Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia
Simple Summary
Abstract
1. Introduction
2. c-MYC, a Master Orchestrator of B Cell Fate
3. c-MYC Implication in B Cell Cancers
Type of Abnormalities | Observed Defects | References |
---|---|---|
Genetic aberrations | Insertional mutagenesis Chromosomal translocations | (Dudley et al. 2002) [51] (Erikson et al. 1983) (Meyer et Penn 2008) [52,53] |
Gene expression | Gene amplification Deregulation of pathways that influence MYC oncogene transcription | (Collins et Groudine 1982) [54] (Alitalo et al. 1983) [55] (Nau et al. 1985) [56] (Mariani-Costantini et al. 1988) [57] (Münzel et al. 1991) [58] (Augenlicht et al. 1997) (Kalkat et al. 2017) [59,60] (He et al. 1998) (Yagi et al. 2002) [61,62] |
Protein modifications | Post-translational modifications of MYC proteins | (Allen-Petersen et Sears 2019) [63] (Sears et al. 2000) [64] |
4. c-MYC in Chronic Lymphocytic Leukemia
5. MYC and Treatment for CLL
6. c-MYC Contribution to DNA Damage and Recombination
7. Discussion: Proposed Mode of Action of c-MYC Promoting Sµ-3′RR IGH Locus Rearrangement in CLL
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.J.; Montserrat, E.; Rai, K.R.; et al. Guidelines for the Diagnosis and Treatment of Chronic Lymphocytic Leukemia: A Report from the International Workshop on Chronic Lymphocytic Leukemia Updating the National Cancer Institute-Working Group 1996 Guidelines. Blood 2008, 111, 5446–5456. [Google Scholar] [CrossRef] [PubMed]
- Rai, K.R.; Sawitsky, A.; Cronkite, E.P.; Chanana, A.D.; Levy, R.N.; Pasternack, B.S. Clinical Staging of Chronic Lymphocytic Leukemia. Blood 1975, 46, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Binet, J.L.; Auquier, A.; Dighiero, G.; Chastang, C.; Piguet, H.; Goasguen, J.; Vaugier, G.; Potron, G.; Colona, P.; Oberling, F.; et al. A New Prognostic Classification of Chronic Lymphocytic Leukemia Derived from a Multivariate Survival Analysis. Cancer 1981, 48, 198–206. [Google Scholar] [CrossRef]
- Rossi, D.; Khiabanian, H.; Spina, V.; Ciardullo, C.; Bruscaggin, A.; Famà, R.; Rasi, S.; Monti, S.; Deambrogi, C.; De Paoli, L.; et al. Clinical Impact of Small TP53 Mutated Subclones in Chronic Lymphocytic Leukemia. Blood 2014, 123, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, T.J.; Davis, Z.; Gardiner, A.; Oscier, D.G.; Stevenson, F.K. Unmutated Ig V(H) Genes Are Associated with a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood 1999, 94, 1848–1854. [Google Scholar] [CrossRef] [PubMed]
- Damle, R.N.; Wasil, T.; Fais, F.; Ghiotto, F.; Valetto, A.; Allen, S.L.; Buchbinder, A.; Budman, D.; Dittmar, K.; Kolitz, J.; et al. Ig V Gene Mutation Status and CD38 Expression as Novel Prognostic Indicators in Chronic Lymphocytic Leukemia. Blood 1999, 94, 1840–1847. [Google Scholar] [CrossRef] [PubMed]
- Al Jamal, I.; Parquet, M.; Guiyedi, K.; Aoufouchi, S.; Le Guillou, M.; Rizzo, D.; Pollet, J.; Dupont, M.; Boulin, M.; Faumont, N.; et al. IGH 3’RR Recombination Uncovers a Non-Germinal Center Imprint and c-MYC-Dependent IGH Rearrangement in Unmutated Chronic Lymphocytic Leukemia. Haematologica 2024, 109, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Dalla-Favera, R.; Bregni, M.; Erikson, J.; Patterson, D.; Gallo, R.C.; Croce, C.M. Human C-Myc Onc Gene Is Located on the Region of Chromosome 8 That Is Translocated in Burkitt Lymphoma Cells. Proc. Natl. Acad. Sci. USA 1982, 79, 7824–7827. [Google Scholar] [CrossRef]
- Neel, B.G.; Jhanwar, S.C.; Chaganti, R.S.; Hayward, W.S. Two Human C-Onc Genes Are Located on the Long Arm of Chromosome 8. Proc. Natl. Acad. Sci. USA 1982, 79, 7842–7846. [Google Scholar] [CrossRef]
- Bentley, D.L.; Groudine, M. A Block to Elongation Is Largely Responsible for Decreased Transcription of C-Myc in Differentiated HL60 Cells. Nature 1986, 321, 702–706. [Google Scholar] [CrossRef]
- Taub, R.; Moulding, C.; Battey, J.; Murphy, W.; Vasicek, T.; Lenoir, G.M.; Leder, P. Activation and Somatic Mutation of the Translocated C-Myc Gene in Burkitt Lymphoma Cells. Cell 1984, 36, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Li, J.; Cenkci, B.; Kretzner, L. Autorepression of C-Myc Requires Both Initiator and E2F-Binding Site Elements and Cooperation with the P107 Gene Product. Oncogene 2004, 23, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Kato, G.J.; Barrett, J.; Villa-Garcia, M.; Dang, C.V. An Amino-Terminal c-Myc Domain Required for Neoplastic Transformation Activates Transcription. Mol. Cell. Biol. 1990, 10, 5914–5920. [Google Scholar] [CrossRef] [PubMed]
- Ayer, D.E.; Kretzner, L.; Eisenman, R.N. Mad: A Heterodimeric Partner for Max That Antagonizes Myc Transcriptional Activity. Cell 1993, 72, 211–222. [Google Scholar] [CrossRef]
- Jha, R.K.; Kouzine, F.; Levens, D. MYC Function and Regulation in Physiological Perspective. Front. Cell Dev. Biol. 2023, 11, 1268275. [Google Scholar] [CrossRef]
- Baluapuri, A.; Wolf, E.; Eilers, M. Target-Gene Independent Functions of MYC Oncogenes. Nat. Rev. Mol. Cell Biol. 2020, 21, 255–267. [Google Scholar] [CrossRef]
- Cencioni, C.; Scagnoli, F.; Spallotta, F.; Nasi, S.; Illi, B. The “Superoncogene” Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int. J. Mol. Sci. 2023, 24, 4217. [Google Scholar] [CrossRef] [PubMed]
- Sakamuro, D.; Prendergast, G.C. New Myc-Interacting Proteins: A Second Myc Network Emerges. Oncogene 1999, 18, 2942–2954. [Google Scholar] [CrossRef]
- Strobl, L.J.; Kohlhuber, F.; Mautner, J.; Polack, A.; Eick, D. Absence of a Paused Transcription Complex from the C-Myc P2 Promoter of the Translocation Chromosome in Burkitt’s Lymphoma Cells: Implication for the c-Myc P1/P2 Promoter Shift. Oncogene 1993, 8, 1437–1447. [Google Scholar] [PubMed]
- Conacci-Sorrell, M.; McFerrin, L.; Eisenman, R.N. An Overview of MYC and Its Interactome. Cold Spring Harb. Perspect. Med. 2014, 4, a014357. [Google Scholar] [CrossRef]
- Pelengaris, S.; Khan, M. The Many Faces of C-MYC. Arch. Biochem. Biophys. 2003, 416, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.V.; O’Donnell, K.A.; Zeller, K.I.; Nguyen, T.; Osthus, R.C.; Li, F. The C-Myc Target Gene Network. Semin. Cancer Biol. 2006, 16, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.A.; Groudine, M. Control of C-Myc Regulation in Normal and Neoplastic Cells. Adv. Cancer Res. 1991, 56, 1–48. [Google Scholar] [CrossRef]
- de Barrios, O.; Meler, A.; Parra, M. MYC’s Fine Line Between B Cell Development and Malignancy. Cells 2020, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Vallespinós, M.; Fernández, D.; Rodríguez, L.; Alvaro-Blanco, J.; Baena, E.; Ortiz, M.; Dukovska, D.; Martínez, D.; Rojas, A.; Campanero, M.R.; et al. B Lymphocyte Commitment Program Is Driven by the Proto-Oncogene c-Myc. J. Immunol. 2011, 186, 6726–6736. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, R.; Jensen, C.T.; Tingvall-Gustafsson, J.; Åhsberg, J.; Okuyama, K.; Prasad, M.; Hagman, J.R.; Wang, X.; Soneji, S.; Strid, T.; et al. EBF1 and PAX5 Control Pro-B Cell Expansion via Opposing Regulation of the Myc Gene. Blood 2021, 137, 3037–3049. [Google Scholar] [CrossRef] [PubMed]
- Habib, T.; Park, H.; Tsang, M.; de Alborán, I.M.; Nicks, A.; Wilson, L.; Knoepfler, P.S.; Andrews, S.; Rawlings, D.J.; Eisenman, R.N.; et al. Myc Stimulates B Lymphocyte Differentiation and Amplifies Calcium Signaling. J. Cell Biol. 2007, 179, 717–731. [Google Scholar] [CrossRef]
- Bisso, A.; Sabò, A.; Amati, B. MYC in Germinal Center-Derived Lymphomas: Mechanisms and Therapeutic Opportunities. Immunol. Rev. 2019, 288, 178–197. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Weisel, F.; Shlomchik, M.J. B Cell Receptor and CD40 Signaling Are Rewired for Synergistic Induction of the C-Myc Transcription Factor in Germinal Center B Cells. Immunity 2018, 48, 313–326.e5. [Google Scholar] [CrossRef]
- Finkin, S.; Hartweger, H.; Oliveira, T.Y.; Kara, E.E.; Nussenzweig, M.C. Protein Amounts of the MYC Transcription Factor Determine Germinal Center B Cell Division Capacity. Immunity 2019, 51, 324–336.e5. [Google Scholar] [CrossRef]
- Filip, D.; Mraz, M. The Role of MYC in the Transformation and Aggressiveness of ‘Indolent’ B-Cell Malignancies. Leuk. Lymphoma 2020, 61, 510–524. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Sola, D.; Victora, G.D.; Ying, C.Y.; Phan, R.T.; Saito, M.; Nussenzweig, M.C.; Dalla-Favera, R. The Proto-Oncogene MYC Is Required for Selection in the Germinal Center and Cyclic Reentry. Nat. Immunol. 2012, 13, 1083–1091. [Google Scholar] [CrossRef]
- Calado, D.P.; Sasaki, Y.; Godinho, S.A.; Pellerin, A.; Köchert, K.; Sleckman, B.P.; de Alborán, I.M.; Janz, M.; Rodig, S.; Rajewsky, K. The Cell-Cycle Regulator c-Myc Is Essential for the Formation and Maintenance of Germinal Centers. Nat. Immunol. 2012, 13, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Sander, S.; Calado, D.P.; Srinivasan, L.; Köchert, K.; Zhang, B.; Rosolowski, M.; Rodig, S.J.; Holzmann, K.; Stilgenbauer, S.; Siebert, R.; et al. Synergy between PI3K Signaling and MYC in Burkitt Lymphomagenesis. Cancer Cell 2012, 22, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Shlomchik, M.J.; Luo, W.; Weisel, F. Linking Signaling and Selection in the Germinal Center. Immunol. Rev. 2019, 288, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, B.J.; Cyster, J.G. Transcriptional Regulation of Memory B Cell Differentiation. Nat. Rev. Immunol. 2021, 21, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Jellusova, J. The Role of Metabolic Checkpoint Regulators in B Cell Survival and Transformation. Immunol. Rev. 2020, 295, 39–53. [Google Scholar] [CrossRef]
- Toboso-Navasa, A.; Gunawan, A.; Morlino, G.; Nakagawa, R.; Taddei, A.; Damry, D.; Patel, Y.; Chakravarty, P.; Janz, M.; Kassiotis, G.; et al. Restriction of Memory B Cell Differentiation at the Germinal Center B Cell Positive Selection Stage. J. Exp. Med. 2020, 217, e20191933. [Google Scholar] [CrossRef]
- Schaub, F.X.; Dhankani, V.; Berger, A.C.; Trivedi, M.; Richardson, A.B.; Shaw, R.; Zhao, W.; Zhang, X.; Ventura, A.; Liu, Y.; et al. Pan-Cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Syst. 2018, 6, 282–300.e2. [Google Scholar] [CrossRef]
- Dhanasekaran, R.; Deutzmann, A.; Mahauad-Fernandez, W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC Oncogene—The Grand Orchestrator of Cancer Growth and Immune Evasion. Nat. Rev. Clin. Oncol. 2022, 19, 23–36. [Google Scholar] [CrossRef]
- Strasser, A.; Harris, A.W.; Bath, M.L.; Cory, S. Novel Primitive Lymphoid Tumours Induced in Transgenic Mice by Cooperation between Myc and Bcl-2. Nature 1990, 348, 331–333. [Google Scholar] [CrossRef]
- Bissonnette, R.P.; Echeverri, F.; Mahboubi, A.; Green, D.R. Apoptotic Cell Death Induced by C-Myc Is Inhibited by Bcl-2. Nature 1992, 359, 552–554. [Google Scholar] [CrossRef]
- Fanidi, A.; Harrington, E.A.; Evan, G.I. Cooperative Interaction between C-Myc and Bcl-2 Proto-Oncogenes. Nature 1992, 359, 554–556. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.; Amanullah, A.; Shafarenko, M.; Liebermann, D.A. The Proto-Oncogene c-Myc in Hematopoietic Development and Leukemogenesis. Oncogene 2002, 21, 3414–3421. [Google Scholar] [CrossRef] [PubMed]
- Robaina, M.C.; Mazzoccoli, L.; Esteves Klumb, C. Germinal Centre B Cell Functions and Lymphomagenesis: Circuits Involving MYC and MicroRNAs. Cells 2019, 8, 1365. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.M.; Harris, A.W.; Pinkert, C.A.; Corcoran, L.M.; Alexander, W.S.; Cory, S.; Palmiter, R.D.; Brinster, R.L. The C-Myc Oncogene Driven by Immunoglobulin Enhancers Induces Lymphoid Malignancy in Transgenic Mice. Nature 1985, 318, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Ferrad, M.; Ghazzaui, N.; Issaoui, H.; Cook-Moreau, J.; Denizot, Y. Mouse Models of C-Myc Deregulation Driven by IgH Locus Enhancers as Models of B-Cell Lymphomagenesis. Front. Immunol. 2020, 11, 1564. [Google Scholar] [CrossRef] [PubMed]
- Benhamou, D.; Labi, V.; Getahun, A.; Benchetrit, E.; Dowery, R.; Rajewsky, K.; Cambier, J.C.; Melamed, D. The C-Myc/MiR17-92/PTEN Axis Tunes PI3K Activity to Control Expression of Recombination Activating Genes in Early B Cell Development. Front. Immunol. 2018, 9, 2715. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.Y.; Psathas, J.N.; Yu, D.; Li, Y.; Weiss, M.J.; Thomas-Tikhonenko, A. CD19 Is a Major B Cell Receptor-Independent Activator of MYC-Driven B-Lymphomagenesis. J. Clin. Investig. 2012, 122, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
- Poe, J.C.; Minard-Colin, V.; Kountikov, E.I.; Haas, K.M.; Tedder, T.F. A C-Myc and Surface CD19 Signaling Amplification Loop Promotes B Cell Lymphoma Development and Progression in Mice. J. Immunol. 2012, 189, 2318–2325. [Google Scholar] [CrossRef]
- Dudley, J.; Mertz, J.; Rajan, L.; Lozano, M.; Broussard, D. What Retroviruses Teach Us about the Involvement of C-Myc in Leukemias and Lymphomas. Leukemia 2002, 16, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Meyer, N.; Penn, L.Z. Reflecting on 25 Years with MYC. Nat. Rev. Cancer 2008, 8, 976–990. [Google Scholar] [CrossRef] [PubMed]
- Erikson, J.; Ar-Rushdi, A.; Drwinga, H.L.; Nowell, P.C.; Croce, C.M. Transcriptional Activation of the Translocated C-Myc Oncogene in Burkitt Lymphoma. Proc. Natl. Acad. Sci. USA 1983, 80, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.; Groudine, M. Amplification of Endogenous Myc-Related DNA Sequences in a Human Myeloid Leukaemia Cell Line. Nature 1982, 298, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Alitalo, K.; Schwab, M.; Lin, C.C.; Varmus, H.E.; Bishop, J.M. Homogeneously Staining Chromosomal Regions Contain Amplified Copies of an Abundantly Expressed Cellular Oncogene (c-Myc) in Malignant Neuroendocrine Cells from a Human Colon Carcinoma. Proc. Natl. Acad. Sci. USA 1983, 80, 1707–1711. [Google Scholar] [CrossRef] [PubMed]
- Nau, M.M.; Brooks, B.J.; Battey, J.; Sausville, E.; Gazdar, A.F.; Kirsch, I.R.; McBride, O.W.; Bertness, V.; Hollis, G.F.; Minna, J.D. L-Myc, A New Myc-Related Gene Amplified and Expressed in Human Small Cell Lung Cancer. Nature 1985, 318, 69–73. [Google Scholar] [CrossRef]
- Mariani-Costantini, R.; Escot, C.; Theillet, C.; Gentile, A.; Merlo, G.; Lidereau, R.; Callahan, R. In Situ C-Myc Expression and Genomic Status of the c-Myc Locus in Infiltrating Ductal Carcinomas of the Breast. Cancer Res. 1988, 48, 199–205. [Google Scholar] [PubMed]
- Münzel, P.; Marx, D.; Köchel, H.; Schauer, A.; Bock, K.W. Genomic Alterations of the C-Myc Protooncogene in Relation to the Overexpression of c-ErbB2 and Ki-67 in Human Breast and Cervix Carcinomas. J. Cancer Res. Clin. Oncol. 1991, 117, 603–607. [Google Scholar] [CrossRef]
- Augenlicht, H.; Wadler, S.; Pathak, S.; Benson, A.; Hailer, D.; Heerdt, G. Low-Level c-Myc Amplification in Human Colonic Carcinoma Cell Lines and Tumors: A Frequent, P53-Independent Mutation Associated with Improved Outcome in a Randomized Multi-Institutional Trial’. Cancer Res. 1997, 57, 1769–1775. [Google Scholar] [PubMed]
- Kalkat, M.; De Melo, J.; Hickman, K.A.; Lourenco, C.; Redel, C.; Resetca, D.; Tamachi, A.; Tu, W.B.; Penn, L.Z. MYC Deregulation in Primary Human Cancers. Genes 2017, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- He, T.C.; Sparks, A.B.; Rago, C.; Hermeking, H.; Zawel, L.; da Costa, L.T.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Identification of C-MYC as a Target of the APC Pathway. Science 1998, 281, 1509–1512. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K.; Furuhashi, M.; Aoki, H.; Goto, D.; Kuwano, H.; Sugamura, K.; Miyazono, K.; Kato, M. C-Myc Is a Downstream Target of the Smad Pathway. J. Biol. Chem. 2002, 277, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Allen-Petersen, B.L.; Sears, R.C. Mission Possible: Advances in MYC Therapeutic Targeting in Cancer. BioDrugs 2019, 33, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Sears, R.; Nuckolls, F.; Haura, E.; Taya, Y.; Tamai, K.; Nevins, J.R. Multiple Ras-Dependent Phosphorylation Pathways Regulate Myc Protein Stability. Genes Dev. 2000, 14, 2501–2514. [Google Scholar] [CrossRef] [PubMed]
- Seitz, V.; Butzhammer, P.; Hirsch, B.; Hecht, J.; Gütgemann, I.; Ehlers, A.; Lenze, D.; Oker, E.; Sommerfeld, A.; von der Wall, E.; et al. Deep Sequencing of MYC DNA-Binding Sites in Burkitt Lymphoma. PLoS ONE 2011, 6, e26837. [Google Scholar] [CrossRef]
- Moyo, T.K.; Wilson, C.S.; Moore, D.J.; Eischen, C.M. Myc Enhances B Cell Receptor Signaling in Precancerous B Cells and Confers Resistance to Btk Inhibition. Oncogene 2017, 36, 4653–4661. [Google Scholar] [CrossRef]
- Psathas, J.N.; Doonan, P.J.; Raman, P.; Freedman, B.D.; Minn, A.J.; Thomas-Tikhonenko, A. The Myc-MiR-17-92 Axis Amplifies B-Cell Receptor Signaling via Inhibition of ITIM Proteins: A Novel Lymphomagenic Feed-Forward Loop. Blood 2013, 122, 4220–4229. [Google Scholar] [CrossRef]
- Musilova, K.; Mraz, M. MicroRNAs in B-Cell Lymphomas: How a Complex Biology Gets More Complex. Leukemia 2015, 29, 1004–1017. [Google Scholar] [CrossRef]
- Quinquenel, A.; Aurran-Schleinitz, T.; Clavert, A.; Cymbalista, F.; Dartigeas, C.; Davi, F.; de Guibert, S.; Delmer, A.; Dilhuydy, M.-S.; Feugier, P.; et al. Diagnosis and Treatment of Chronic Lymphocytic Leukemia: Recommendations of the French CLL Study Group (FILO). HemaSphere 2020, 4, e473. [Google Scholar] [CrossRef]
- Nguyen-Khac, F.; Balogh, Z.; Chauzeix, J.; Veronese, L.; Chapiro, E. Cytogenetics in the Management of Chronic Lymphocytic Leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr. Res. Transl. Med. 2023, 71, 103410. [Google Scholar] [CrossRef]
- Nguyen-Khac, F. “Double-Hit” Chronic Lymphocytic Leukemia, Involving the TP53 and MYC Genes. Front. Oncol. 2022, 11, 826245. [Google Scholar] [CrossRef] [PubMed]
- Largeot, A.; Klapp, V.; Viry, E.; Gonder, S.; Botana, I.F.; Blomme, A.; Benzarti, M.; Pierson, S.; Duculty, C.; Marttila, P.; et al. Inhibition of MYC Translation through Targeting of the Newly Identified PHB-EIF4F Complex as a Therapeutic Strategy in CLL. Blood 2023, 141, 3166. [Google Scholar] [CrossRef] [PubMed]
- Simon-Molas, H.; Montironi, C.; Kabanova, A.; Eldering, E. Metabolic Reprogramming in the CLL TME.; Potential for New Therapeutic Targets. Semin. Hematol. 2024, 61, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Kuzminov, A. Single-Strand Interruptions in Replicating Chromosomes Cause Double-Strand Breaks. Proc. Natl. Acad. Sci. USA 2001, 98, 8241–8246. [Google Scholar] [CrossRef] [PubMed]
- Loeb, L.A.; Preston, B.D. Mutagenesis by Apurinic/Apyrimidinic Sites. Annu. Rev. Genet. 1986, 20, 201–230. [Google Scholar] [CrossRef] [PubMed]
- McNulty, J.M.; Jerkovic, B.; Bolton, P.H.; Basu, A.K. Replication Inhibition and Miscoding Properties of DNA Templates Containing a Site-Specific Cis-Thymine Glycol or Urea Residue. Chem. Res. Toxicol. 1998, 11, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Rouet, P.; Essigmann, J.M. Possible Role for Thymine Glycol in the Selective Inhibition of DNA Synthesis on Oxidized DNA Templates. Cancer Res. 1985, 45, 6113–6118. [Google Scholar] [PubMed]
- Maccabee, M.; Evans, J.S.; Glackin, M.P.; Hatahet, Z.; Wallace, S.S. Pyrimidine Ring Fragmentation Products. Effects of Lesion Structure and Sequence Context on Mutagenesis. J. Mol. Biol. 1994, 236, 514–530. [Google Scholar] [CrossRef] [PubMed]
- Engelward, B.P.; Allan, J.M.; Dreslin, A.J.; Kelly, J.D.; Wu, M.M.; Gold, B.; Samson, L.D. A Chemical and Genetic Approach Together Define the Biological Consequences of 3-Methyladenine Lesions in the Mammalian Genome. J. Biol. Chem. 1998, 273, 5412–5418. [Google Scholar] [CrossRef]
- Merrikh, H.; Zhang, Y.; Grossman, A.D.; Wang, J.D. Replication-Transcription Conflicts in Bacteria. Nat. Rev. Microbiol. 2012, 10, 449–458. [Google Scholar] [CrossRef] [PubMed]
- García-Muse, T.; Aguilera, A. Transcription-Replication Conflicts: How They Occur and How They Are Resolved. Nat. Rev. Mol. Cell Biol. 2016, 17, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Hamperl, S.; Bocek, M.J.; Saldivar, J.C.; Swigut, T.; Cimprich, K.A. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 2017, 170, 774–786.e19. [Google Scholar] [CrossRef]
- St Germain, C.; Zhao, H.; Barlow, J.H. Transcription-Replication Collisions-A Series of Unfortunate Events. Biomolecules 2021, 11, 1249. [Google Scholar] [CrossRef] [PubMed]
- Littler, S.; Sloss, O.; Geary, B.; Pierce, A.; Whetton, A.D.; Taylor, S.S. Oncogenic MYC Amplifies Mitotic Perturbations. Open Biol. 2019, 9, 190136. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.S.; Holland, A.J. The Impact of Mitotic Errors on Cell Proliferation and Tumorigenesis. Genes Dev. 2018, 32, 620–638. [Google Scholar] [CrossRef]
- Vafa, O.; Wade, M.; Kern, S.; Beeche, M.; Pandita, T.K.; Hampton, G.M.; Wahl, G.M. C-Myc Can Induce DNA Damage, Increase Reactive Oxygen Species, and Mitigate P53 Function: A Mechanism for Oncogene-Induced Genetic Instability. Mol. Cell 2002, 9, 1031–1044. [Google Scholar] [CrossRef]
- Ray, S.; Atkuri, K.R.; Deb-Basu, D.; Adler, A.S.; Chang, H.Y.; Herzenberg, L.A.; Felsher, D.W. MYC Can Induce DNA Breaks In Vivo and In Vitro Independent of Reactive Oxygen Species. Cancer Res. 2006, 66, 6598–6605. [Google Scholar] [CrossRef]
- Karlsson, A.; Deb-Basu, D.; Cherry, A.; Turner, S.; Ford, J.; Felsher, D.W. Defective Double-Strand DNA Break Repair and Chromosomal Translocations by MYC Overexpression. Proc. Natl. Acad. Sci. USA 2003, 100, 9974–9979. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Teng, S.-C.; Su, Y.-N.; Hsieh, F.-J.; Wu, K.-J. C-Myc Directly Regulates the Transcription of the NBS1 Gene Involved in DNA Double-Strand Break Repair. J. Biol. Chem. 2003, 278, 19286–19291. [Google Scholar] [CrossRef]
- Kuppers, R. Molecular Biology of Hodgkin Lymphoma. Hematology 2009, 2009, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Haferlach, C.; Dicker, F.; Schnittger, S.; Kern, W.; Haferlach, T. Comprehensive Genetic Characterization of CLL: A Study on 506 Cases Analysed with Chromosome Banding Analysis, Interphase FISH, IgV(H) Status and Immunophenotyping. Leukemia 2007, 21, 2442–2451. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Khac, F.; Borie, C.; Callet-Bauchu, E.; Eclache, V.; Struski, S. Cytogenetics in the management of chronic lymphocytic leukemia: An update by the Groupe francophone de cytogénétique hématologique (GFCH). Ann. Biol. Clin. 2016, 74, 561–567. [Google Scholar] [CrossRef]
- Popp, H.D.; Flach, J.; Brendel, S.; Ruppenthal, S.; Kleiner, H.; Seifarth, W.; Schneider, S.; Schulze, T.J.; Weiss, C.; Wenz, F.; et al. Accumulation of DNA Damage and Alteration of the DNA Damage Response in Monoclonal B-Cell Lymphocytosis and Chronic Lymphocytic Leukemia. Leuk. Lymphoma 2019, 60, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F.; Behboudi, H.; Kavoosi, G.; Ardestani, S.K. Oxidative DNA Damage Induced by ROS-Modulating Agents with the Ability to Target DNA: A Comparison of the Biological Characteristics of Citrus Pectin and Apple Pectin. Sci. Rep. 2018, 8, 13902. [Google Scholar] [CrossRef]
- Cannan, W.J.; Tsang, B.P.; Wallace, S.S.; Pederson, D.S. Nucleosomes Suppress the Formation of Double-Strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages. J. Biol. Chem. 2014, 289, 19881–19893. [Google Scholar] [CrossRef] [PubMed]
- Carew, J.S.; Nawrocki, S.T.; Xu, R.H.; Dunner, K.; McConkey, D.J.; Wierda, W.G.; Keating, M.J.; Huang, P. Increased Mitochondrial Biogenesis in Primary Leukemia Cells: The Role of Endogenous Nitric Oxide and Impact on Sensitivity to Fludarabine. Leukemia 2004, 18, 1934–1940. [Google Scholar] [CrossRef]
- Tomic, J.; Lichty, B.; Spaner, D.E. Aberrant Interferon-Signaling Is Associated with Aggressive Chronic Lymphocytic Leukemia. Blood 2011, 117, 2668–2680. [Google Scholar] [CrossRef] [PubMed]
- Wuerffel, R.; Wang, L.; Grigera, F.; Manis, J.; Selsing, E.; Perlot, T.; Alt, F.W.; Cogne, M.; Pinaud, E.; Kenter, A.L. S-S Synapsis during Class Switch Recombination Is Promoted by Distantly Located Transcriptional Elements and Activation-Induced Deaminase. Immunity 2007, 27, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Péron, S.; Laffleur, B.; Denis-Lagache, N.; Cook-Moreau, J.; Tinguely, A.; Delpy, L.; Denizot, Y.; Pinaud, E.; Cogné, M. AID-Driven Deletion Causes Immunoglobulin Heavy Chain Locus Suicide Recombination in B Cells. Science 2012, 336, 931–934. [Google Scholar] [CrossRef]
- Boutouil, H.; Boyer, F.; Cook-Moreau, J.; Cogné, M.; Péron, S. IgH Locus Suicide Recombination Does Not Depend on NHEJ in Contrast to CSR in B Cells. Cell. Mol. Immunol. 2019, 16, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Dalloul, I.; Boyer, F.; Dalloul, Z.; Pignarre, A.; Caron, G.; Fest, T.; Chatonnet, F.; Delaloy, C.; Durandy, A.; Jeannet, R.; et al. Locus Suicide Recombination Actively Occurs on the Functionally Rearranged IgH Allele in B-Cells from Inflamed Human Lymphoid Tissues. PLoS Genet. 2019, 15, e1007721. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Oksenych, V.; Wan, H.; Ye, X.; Dong, J.; Ye, A.Y.; Abolhassani, H.; Vlachiotis, S.; Zhang, X.; de la Rosa, K.; et al. Orientation Regulation of Class-Switch Recombination in Human B Cells. J. Immunol. 2024, 213, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
Compartment | Bone Marrow | Peripheral Blood | Secondary Lymphoïd Organs | Peripheral Blood | Bone Marrow | ||||
---|---|---|---|---|---|---|---|---|---|
Extrafollicular Zone | Germinal Center | ||||||||
Dark Zone | Light Zone | ||||||||
B cell Developmental Stage | Pro-B | Pre-B | Transitional B Cell | Mature B Cell | Activated B Cell | Centroblast | Centrocyte | Memory B Cell | Plasma Cell |
MYC Expression | + | + | - | - | + | + | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guiyedi, K.; Parquet, M.; Aoufouchi, S.; Chauzeix, J.; Rizzo, D.; Al Jamal, I.; Feuillard, J.; Gachard, N.; Peron, S. Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia. Cancers 2024, 16, 3749. https://doi.org/10.3390/cancers16223749
Guiyedi K, Parquet M, Aoufouchi S, Chauzeix J, Rizzo D, Al Jamal I, Feuillard J, Gachard N, Peron S. Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia. Cancers. 2024; 16(22):3749. https://doi.org/10.3390/cancers16223749
Chicago/Turabian StyleGuiyedi, Kenza, Milène Parquet, Said Aoufouchi, Jasmine Chauzeix, David Rizzo, Israa Al Jamal, Jean Feuillard, Nathalie Gachard, and Sophie Peron. 2024. "Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia" Cancers 16, no. 22: 3749. https://doi.org/10.3390/cancers16223749
APA StyleGuiyedi, K., Parquet, M., Aoufouchi, S., Chauzeix, J., Rizzo, D., Al Jamal, I., Feuillard, J., Gachard, N., & Peron, S. (2024). Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia. Cancers, 16(22), 3749. https://doi.org/10.3390/cancers16223749