Mortality Prediction Modeling for Patients with Breast Cancer Based on Explainable Machine Learning
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Population and Data Collection
2.1.2. Variables
2.2. Methods
2.2.1. Data Pre-Processing
2.2.2. Machine Learning
2.2.3. Model Algorithm Development and Evaluation
2.2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Cox Proportional Hazard Model
3.3. Model Performance and Evaluation
3.4. Feature Importance and Interpretation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, R.M.; Park, Y.; Kreimer, A.R.; Lacey, J.V.; Pee, D.; Greenlee, R.T.; Buys, S.S.; Hollenbeck, A.; Rosner, B.; Gail, M.H.; et al. Risk Prediction for Breast, Endometrial, and Ovarian Cancer in White Women Aged 50 y or Older: Derivation and Validation from Population-Based Cohort Studies. PLoS Med. 2013, 10, e1001492. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.E.; Bray, F.; Ferlay, J.; Lortet-Tieulent, J.; Anderson, B.O.; Jemal, A. International Variation in Female Breast Cancer Incidence and Mortality Rates. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Antunes Meireles, P.; Fragoso, S.; Duarte, T.; Santos, S.; Bexiga, C.; Nejo, P.; Luís, A.; Mira, B.; Miguel, I.; Rodrigues, P.; et al. Comparing Prognosis for BRCA1, BRCA2, and Non-BRCA Breast Cancer. Cancers 2023, 15, 5699. [Google Scholar] [CrossRef]
- Zhou, S.; Blaes, A.; Shenoy, C.; Sun, J.; Zhang, R. Risk Prediction of Heart Diseases in Patients with Breast Cancer: A Deep Learning Approach with Longitudinal Electronic Health Records Data. iScience 2024, 27, 110329. [Google Scholar] [CrossRef]
- Du, M.; Haag, D.G.; Lynch, J.W.; Mittinty, M.N. Comparison of the Tree-Based Machine Learning Algorithms to Cox Regression in Predicting the Survival of Oral and Pharyngeal Cancers: Analyses Based on SEER Database. Cancers 2020, 12, 2802. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.M.M.; et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004, 351, 781–791. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Z.; Hua, Z.; Lin, W.; Weng, Y.; Lin, J.; Mao, H.; Lin, L.; Chen, X.; Guo, J. Radiotherapy Refusal in Breast Cancer with Breast-Conserving Surgery. Radiat. Oncol. 2023, 18, 130. [Google Scholar] [CrossRef]
- Nasser, M.; Yusof, U.K. Deep Learning Based Methods for Breast Cancer Diagnosis: A Systematic Review and Future Direction. Diagnostics 2023, 13, 161. [Google Scholar] [CrossRef]
- Jabbar, M.A. Breast Cancer Data Classification Using Ensemble Machine Learning. Eng. Appl. Sci. Res. 2021, 48, 65–72. [Google Scholar] [CrossRef]
- Chen, H.; Wang, N.; Du, X.; Mei, K.; Zhou, Y.; Cai, G. Classification Prediction of Breast Cancer Based on Machine Learning. Comput. Intell. Neurosci. 2023, 2023, 6530719. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Lin, Y.; Zhang, W.; Bi, Q. Predicting Diagnosis and Survival of Bone Metastasis in Breast Cancer Using Machine Learning. Sci. Rep. 2023, 13, 18301. [Google Scholar] [CrossRef]
- Gentile, D.; Sagona, A.; De Carlo, C.; Fernandes, B.; Barbieri, E.; Di Maria Grimaldi, S.; Jacobs, F.; Vatteroni, G.; Scardina, L.; Biondi, E.; et al. Pathologic Response and Residual Tumor Cellularity after Neo-Adjuvant Chemotherapy Predict Prognosis in Breast Cancer Patients. Breast 2023, 69, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lim, J.; Kim, H.-G.; Lim, Y.; Seo, B.K.; Bae, M.S. Deep Learning Analysis of Mammography for Breast Cancer Risk Prediction in Asian Women. Diagnostics 2023, 13, 2247. [Google Scholar] [CrossRef]
- Ahn, J.S.; Shin, S.; Yang, S.-A.; Park, E.K.; Kim, K.H.; Cho, S.I.; Ock, C.-Y.; Kim, S. Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine. J. Breast Cancer 2023, 26, 405–435. [Google Scholar] [CrossRef]
- Nguyen, Q.T.N.; Nguyen, P.; Wang, C.; Phuc, P.T.; Lin, R.; Hung, C.; Kuo, N.; Cheng, Y.; Lin, S.; Hsieh, Z.; et al. Machine Learning Approaches for Predicting 5-year Breast Cancer Survival: A Multicenter Study. Cancer Sci. 2023, 114, 4063–4072. [Google Scholar] [CrossRef]
- Kalafi, E.Y.; Nor, N.A.M.; Taib, N.A.; Ganggayah, M.D.; Town, C.; Dhillon, S.K. Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data. Folia Biol. 2019, 65, 212–220. [Google Scholar] [CrossRef]
- Lou, S.-J.; Hou, M.-F.; Chang, H.-T.; Lee, H.-H.; Chiu, C.-C.; Yeh, S.-C.J.; Shi, H.-Y. Breast Cancer Surgery 10-Year Survival Prediction by Machine Learning: A Large Prospective Cohort Study. Biology 2021, 11, 47. [Google Scholar] [CrossRef]
- Song, X.; Chu, J.; Guo, Z.; Wei, Q.; Wang, Q.; Hu, W.; Wang, L.; Zhao, W.; Zheng, H.; Lv, X.; et al. Prognostic Prediction of Breast Cancer Patients Using Machine Learning Models: A Retrospective Analysis. Gland. Surg. 2024, 13, 1575–1587. [Google Scholar] [CrossRef]
- Sun, J.; Sun, C.-K.; Tang, Y.-X.; Liu, T.-C.; Lu, C.-J. Application of SHAP for Explainable Machine Learning on Age-Based Subgrouping Mammography Questionnaire Data for Positive Mammography Prediction and Risk Factor Identification. Healthcare 2023, 11, 2000. [Google Scholar] [CrossRef] [PubMed]
- Escala-Garcia, M.; Morra, A.; Canisius, S.; Chang-Claude, J.; Kar, S.; Zheng, W.; Bojesen, S.E.; Easton, D.; Pharoah, P.D.P.; Schmidt, M.K. Breast Cancer Risk Factors and Their Effects on Survival: A Mendelian Randomisation Study. BMC Med. 2020, 18, 327. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Luo, T.; Deng, L.; Liu, P.; Hu, K.; Lu, D.; Zheng, D.; Luo, C.; Xie, Y.; Li, J.; et al. Multidimensional Machine Learning Personalized Prognostic Model in an Early Invasive Breast Cancer Population-Based Cohort in China: Algorithm Validation Study. JMIR Med. Inform. 2020, 8, e19069. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, P.; Durga, U.; Ponnuraja, C. An Integrative Machine Learning Framework for Classifying SEER Breast Cancer. Sci. Rep. 2023, 13, 5362. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Duan, S.; Gu, C.; Wei, C.; Fang, Y. Survival Prediction in Second Primary Breast Cancer Patients with Machine Learning: An Analysis of SEER Database. Comput. Methods Programs Biomed. 2024, 254, 108310. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Peng, L.; Sahin, A.A.; Huo, L.; Ward, K.C.; O’Regan, R.; Torres, M.A.; Meisel, J.L. Triple-Negative Breast Cancer Has Worse Overall Survival and Cause-Specific Survival than Non-Triple-Negative Breast Cancer. Breast Cancer Res. Treat. 2017, 161, 279–287. [Google Scholar] [CrossRef]
- Narod, S.A.; Iqbal, J.; Giannakeas, V.; Sopik, V.; Sun, P. Breast Cancer Mortality After a Diagnosis of Ductal Carcinoma In Situ. JAMA Oncol. 2015, 1, 888–896. [Google Scholar] [CrossRef]
- Nelson, D.R.; Brown, J.; Morikawa, A.; Method, M. Breast Cancer-Specific Mortality in Early Breast Cancer as Defined by High-Risk Clinical and Pathologic Characteristics. PLoS ONE 2022, 17, e0264637. [Google Scholar] [CrossRef]
- Dhungana, A.; Vannier, A.; Zhao, F.; Freeman, J.Q.; Saha, P.; Sullivan, M.; Yao, K.; Flores, E.M.; Olopade, O.I.; Pearson, A.T.; et al. Development and Validation of a Clinical Breast Cancer Tool for Accurate Prediction of Recurrence. npj Breast Cancer 2024, 10, 46. [Google Scholar] [CrossRef]
- Lara, O.D.; Wang, Y.; Asare, A.; Xu, T.; Chiu, H.-S.; Liu, Y.; Hu, W.; Sumazin, P.; Uppal, S.; Zhang, L.; et al. Pan-Cancer Clinical and Molecular Analysis of Racial Disparities. Cancer 2020, 126, 800–807. [Google Scholar] [CrossRef]
- Vannier, A.G.L.; Dhungana, A.; Zhao, F.; Chen, N.; Shubeck, S.; Hahn, O.M.; Nanda, R.; Jaskowiak, N.T.; Fleming, G.F.; Olopade, O.I.; et al. Validation of the RSClin Risk Calculator in the National Cancer Data Base. Cancer 2024, 130, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Cha, H.S.; Jung, J.M.; Shin, S.Y.; Jang, Y.M.; Park, P.; Lee, J.W.; Chung, S.H.; Choi, K.S. The Korea Cancer Big Data Platform (K-CBP) for Cancer Research. Int. J. Environ. Res. Public Health 2019, 16, 2290. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.A.; Farnell, B. Missing and Incomplete Data Reduces the Value of General Practice Electronic Medical Records as Data Sources in Research. Aust. J. Prim. Health 2007, 13, 74–80. [Google Scholar] [CrossRef]
- Patro, S.G.K.; Sahu, K.K. Normalization: A Preprocessing Stage. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 20–22. [Google Scholar] [CrossRef]
- Feng, J.; Xu, H.; Mannor, S.; Yan, S. Robust Logistic Regression and Classification. In Proceedings of the NIPS 2014, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Kim, M.; Hwang, K.-B. An Empirical Evaluation of Sampling Methods for the Classification of Imbalanced Data. PLoS ONE 2022, 17, e0271260. [Google Scholar] [CrossRef]
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef]
- Liu, Z.; Bondell, H.D. Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data. Stat. Biosci. 2019, 11, 141–161. [Google Scholar] [CrossRef]
- Movahedi, F.; Antaki, J.F. Limitation of ROC in Evaluation of Classifiers for Imbalanced Data. J. Heart Lung Transplant. 2021, 40, S413. [Google Scholar] [CrossRef]
- Seyedtabib, M.; Kamyari, N. Predicting Polypharmacy in Half a Million Adults in the Iranian Population: Comparison of Machine Learning Algorithms. BMC Med. Inform. Decis. Mak. 2023, 23, 84. [Google Scholar] [CrossRef]
- Hossin, M.; Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag. Process. 2015, 5, 01–11. [Google Scholar] [CrossRef]
- Zuo, D.; Yang, L.; Jin, Y.; Qi, H.; Liu, Y.; Ren, L. Machine Learning-Based Models for the Prediction of Breast Cancer Recurrence Risk. BMC Med. Inform. Decis. Mak. 2023, 23, 276. [Google Scholar] [CrossRef] [PubMed]
- Schinkel, M.; Boerman, A.W.; Paranjape, K.; Wiersinga, W.J.; Nanayakkara, P.W.B. Detecting Changes in the Performance of a Clinical Machine Learning Tool over Time. eBioMedicine 2023, 97, 104823. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Cordova, C.; Muñoz, R.; Olivares, R.; Minonzio, J.-G.; Lozano, C.; Gonzalez, P.; Marchant, I.; González-Arriagada, W.; Olivero, P. HER2 Classification in Breast Cancer Cells: A New Explainable Machine Learning Application for Immunohistochemistry. Oncol. Lett. 2022, 25, 44. [Google Scholar] [CrossRef]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, H.J.; Park, J.; Lee, M.; Kim, S.; Koyanagi, A.; Smith, L.; Kim, M.S.; Rahmati, M.; Lee, H.; et al. Acute and Post-Acute Respiratory Complications of SARS-CoV-2 Infection: Population-Based Cohort Study in South Korea and Japan. Nat. Commun. 2024, 15, 4499. [Google Scholar] [CrossRef]
- Li, R.; Shinde, A.; Liu, A.; Glaser, S.; Lyou, Y.; Yuh, B.; Wong, J.; Amini, A. Machine Learning–Based Interpretation and Visualization of Nonlinear Interactions in Prostate Cancer Survival. JCO Clin. Cancer Inform. 2020, 4, 637–646. [Google Scholar] [CrossRef]
- Hou, C.; Zhong, X.; He, P.; Xu, B.; Diao, S.; Yi, F.; Zheng, H.; Li, J. Predicting Breast Cancer in Chinese Women Using Machine Learning Techniques: Algorithm Development. JMIR Med. Inform. 2020, 8, e17364. [Google Scholar] [CrossRef]
- Allugunti, V.R. Breast Cancer Detection Based on Thermographic Images Using Machine Learning and Deep Learning Algorithms. Int. J. Eng. Comput. Sci. 2022, 4, 49–56. [Google Scholar] [CrossRef]
- Ganggayah, M.D.; Taib, N.A.; Har, Y.C.; Lio, P.; Dhillon, S.K. Predicting Factors for Survival of Breast Cancer Patients Using Machine Learning Techniques. BMC Med. Inform. Decis. Mak. 2019, 19, 48. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Dvornek, N.C.; Gu, Y.; Ventola, P.; Duncan, J.S. Efficient Shapley Explanation for Features Importance Estimation Under Uncertainty. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2020; Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12261, pp. 792–801. ISBN 978-3-030-59709-2. [Google Scholar]
- van den Brandt, P.A.; Ziegler, R.G.; Wang, M.; Hou, T.; Li, R.; Adami, H.-O.; Agnoli, C.; Bernstein, L.; Buring, J.E.; Chen, Y.; et al. Body Size and Weight Change over Adulthood and Risk of Breast Cancer by Menopausal and Hormone Receptor Status: A Pooled Analysis of 20 Prospective Cohort Studies. Eur. J. Epidemiol. 2021, 36, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, P.M.; Lindström, S.; Behrens, S.; Wang, X.; Michailidou, K.; Bolla, M.K.; Wang, Q.; Dennis, J.; Dunning, A.M.; Pharoah, P.D.P.; et al. Assessment of Interactions between 205 Breast Cancer Susceptibility Loci and 13 Established Risk Factors in Relation to Breast Cancer Risk, in the Breast Cancer Association Consortium. Int. J. Epidemiol. 2020, 49, 216–232. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Ali, M.; Naseem, U.; Nezhadmoghadam, F.; Jatoi, M.A.; Gulliver, T.A.; Tamez-Peña, J.G. Breast Cancer Risk Prediction Using Machine Learning: A Systematic Review. Front. Oncol. 2024, 14, 1343627. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, K.; Jayabalan, M.; Thiruchelvam, V. Predicting Breast Cancer via Supervised Machine Learning Methods on Class Imbalanced Data. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 54–63. [Google Scholar] [CrossRef]
- Sorayaie Azar, A.; Babaei Rikan, S.; Naemi, A.; Bagherzadeh Mohasefi, J.; Pirnejad, H.; Bagherzadeh Mohasefi, M.; Wiil, U.K. Application of Machine Learning Techniques for Predicting Survival in Ovarian Cancer. BMC Med. Inform. Decis. Mak. 2022, 22, 345. [Google Scholar] [CrossRef]
- Lu, S.-C.; Xu, C.; Nguyen, C.H.; Geng, Y.; Pfob, A.; Sidey-Gibbons, C. Machine Learning-Based Short-Term Mortality Prediction Models for Patients With Cancer Using Electronic Health Record Data: Systematic Review and Critical Appraisal. JMIR Med. Inform. 2022, 10, e33182. [Google Scholar] [CrossRef]
- Lee, J.; Yoo, S.K.; Kim, K.; Lee, B.M.; Park, V.Y.; Kim, J.S.; Kim, Y.B. Machine Learning-based Radiomics Models for Prediction of Locoregional Recurrence in Patients with Breast Cancer. Oncol. Lett. 2023, 26, 422. [Google Scholar] [CrossRef]
- Ma, X.; Wu, S.; Zhang, X.; Chen, N.; Yang, C.; Yang, C.; Cao, M.; Du, K.; Liu, Y. Adjuvant Chemotherapy and Survival Outcomes in Older Women with HR+/HER2− Breast Cancer: A Propensity Score-Matched Retrospective Cohort Study Using the SEER Database. BMJ Open 2024, 14, e078782. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Zhang, Y.; Wang, Y.; Li, J.; Sun, S.; Liu, X.; Wu, H.; Feng, C.; Yao, P.; et al. Novel Models by Machine Learning to Predict Prognosis of Breast Cancer Brain Metastases. J. Transl. Med. 2023, 21, 404. [Google Scholar] [CrossRef]
- Taraniya, I.; PV, B.R.; Divyasri, Y.; Chaithra, V.; Raviteja, N.L. Machine Learning Based Breast Cancer Detection Using Logistic Regression. AIP Conf. Proc. 2024, 2742, 020084. [Google Scholar] [CrossRef]
- Cheung, T.T.; Chok, K.S.; Chan, A.C.; Tsang, S.H.; Dai, W.C.; Yau, T.C.; Kwong, A.; Lo, C.M. Survival Analysis of Breast Cancer Liver Metastasis Treated by Hepatectomy: A Propensity Score Analysis for Chinese Women in Hong Kong. Hepatobiliary Pancreat. Dis. Int. 2019, 18, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.-Y.; Bae, S.-J.; Cho, Y.; Ji, J.-H.; Kim, D.; Ahn, S.-G.; Park, H.-S.; Park, S.; Kim, S.-I.; et al. The Impact of Post-Mastectomy Radiotherapy on Survival Outcomes in Breast Cancer Patients Who Underwent Neoadjuvant Chemotherapy. Cancers 2021, 13, 6205. [Google Scholar] [CrossRef] [PubMed]
- Scomersi, S.; Giudici, F.; Cacciatore, G.; Losurdo, P.; Fracon, S.; Cortinovis, S.; Ceccherini, R.; Zanconati, F.; Tonutti, M.; Bortul, M. Comparison between Male and Female Breast Cancer Survival Using Propensity Score Matching Analysis. Sci. Rep. 2021, 11, 11639. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xue, Q.; Lu, J.J. Risky Driver Recognition with Class Imbalance Data and Automated Machine Learning Framework. Int. J. Environ. Res. Public Health 2021, 18, 7534. [Google Scholar] [CrossRef]
Overall Breast Cancer Group | Breast-Cancer-Only Group | |||||||
---|---|---|---|---|---|---|---|---|
Total (N = 2780) | Death (N = 695) | Alive (N = 2085) | p | Total (N = 1704) | Death (N = 426) | Alive (N = 1278) | p | |
Age at diagnosis | 51.4 ± 11.4 | 54.7 ± 14.0 | 50.3 ± 10.1 | <0.001 | 52.1 ± 12.0 | 57.0 ± 14.6 | 50.5 ± 10.5 | <0.001 |
Height | 157.1 ± 5.8 | 155.6 ± 6.2 | 157.5 ± 5.6 | <0.001 | 156.8 ± 6.0 | 155.2 ± 6.3 | 157.4 ± 5.8 | <0.001 |
BMI | 23.9 ± 3.5 | 24.3 ± 3.6 | 23.8 ± 3.5 | <0.05 | 23.9 ± 3.6 | 24.4 ± 3.7 | 23.8 ± 3.6 | <0.05 |
Smoking | 0.058 | 0.518 | ||||||
No | 2605 (93.7) | 638 (91.8) | 1967 (94.3) | 1607 (94.3) | 397 (93.2) | 1210 (94.7) | ||
Yes | 175 (6.3) | 57 (8.2) | 118 (5.7) | 97 (5.7) | 29 (6.8) | 68 (5.3) | ||
Drinking | <0.001 | <0.001 | ||||||
No | 2214 (79.6) | 600 (86.3) | 1614 (77.4) | 1335 (78.3) | 373 (87.6) | 962 (75.3) | ||
Yes | 566 (20.4) | 95 (13.7) | 471 (22.6) | 369 (21.7) | 53 (12.4) | 316 (24.7) | ||
Age at menarche | 14.9 ± 1.5 | 15.1 ± 1.5 | 14.8 ± 1.5 | <0.001 | 14.9 ± 1.6 | 15.2 ± 1.5 | 14.8 ± 1.5 | <0.001 |
Age at menopause | 49.5 ± 3.3 | 49.3 ± 3.8 | 49.5 ± 3.1 | 0.160 | 49.5 ± 3.5 | 49.3 ± 4.0 | 49.5 ± 3.3 | 0.566 |
Parturition experience | 0.907 | 0.969 | ||||||
No | 327 (11.8) | 85 (12.2) | 242 (11.6) | 218 (12.8) | 53 (12.4) | 165 (12.9) | ||
Yes | 2453 (88.2) | 610 (87.8) | 1843 (88.4) | 1486 (87.2) | 373 (87.6) | 1113 (87.1) | ||
Experience of oral contraceptives | 0.522 | 0.963 | ||||||
No | 2507 (90.2) | 619 (89.1) | 1888 (90.6) | 1526 (89.6) | 380 (89.2) | 1146 (89.7) | ||
Yes | 273 (9.8) | 76 (10.9) | 197 (9.4) | 178 (10.4) | 46 (10.8) | 132 (10.3) | ||
Hormone Replacement Therapy | 0.399 | 0.821 | ||||||
No | 1943 (93.2) | 637 (91.7) | 2580 (92.8) | 1547 (90.8) | 390 (91.5) | 1157 (90.5) | ||
Yes | 142 (6.8) | 58 (8.3) | 200 (7.2) | 157 (9.2) | 36 (8.5) | 121 (9.5) | ||
Family history | <0.05 | <0.001 | ||||||
No | 2587 (93.1) | 667 (96.0) | 1920 (92.1) | 1575 (92.4) | 414 (97.2) | 1161 (90.8) | ||
Yes | 193 (6.9) | 28 (4.0) | 165 (7.9) | 129 (7.6) | 12 (2.8) | 117 (9.2) | ||
Parents’ cancer history | <0.001 | <0.001 | ||||||
Paternity | 273 (9.8) | 40 (5.8) | 233 (11.2) | 145 (8.5) | 23 (5.4) | 122 (9.5) | ||
Maternal line | 158 (5.7) | 16 (2.3) | 142 (6.8) | 124 (7.3) | 10 (2.3) | 114 (8.9) | ||
Parental | 53 (1.9) | 6 (0.9) | 47 (2.3) | 32 (1.9) | 3 (0.7) | 29 (2.3) | ||
None | 2296 (82.6) | 633 (91.1) | 1663 (79.8) | 1403 (82.3) | 390 (91.5) | 1013 (79.3) | ||
Cancer history | 0.986 | 0.884 | ||||||
No | 2665 (95.9) | 667 (96.0) | 1998 (95.8) | 1654 (97.1) | 415 (97.4) | 1239 (96.9) | ||
Yes | 115 (4.1) | 28 (4.0) | 87 (4.2) | 50 (2.9) | 11 (2.6) | 39 (3.1) | ||
Total cholesterol | 194.8 ± 36.6 | 194.3 ± 39.2 | 195.0 ± 35.8 | 0.907 | 195.0 ± 36.7 | 196.4 ± 40.2 | 194.5 ± 35.5 | 0.671 |
Fasting glucose | 113.2 ± 41.6 | 122.8 ± 54.4 | 110.0 ± 35.7 | <0.001 | 113.7 ± 40.6 | 124.2 ± 54.6 | 110.2 ± 34.0 | <0.001 |
WBC | 6.5 ± 2.2 | 6.8 ± 2.5 | 6.3 ± 2.1 | <0.001 | 6.5 ± 2.3 | 6.9 ± 2.8 | 6.4 ± 2.1 | <0.05 |
Surgical type | <0.001 | <0.001 | ||||||
None | 40 (1.4) | 9 (1.3) | 31 (1.5) | 23 (1.3) | 5 (1.2) | 18 (1.4) | ||
BCS | 2395 (86.2) | 529 (76.1) | 1866 (89.5) | 1450 (85.1) | 322 (75.6) | 1128 (88.3) | ||
Mastectomy | 345 (12.4) | 157 (22.6) | 188 (9.0) | 231 (13.6) | 99 (23.2) | 132 (10.3) | ||
Tumor location | 0.920 | 0.330 | ||||||
Left | 1359 (48.9) | 350 (50.4) | 1009 (48.4) | 833 (48.9) | 224 (52.6) | 609 (47.7) | ||
Right | 1296 (46.6) | 313 (45.0) | 983 (47.1) | 796 (46.7) | 189 (44.4) | 607 (47.5) | ||
Both | 125 (4.5) | 32 (4.6) | 93 (4.5) | 75 (4.4) | 13 (3.1) | 62 (4.9) | ||
Tumor location index | 0.831 | 0.613 | ||||||
Single | 2655 (95.5) | 663 (95.4) | 1992 (95.5) | 1629 (95.6) | 413 (96.9) | 1216 (95.1) | ||
Bilateral and synchronous | 83 (3.0) | 24 (3.5) | 59 (2.8) | 47 (2.8) | 9 (2.1) | 38 (3.0) | ||
Bilateral and metachronous | 42 (1.5) | 8 (1.2) | 34 (1.6) | 28 (1.6) | 4 (0.9) | 24 (1.9) | ||
Bilateral | 0.764 | 0.348 | ||||||
No | 2688 (96.7) | 675 (97.1) | 2013 (96.5) | 1645 (96.5) | 416 (97.7) | 1229 (96.2) | ||
Yes | 92 (3.3) | 20 (2.9) | 72 (3.5) | 59 (3.5) | 10 (2.3) | 49 (3.8) | ||
Occurrence in other organs | <0.001 | - | - | - | - | |||
No | 2348 (84.5) | 426 (61.3) | 1922 (92.2) | - | - | - | - | |
Yes | 432 (15.5) | 269 (38.7) | 163 (7.8) | - | - | - | - | |
Histologic grade | <0.001 | <0.001 | ||||||
1 | 241 (8.7) | 32 (4.6) | 209 (10.0) | 153 (9.0) | 24 (5.6) | 129 (10.1) | ||
2 | 1282 (46.1) | 246 (35.4) | 1036 (49.7) | 786 (46.1) | 153 (35.9) | 633 (49.5) | ||
3 | 1257 (45.2) | 417 (60.0) | 840 (40.3) | 765 (44.9) | 249 (58.5) | 516 (40.4) | ||
p53(%) | 29.9 ± 24.7 | 33.4 ± 26.5 | 28.8 ± 24.0 | <0.001 | 29.8 ± 24.3 | 33.1 ± 26.2 | 28.7 ± 23.5 | <0.05 |
Ki-67(%) | 27.3 ± 22.5 | 33.1 ± 26.5 | 25.3 ± 20.6 | <0.001 | 28.1 ± 23.0 | 32.7 ± 26.3 | 26.6 ± 21.5 | <0.001 |
T stage | <0.001 | <0.001 | ||||||
0 | 134 (4.8) | 17 (2.4) | 117 (5.6) | 70 (4.1) | 11 (2.6) | 59 (4.6) | ||
1 | 1569 (56.4) | 278 (40.0) | 1291 (61.9) | 987 (57.9) | 166 (39.0) | 821 (64.2) | ||
2 | 950 (34.2) | 316 (45.5) | 634 (30.4) | 567 (33.3) | 196 (46.0) | 371 (29.0) | ||
3 | 95 (3.4) | 58 (8.3) | 37 (1.8) | 60 (3.5) | 33 (7.7) | 27 (2.1) | ||
4 | 32 (1.2) | 26 (3.7) | 6 (0.3) | 20 (1.2) | 20 (4.7) | 0 (0.0) | ||
N stage | <0.001 | <0.001 | ||||||
0 | 1862 (67.0) | 315 (45.3) | 1547 (74.2) | 1140 (66.9) | 199 (46.7) | 941 (73.6) | ||
1 | 641 (23.1) | 213 (30.6) | 428 (20.5) | 410 (24.1) | 131 (30.8) | 279 (21.8) | ||
2 | 200 (7.2) | 110 (15.8) | 90 (4.3) | 105 (6.2) | 61 (14.3) | 44 (3.4) | ||
3 | 77 (2.8) | 57 (8.2) | 20 (1.0) | 49 (2.9) | 35 (8.2) | 14 (1.1) | ||
Tumor subtype | <0.05 | <0.001 | ||||||
Luminal A | 1850 (66.5) | 438 (63.0) | 1412 (67.7) | 1136 (66.7) | 260 (61.0) | 876 (68.5) | ||
Luminal B | 363 (13.1) | 96 (13.8) | 267 (12.8) | 205 (12.0) | 52 (12.2) | 153 (12.0) | ||
Basal | 347 (12.5) | 112 (16.1) | 235 (11.3) | 213 (12.5) | 83 (19.5) | 130 (10.2) | ||
HER2 overexpressing | 220 (7.9) | 49 (7.1) | 171 (8.2) | 150 (8.8) | 31 (7.3) | 119 (9.3) | ||
Radiation treatment for curative | <0.001 | <0.001 | ||||||
No | 724 (26.0) | 267 (38.4) | 457 (21.9) | 479 (28.1) | 178 (41.8) | 301 (23.6) | ||
Yes | 2056 (74.0) | 428 (61.6) | 1628 (78.1) | 1225 (71.9) | 248 (58.2) | 977 (76.4) | ||
Chemotherapy | <0.001 | <0.001 | ||||||
None | 211 (7.6) | 45 (6.5) | 166 (8.0) | 146 (8.6) | 39 (9.2) | 107 (8.4) | ||
Adjuvant | 2056 (74.0) | 412 (59.3) | 1644 (78.8) | 1266 (74.3) | 260 (61.0) | 1006 (78.7) | ||
Neoadjuvant | 513 (17.1) | 238 (34.2) | 275 (13.2) | 292 (17.2) | 127 (29.8) | 165 (12.9) | ||
Anti-HER2 | <0.001 | <0.001 | ||||||
No | 2253 (81.0) | 479 (68.9) | 1774 (85.1) | 1440 (84.5) | 334 (78.4) | 1106 (86.5) | ||
Yes | 527 (19.0) | 216 (31.1) | 311 (14.9) | 264 (15.5) | 92 (21.6) | 172 (13.5) | ||
Anti-hormone | <0.001 | <0.001 | ||||||
No | 656 (23.6) | 210 (30.2) | 446 (21.4) | 416 (24.4) | 150 (35.2) | 266 (20.8) | ||
Yes | 2124 (76.4) | 485 (69.8) | 1639 (78.6) | 1288 (75.6) | 276 (64.8) | 1012 (79.2) |
Overall Breast Cancer Group | Breast-Cancer-Only Group | |||||||
---|---|---|---|---|---|---|---|---|
Univariable | Multivariable | Univariable | Multivariable | |||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age at diagnosis | 1.03 [1.03, 1.04] | <0.001 | 1.03 [1.02, 1.04] | <0.001 | 1.05 [1.04, 1.06] | <0.001 | 1.04 [1.03, 1.05] | <0.001 |
Height | 0.96 [0.95, 0.97] | <0.001 | 0.99 [0.97, 1.00] | 0.056 | 0.94 [0.92, 0.96] | <0.001 | 1.00 [0.98, 1.02] | 0.785 |
BMI | 1.04 [1.02, 1.06] | <0.001 | 0.98 [0.96, 1.01] | 0.138 | 1.05 [1.02, 1.08] | 0.002 | 1.01 [0.98, 1.03] | 0.717 |
Smoking | ||||||||
No | - | - | - | |||||
Yes | 1.38 [1.05, 1.81] | 0.019 | 1.36 [1.02, 1.82] | 0.037 | 1.25 [0.86, 1.82] | 0.251 | ||
Drinking | ||||||||
No | - | - | - | - | ||||
Yes | 0.63 [0.51, 0.78] | <0.001 | 0.77 [0.61, 0.97] | 0.027 | 0.52 [0.39, 0.69] | <0.001 | 0.52 [0.39, 0.69] | <0.001 |
Age at menarche | 1.08 [1.03, 1.13] | 0.001 | 0.96 [0.91, 1.02] | 0.168 | 1.17 [1.09, 1.26] | <0.001 | 1.08 [1.01, 1.14] | 0.017 |
Age at menopause | 0.99 [0.97, 1.01] | 0.387 | 0.98 [0.95, 1.01] | 0.287 | ||||
Parturition experience | ||||||||
No | - | - | ||||||
Yes | 1.03 [0.82, 1.29] | 0.801 | 1.12 [0.84 1.50] | 0.426 | ||||
Experience of oral contraceptives | ||||||||
No | - | - | ||||||
Yes | 1.09 [0.86, 1.38] | 0.492 | 1.05 [0.73, 1.49] | 0.784 | ||||
Hormone replacement therapy | ||||||||
No | - | - | ||||||
Yes | 1.13 [0.86, 1.48] | 0.367 | 0.86 [0.61, 1.22] | 0.400 | ||||
Family history | ||||||||
No | - | - | ||||||
Yes | 0.73 [0.50, 1.06] | 0.101 | 0.44 [0.25, 0.78] | 0.005 | 0.60 [0.33, 1.09] | 0.095 | ||
Parents’ cancer history | ||||||||
Paternity | - | - | - | |||||
Maternal line | 0.58 [0.32, 1.03] | 0.065 | 0.45 [0.22, 0.95] | 0.037 | 0.61 [0.28, 1.31] | 0.202 | ||
Parental | 0.70 [0.30, 1.64] | 0.408 | 0.66 [0.20, 2.19] | 0.495 | 0.33 [0.00, 1.15] | 0.082 | ||
None | 1.26 [0.92, 1.74] | 0.154 | 1.25 [0.82, 1.90] | 0.309 | 1.07 [0.69, 1.65] | 0.776 | ||
Cancer history | ||||||||
No | - | - | ||||||
Yes | 1.35 [0.93, 1.98] | 0.118 | 1.11 [0.61, 2.01] | 0.743 | ||||
Total cholesterol | 1.00 [1.00, 1.00] | 0.471 | 1.00 [1.00, 1.00] | 0.092 | ||||
Fasting glucose | 1.01 [1.00, 1.01] | <0.001 | 1.00 [1.00, 1.00] | 0.005 | 1.00 [1.00, 1.01] | <0.001 | 1.00 [1.00, 1.01] | 0.140 |
WBC | 1.09 [1.06, 1.12] | <0.001 | 1.04 [1.00, 1.07] | 0.028 | 1.07 [1.03, 1.11] | <0.001 | 1.01 [0.97, 1.05] | 0.691 |
Surgical type | ||||||||
None | - | - | ||||||
BCS | 0.90 [0.47, 1.75] | 0.764 | 0.62 [0.29, 1.32] | 0.212 | 1.34 [0.56, 3.25] | 0.513 | 1.34 [0.56, 3.25] | 0.513 |
Mastectomy | 1.99 [1.02, 3.89] | 0.045 | 0.53 [0.24, 1.15] | 0.108 | 2.74 [1.12, 6.73] | 0.028 | 2.74 [1.12, 6.73] | 0.028 |
Tumor location | ||||||||
Left | - | - | ||||||
Right | 0.94 [0.81, 1.09] | 0.425 | 0.89 [0.74, 1.08] | 0.251 | 0.62 [0.23, 1.65] | 0.340 | ||
Both | 0.93 [0.65, 1.33] | 0.685 | 0.61 [0.35, 1.07] | 0.086 | 0.49 [0.18, 1.32] | 0.158 | ||
Tumor location index | ||||||||
Single | - | - | ||||||
Bilateral & synchronous | 1.26 [0.84, 1.89] | 0.268 | 0.87 [0.45, 1.69] | 0.687 | ||||
Bilateral & metachronous | 0.55 [0.28, 1.11] | 0.098 | 0.41 [0.15, 1.09] | 0.075 | ||||
Bilateral | ||||||||
No | - | - | ||||||
Yes | 0.88 [0.57, 1.38] | 0.583 | 0.70 [0.38, 1.32] | 0.273 | ||||
Occurrence in other organs | ||||||||
No | - | - | ||||||
Yes | 3.84 [3.30, 4.48] | <0.001 | 2.57 [2.17, 3.04] | <0.001 | ||||
Histologic grade | ||||||||
1 | - | - | - | - | ||||
2 | 1.49 [1.03, 2.16] | 0.033 | 0.89 [0.59, 1.34] | 0.581 | 1.37 [0.89, 2.11] | 0.152 | 0.98 [0.62, 1.56] | 0.936 |
3 | 2.79 [1.95, 3.99] | <0.001 | 1.14 [0.75, 1.74] | 0.527 | 2.45 [1.61, 3.73] | <0.001 | 1.00 [0.61, 1.63] | 0.991 |
p53(%) | 1.01 [1.00, 1.01] | <0.001 | 1.00 [0.99, 1.00] | 0.152 | 1.01 [1.00, 1.01] | <0.001 | 1.00 [1.00, 1.00] | 0.825 |
Ki-67(%) | 1.02 [1.02, 1.02] | <0.001 | 1.01 [1.01, 1.02] | <0.001 | 1.02 [1.01, 1.02] | <0.001 | 1.01 [1.00, 1.01] | <0.001 |
T stage | ||||||||
0 | - | - | - | - | ||||
1 | 1.57 [0.96, 2.56] | 0.072 | 1.28 [0.75, 2.17] | 0.363 | 1.02 [0.56, 1.89] | 0.937 | 0.88 [0.46, 1.68] | 0.699 |
2 | 2.92 [1.79, 4.75] | <0.001 | 1.62 [0.94, 2.77] | 0.082 | 2.15 [1.17, 3.95] | 0.013 | 1.20 [0.62, 2.33] | 0.596 |
3 | 6.52 [3.80, 11.20] | <0.001 | 2.38 [1.30, 4.34] | 0.005 | 4.08 [2.06, 8.08] | <0.001 | 1.53 [0.71, 3.27] | 0.276 |
4 | 15.89 [8.60, 29.33] | <0.001 | 2.65 [1.34, 5.22] | 0.005 | 18.15 [8.66, 38.03] | <0.001 | 2.85 [1.25, 6.53] | 0.013 |
N stage | ||||||||
0 | - | - | - | - | ||||
1 | 2.05 [1.72, 2.44] | <0.001 | 1.47 [1.22, 1.78] | <0.001 | 2.07 [1.66, 2.59] | <0.001 | 1.64 [1.28, 2.09] | <0.001 |
2 | 3.50 [2.82, 4.35] | <0.001 | 1.99 [1.55, 2.56] | <0.001 | 3.90 [2.93, 5.19] | <0.001 | 2.83 [2.03, 3.96] | <0.001 |
3 | 6.07 [4.57, 8.05] | <0.001 | 3.25 [2.40, 4.40] | <0.001 | 4.90 [3.42, 7.02] | <0.001 | 2.89 [1.92, 4.37] | <0.001 |
Tumor subtype | ||||||||
Luminal A | - | - | - | - | ||||
Luminal B | 1.09 [0.87, 1.35] | 0.470 | 0.62 [0.48, 0.81] | <0.001 | 1.18 [0.87, 1.58] | 0.286 | 0.95 [0.67, 1.35] | 0.772 |
Basal | 1.53 [1.25, 1.89] | <0.001 | 0.46 [0.33, 0.66] | <0.001 | 2.08 [1.62, 2.66] | <0.001 | 0.93 [0.60, 1.45] | 0.745 |
HER2 overexpressing | 1.05 [0.78, 1.41] | 0.735 | 0.26 [0.17, 0.40] | <0.001 | 1.00 [0.69, 1.45] | 0.989 | 0.52 [0.30, 0.91] | 0.021 |
Radiation treatment for curative | ||||||||
Yes | - | - | - | |||||
No | 1.89 [1.62, 2.20] | <0.001 | 1.80 [1.53, 2.13] | <0.001 | 2.03 [1.67, 2.46] | <0.001 | 2.21 [1.70, 2.64] | <0.001 |
Chemotherapy | ||||||||
None | - | - | ||||||
Adjuvant | 0.85 [0.63, 1.16] | 0.315 | 0.62 [0.48, 0.81] | <0.001 | 0.70 [0.50, 0.98] | 0.040 | 1.35 [0.87, 2.08] | 0.177 |
Neoadjuvant | 2.88 [1.62, 5.06] | <0.001 | 0.26 [0.17, 0.40] | <0.001 | 2.33 [1.62, 3.35] | <0.001 | 3.43 [2.10, 5.61] | <0.001 |
Anti-HER2 | ||||||||
No | - | - | - | |||||
Yes | 2.22 [1.89, 2.61] | <0.001 | 1.48 [1.19, 1.85] | <0.001 | 1.73 [1.37, 2.18] | <0.001 | 1.09 [0.80, 1.49] | 0.566 |
Anti-hormone | ||||||||
No | - | - | - | |||||
Yes | 0.60 [0.51, 0.71] | <0.001 | 0.34 [0.24, 0.47] | <0.001 | 0.49 [0.40, 0.60] | <0.001 | 0.50 [0.33, 0.76] | 0.001 |
Accuracy | Precision | Recall | F1 Score | AUC | Specificity | Brier Score | MCC | AUPRC | ||
---|---|---|---|---|---|---|---|---|---|---|
Overall breast cancer group | LR | 0.7950 | 0.5691 | 0.7410 | 0.6438 | 0.8467 | 0.8129 | 0.2050 | 0.5119 | 0.6662 |
RF | 0.8058 | 0.6566 | 0.4676 | 0.5462 | 0.8624 | 0.9185 | 0.1942 | 0.4370 | 0.6679 | |
XGB | 0.8381 | 0.7634 | 0.5108 | 0.6121 | 0.8722 | 0.9472 | 0.1619 | 0.5314 | 0.7130 | |
LGB | 0.8094 | 0.6093 | 0.6619 | 0.6345 | 0.8677 | 0.8585 | 0.1906 | 0.5066 | 0.7059 | |
Breast-Cancer-only group | LR | 0.7507 | 0.5000 | 0.7529 | 0.6009 | 0.8338 | 0.7500 | 0.2493 | 0.4493 | 0.6928 |
RF | 0.7859 | 0.6579 | 0.2941 | 0.4065 | 0.8043 | 0.9492 | 0.2141 | 0.3345 | 0.5648 | |
XGB | 0.8504 | 0.8696 | 0.4706 | 0.6107 | 0.8518 | 0.9766 | 0.1496 | 0.5662 | 0.7013 | |
LGB | 0.8270 | 0.6857 | 0.5647 | 0.6194 | 0.8482 | 0.9141 | 0.1730 | 0.5128 | 0.6676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.W.; Park, Y.-L.; Lee, E.-G.; Chae, H.; Park, P.; Choi, D.-W.; Choi, Y.H.; Hwang, J.; Ahn, S.; Kim, K.; et al. Mortality Prediction Modeling for Patients with Breast Cancer Based on Explainable Machine Learning. Cancers 2024, 16, 3799. https://doi.org/10.3390/cancers16223799
Park SW, Park Y-L, Lee E-G, Chae H, Park P, Choi D-W, Choi YH, Hwang J, Ahn S, Kim K, et al. Mortality Prediction Modeling for Patients with Breast Cancer Based on Explainable Machine Learning. Cancers. 2024; 16(22):3799. https://doi.org/10.3390/cancers16223799
Chicago/Turabian StylePark, Sang Won, Ye-Lin Park, Eun-Gyeong Lee, Heejung Chae, Phillip Park, Dong-Woo Choi, Yeon Ho Choi, Juyeon Hwang, Seohyun Ahn, Keunkyun Kim, and et al. 2024. "Mortality Prediction Modeling for Patients with Breast Cancer Based on Explainable Machine Learning" Cancers 16, no. 22: 3799. https://doi.org/10.3390/cancers16223799
APA StylePark, S. W., Park, Y. -L., Lee, E. -G., Chae, H., Park, P., Choi, D. -W., Choi, Y. H., Hwang, J., Ahn, S., Kim, K., Kim, W. J., Kong, S. -Y., Jung, S. -Y., & Kim, H. -J. (2024). Mortality Prediction Modeling for Patients with Breast Cancer Based on Explainable Machine Learning. Cancers, 16(22), 3799. https://doi.org/10.3390/cancers16223799