesta, U., Castelli, G., & Pelosi, E. (2024). Membrane Antigen Targeting in Acute Myeloid Leukemia Using Antibodies or CAR-T Cells. Cancers, 16(21), 3627. https://doi.org/10.3390/cancers16213627