Intra-Operative Tumour Detection and Staging in Pancreatic Cancer Surgery: An Integrative Review of Current Standards and Future Directions
Simple Summary
Abstract
1. Introduction
2. Imaging Modalities for PDAC Diagnosis and Staging
2.1. Computed Tomography (CT)
2.2. Magnetic Resonance Imaging (MRI) and Magnetic Resonance Cholangiopancreatography (MRCP)
2.3. Positron Emission Tomography (PET)
2.4. Endoscopic Ultrasonography (EUS)
3. Intra-Operative Staging Modalities
3.1. Established Techniques
3.1.1. Frozen Sections
3.1.2. Laparoscopy
3.2. Emerging Techniques
3.2.1. Lymph Node Mapping (LNM)
3.2.2. Intra-Operative Ultrasound (IOUS)
3.2.3. Intra-Operative Fluorescence-Guided Surgery (FGS): Diagnosis and Staging
Fluorescence for Tumour Visualisation
Fluorescence Lymph Node Imaging
3.2.4. Optical Coherence Tomography (OCT)
Study Type | Number of Patients | Fluorescent Agent | Targeted | Fluorescence Emission Wavelength | Dose | Intra-Op Detection (Tumour, Lymph Nodes, Micrometastasis) | Complications/Limitations | Reference |
---|---|---|---|---|---|---|---|---|
Prospective | 49 | Indocyanine green | NO | 600 to 900 nm | 2.5 mg/mL | Improved visualisation of tumour and detection of micrometastasis |
| [94] |
Prospective | 133 | Indocyanine green | NO | 600 to 900 nm | 2.5 mg/mL | Increased detection of unsuspected liver metastasis from PDAC | No complications reported | [86] |
Case report | 1 | Methylene blue | NO | 700 nm | 1.0 mg/kg | LN detection and potential tumour visualisation | No complications reported | [95] |
Phase I dose-escalation | 16 | Panitumumab-IRDye800CW | Anti-EGFR antibody | 800 nm | 25, 50, or 75 mg | Emphasised surgical margins, LN metastasis and distant metastasis |
| [84] |
Prospective protocol | 40 | Indocyanine green | NO | 600 to 900 nm | 0.5 mg/kg | Improves visualisation in PDAC and peritoneal metastases | No complications reported | [96] |
Clinical trial | 12 | SGM-101 | Anti-CEA antibody | 700 nm | 5, 7.5, or 10 mg | Safe and viable for intra-operative identification of both primary PDAC and liver and peritoneal metastases |
| [85] |
Phase I dose-escalation | 7 | Cetuximab-IRDye800 | Anti-EGFR antibody | 800 nm | 50 mg or 100 mg | Improved visualisation of LN metastases. Effectively detected tumours exhibiting a notably elevated average fluorescence intensity within the tumour compared to the surrounding normal pancreatic tissue and cases of pancreatitis |
| [97] |
3.2.5. Radioimmunoguided Surgery (RIGS)
3.2.6. Ultrasound Elastography (UEG)
3.2.7. Overview Intra-Operative PDAC Imaging
4. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.-L.; Choné, L.; Francois, E.; Artru, P.; Biagi, J.J.; et al. FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef]
- Strobel, O.; Neoptolemos, J.; Jäger, D.; Büchler, M.W. Optimizing the outcomes of pancreatic cancer surgery. Nat. Rev. Clin. Oncol. 2019, 16, 11–26. [Google Scholar] [CrossRef]
- Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zülke, C.; Fahlke, J.; Arning, M.B.; et al. Adjuvant Chemotherapy with Gemcitabine and Long-term Outcomes Among Patients with Resected Pancreatic Cancer. JAMA 2013, 310, 1473–1481. [Google Scholar] [CrossRef]
- Strobel, O.; Hank, T.; Hinz, U.; Bergmann, F.; Schneider, L.; Springfeld, C.; Jäger, D.; Schirmacher, P.; Hackert, T.; Büchler, M.W. Pancreatic cancer surgery: The new R-status counts. Ann. Surg. 2017, 265, 565–573. [Google Scholar] [CrossRef]
- Hank, T.; Hinz, U.; Tarantino, I.; Kaiser, J.; Niesen, W.; Bergmann, F.; Hackert, T.; Büchler, M.W.; Strobel, O. Validation of at least 1 mm as cut-off for resection margins for pancreatic adenocarcinoma of the body and tail. Br. J. Surg. 2018, 105, 1171–1181. [Google Scholar] [CrossRef]
- Vitali, F.; Pfeifer, L.; Janson, C.; Goertz, R.S.; Neurath, M.F.; Strobel, D.; Wildner, D. Quantitative perfusion analysis in pancreatic contrast enhanced ultrasound (DCE-US): A promising tool for the differentiation between autoimmune pancreatitis and pancreatic cancer. Z. Fur Gastroenterol. 2015, 53, 1175–1181. [Google Scholar] [CrossRef]
- Liu, X.; Fu, Y.; Chen, Q.; Wu, J.; Gao, W.; Jiang, K.; Miao, Y.; Wei, J. Predictors of distant metastasis on exploration in patients with potentially resectable pancreatic cancer. BMC Gastroenterol. 2018, 18, 168. [Google Scholar] [CrossRef]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.-J.M.; van Dam, R.M.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef]
- Lee, J.-C.; Ahn, S.; Cho, I.K.; Kim, J.; Hwang, J.-H. Management of recurrent pancreatic cancer after surgical resection: A protocol for systematic review, evidence mapping and meta-analysis. BMJ Open 2018, 8, e017249. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.P.; Psarelli, E.-E.; Jackson, R.; Ghaneh, P.; Halloran, C.M.; Palmer, D.H.; Campbell, F.; Valle, J.W.; Faluyi, O.; O’reilly, D.A.; et al. Patterns of Recurrence after Resection of Pancreatic Ductal Adenocarcinoma. JAMA Surg. 2019, 154, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.W.; Palmer, D.; Jackson, R.; Cox, T.; Neoptolemos, J.P.; Ghaneh, P.; Rawcliffe, C.L.; Bassi, C.; Stocken, D.D.; Cunningham, D.; et al. Optimal Duration and Timing of Adjuvant Chemotherapy After Definitive Surgery for Ductal Adenocarcinoma of the Pancreas: Ongoing Lessons from the ESPAC-3 Study. J. Clin. Oncol. 2014, 32, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lyu, S.-C.; Zhu, J.-Q.; Li, X.-L.; Lang, R.; He, Q. Extended lymphadenectomy benefits patients with borderline resectable pancreatic head cancer—A single-center retrospective study. Gland. Surg. 2021, 10, 2910–2924. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Lovegrove, R.; Tilney, H.; Abraham, A.; Bhattacharya, S.; Tekkis, P.; Kocher, H. A comparison of pancreaticoduodenectomy with extended pancreaticoduodenectomy: A meta-analysis of 1909 patients. Eur. J. Surg. Oncol. (EJSO) 2009, 35, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Michalski, C.W.; Kleeff, J.; Wente, M.N.; Diener, M.K.; Büchler, M.W.; Friess, H. Systematic review and meta-analysis of standard and extended lymphadenectomy in pancreaticoduodenectomy for pancreatic cancer. Br. J. Surg. 2007, 94, 265–273. [Google Scholar] [CrossRef]
- Shrikhande, S.V.; Barreto, S.G. Extended pancreatic resections and lymphadenectomy: An appraisal of the current evidence. World J. Gastrointest. Surg. 2010, 2, 39–46. [Google Scholar] [CrossRef]
- Adamska, A.; Domenichini, A.; Falasca, M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int. J. Mol. Sci. 2017, 18, 1338. [Google Scholar] [CrossRef]
- Maithel, S.K.; Maloney, S.; Winston, C.; Gönen, M.; D’angelica, M.I.; DeMatteo, R.P.; Jarnagin, W.R.; Brennan, M.F.; Allen, P.J. Preoperative CA 19-9 and the Yield of Staging Laparoscopy in Patients with Radiographically Resectable Pancreatic Adenocarcinoma. Ann. Surg. Oncol. 2008, 15, 3512–3520. [Google Scholar] [CrossRef]
- De Rosa, A.; Cameron, I.C.; Gomez, D. Indications for staging laparoscopy in pancreatic cancer. HPB 2015, 18, 13–20. [Google Scholar] [CrossRef]
- de Boer, E.; Harlaar, N.J.; Taruttis, A.; Nagengast, W.B.; Rosenthal, E.L.; Ntziachristos, V.; van Dam, G.M. Optical innovations in surgery. Br. J. Surg. 2015, 102, e56–e72. [Google Scholar] [CrossRef] [PubMed]
- Tummers, W.S.; Willmann, J.K.; Bonsing, B.A.; Vahrmeijer, A.L.; Gambhir, S.S.; Swijnenburg, R.-J. Advances in Diagnostic and Intraoperative Molecular Imaging of Pancreatic Cancer. Pancreas 2018, 47, 675–689. [Google Scholar] [CrossRef]
- Zhang, L.; Sanagapalli, S.; Stoita, A. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol. 2018, 24, 2047–2060. [Google Scholar] [CrossRef]
- Mark, F.; Lawrence, S.; Lawrence, J. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease; Sounders Elsevier: New York, NY, USA, 2010. [Google Scholar]
- Pietryga, J.A.; Morgan, D.E. Imaging preoperatively for pancreatic adenocarcinoma. J. Gastrointest. Oncol. 2015, 6, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.C.; Lu, D.S. Staging of Pancreatic Adenocarcinoma by Imaging Studies. Clin. Gastroenterol. Hepatol. 2008, 6, 1301–1308. [Google Scholar] [CrossRef]
- Treadwell, J.R.; Zafar, H.M.; Mitchell, M.D.; Tipton, K.; Teitelbaum, U.; Jue, J. Imaging Tests for the Diagnosis and Staging of Pancreatic Adenocarcinoma: A Meta-Analysis. Pancreas 2016, 45, 789–795. [Google Scholar] [CrossRef]
- Ahn, S.S.; Kim, M.-J.; Choi, J.-Y.; Hong, H.-S.; Chung, Y.E.; Lim, J.S. Indicative findings of pancreatic cancer in prediagnostic CT. Eur. Radiol. 2009, 19, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.P.; Horton, K.M.; Fishman, E.K. Multimodality Imaging of Pancreatic Cancer—Computed Tomography, Magnetic Resonance Imaging, and Positron Emission Tomography. Cancer J. 2012, 18, 511–522. [Google Scholar] [CrossRef]
- Lee, J.H.; Han, S.-S.; Hong, E.K.; Cho, H.J.; Joo, J.; Park, E.Y.; Woo, S.M.; Kim, T.H.; Lee, W.J.; Park, S.-J. Predicting LN metastasis in pancreatobiliary cancer with magnetic resonance imaging: A prospective analysis. Eur. J. Radiol. 2019, 116, 1–7. [Google Scholar] [CrossRef]
- SShrikhande, S.V.; Barreto, S.G.; Goel, M.; Arya, S. Multimodality imaging of pancreatic ductal adenocarcinoma: A review of the literature. HPB 2012, 14, 658–668. [Google Scholar] [CrossRef]
- Prokesch, R.W.; Chow, L.C.; Beaulieu, C.F.; Bammer, R.; Jeffrey, R.B. Isoattenuating Pancreatic Adenocarcinoma at Multi–Detector Row CT: Secondary Signs. Radiology 2002, 224, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Bipat, S.; Phoa, S.S.K.S.; Van Delden, O.M.; Bossuyt, P.M.M.; Gouma, D.J.; Laméris, J.S.; Stoker, J. Ultrasonography, Computed Tomography and Magnetic Resonance Imaging for Diagnosis and Determining Resectability of Pancreatic Adenocarcinoma. J. Comput. Assist. Tomogr. 2005, 29, 438–445. [Google Scholar] [CrossRef]
- Maccioni, F.; Martinelli, M.; Al Ansari, N.; Kagarmanova, A.; De Marco, V.; Zippi, M.; Marini, M. Magnetic resonance cholangiography: Past, present and future: A review. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 721–725. [Google Scholar] [PubMed]
- Krupa, K.; Bekiesińska-Figatowska, M. Artifacts in Magnetic Resonance Imaging. Pol. J. Radiol. 2015, 80, 93–106. [Google Scholar] [CrossRef]
- Vachiranubhap, B.; Kim, Y.H.; Balci, N.C.; Semelka, R.C. Magnetic Resonance Imaging of Adenocarcinoma of the Pancreas. Top. Magn. Reson. Imaging 2009, 20, 3–9. [Google Scholar] [CrossRef]
- Shi, L.; Wang, L.; Wu, C.; Wei, Y.; Zhang, Y.; Chen, J. Preoperative Prediction of LN Metastasis of Pancreatic Ductal Adenocarcinoma Based on a Radiomics Nomogram of Dual-Parametric MRI Imaging. Front. Oncol. 2022, 12, 927077. [Google Scholar] [CrossRef]
- Alabousi, M.; McInnes, M.D.; Salameh, J.; Satkunasingham, J.; Kagoma, Y.K.; Ruo, L.; Meyers, B.M.; Aziz, T.; van der Pol, C.B. MRI vs. CT for the Detection of Liver Metastases in Patients With Pancreatic Carcinoma: A Comparative Diagnostic Test Accuracy Systematic Review and Meta-Analysis. J. Magn. Reson. Imaging 2021, 53, 38–48. [Google Scholar] [CrossRef]
- Dappa, E.; Elger, T.; Hasenburg, A.; Düber, C.; Battista, M.J.; Hötker, A.M. The value of advanced MRI techniques in the assessment of cervical cancer: A review. Insights Imaging 2017, 8, 471–481. [Google Scholar] [CrossRef]
- Huang, S.; Chong, H.; Sun, X.; Wu, Z.; Jia, Q.; Zhang, Y.; Lan, X. The Value of 18F-FDG PET/CT in Diagnosing Pancreatic Lesions: Comparison With CA19-9, Enhanced CT or Enhanced MR. Front. Med. 2021, 8, 668697. [Google Scholar] [CrossRef]
- Thai, K. The Role of 18-FDG PET/CT Combined with CA 19-9 in the Diagnosis of Early-Stage Pancreatic Adenocarcinoma: A Systematic Review and Meta-analysis. J. Nucl. Med. 2019, 60 (Suppl. 1), 471. [Google Scholar]
- Yoneyama, T.; Tateishi, U.; Endo, I.; Inoue, T. Staging accuracy of pancreatic cancer: Comparison between non-contrast-enhanced and contrast-enhanced PET/CT. Eur. J. Radiol. 2014, 83, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, H.; Yang, F.; Teng, X.; Jiang, B. The value of 18F-FDG PET/CT and carbohydrate antigen 19-9 in predicting LN micrometastases of pancreatic cancer. Abdom. Imaging 2019, 44, 4057–4062. [Google Scholar] [CrossRef] [PubMed]
- Handgraaf, H.J.M.; Boonstra, M.C.; Van Erkel, A.R.; Bonsing, B.A.; Putter, H.; Van De Velde, C.J.H.; Vahrmeijer, A.L.; Mieog, J.S.D. Current and Future Intraoperative Imaging Strategies to Increase Radical Resection Rates in Pancreatic Cancer Surgery. BioMed Res. Int. 2014, 2014, 890230. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.M.; Lee, H.J.; Goo, J.M.; Lee, H.-Y.; Lee, J.J.; Chung, J.-K.; Im, J.-G. False Positive and False Negative FDG-PET Scans in Various Thoracic Diseases. Korean J. Radiol. 2006, 7, 57–69. [Google Scholar] [CrossRef]
- Kazama, T.; Faria, S.C.; Varavithya, V.; Phongkitkarun, S.; Ito, H.; Macapinlac, H.A. FDG PET in the Evaluation of Treatment for Lymphoma: Clinical Usefulness and Pitfalls. RadioGraphics 2005, 25, 191–207. [Google Scholar] [CrossRef]
- Arnone, A.; Laudicella, R.; Caobelli, F.; Guglielmo, P.; Spallino, M.; Abenavoli, E.; Martini, A.L.; Filice, R.; Comis, A.D.; Cuzzocrea, M.; et al. Clinical Impact of 18F-FDG PET/CT in the Diagnostic Workup of Pancreatic Ductal Adenocarcinoma: A Systematic Review. Diagnostics 2020, 10, 1042. [Google Scholar] [CrossRef]
- Veits, L.; Schupfner, R.; Hufnagel, P.; Penzel, R.; Freitag, J.; Ströbel, P.; A Kern, M.; Schröder, S.; Neuhold, N.; Schmid, K.W.; et al. KRAS, EGFR, PDGFR-α, KIT and COX-2 status in carcinoma showing thymus-like elements (CASTLE). Diagn. Pathol. 2014, 9, 116. [Google Scholar] [CrossRef]
- Peters, M.L.B.; Eckel, A.; Mueller, P.P.; Tramontano, A.C.; Weaver, D.T.; Lietz, A.; Hur, C.; Kong, C.Y.; Pandharipande, P.V. Progression to pancreatic ductal adenocarcinoma from pancreatic intraepithelial neoplasia: Results of a simulation model. Pancreatology 2018, 18, 928–934. [Google Scholar] [CrossRef]
- Hewitt, M.J.; McPhail, M.J.; Possamai, L.; Dhar, A.; Vlavianos, P.; Monahan, K.J. EUS-guided FNA for diagnosis of solid pancreatic neoplasms: A meta-analysis. Gastrointest. Endosc. 2012, 75, 319–331. [Google Scholar] [CrossRef]
- Kramer-Marek, G.; Gore, J.; Korc, M. Molecular imaging in pancreatic cancer—A roadmap for therapeutic decisions. Cancer Lett. 2013, 341, 132–138. [Google Scholar] [CrossRef]
- Lami, G. Endoscopic ultrasonography for surveillance of individuals at high risk for pancreatic cancer. World J. Gastrointest. Endosc. 2014, 6, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Costache, M.I.; Costache, C.A.; Dumitrescu, C.I.; Tica, A.A.; Popescu, M.; Baluta, E.A.; Anghel, A.C.; Saftoiu, A.; Dumitrescu, D. Which is the Best Imaging Method in Pancreatic Adenocarcinoma Diagnosis and Staging—CT, MRI or EUS? Curr. Health Sci. J. 2017, 43, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Puli, S.R.; Singh, S.; Hagedorn, C.H.; Reddy, J.; Olyaee, M. Diagnostic accuracy of EUS for vascular invasion in pancreatic and periampullary cancers: A meta-analysis and systematic review. Gastrointest. Endosc. 2007, 65, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.A.; Kochman, M.L.; Brensinger, C.; Brugge, W.R.; Faigel, D.O.; Gress, F.G.; Kimmey, M.B.; Nickl, N.J.; Savides, T.J.; Wallace, M.B.; et al. Interobserver agreement among endosonographers for the diagnosis of neoplastic versus non-neoplastic pancreatic cystic lesions. Gastrointest. Endosc. 2003, 58, 59–64. [Google Scholar] [CrossRef]
- DeWitt, J.; Devereaux, B.; Chriswell, M.; McGreevy, K.; Howard, T.; Imperiale, T.F.; Ciaccia, D.; Lane, K.A.; Maglinte, D.; Kopecky, K.; et al. Comparison of Endoscopic Ultrasonography and Multidetector Computed Tomography for Detecting and Staging Pancreatic Cancer. Ann. Intern. Med. 2004, 141, 753–763. [Google Scholar] [CrossRef] [PubMed]
- SSoriano, A.; Castells, A.; Ayuso, C.; Ayuso, J.R.; de Caralt, M.T.; Ginès, M.; Real, M.I.; Gilabert, R.; Quintó, L.; Trilla, A.; et al. Preoperative Staging and Tumor Resectability Assessment of Pancreatic Cancer: Prospective Study Comparing Endoscopic Ultrasonography, Helical Computed Tomography, Magnetic Resonance Imaging, and Angiography. Am. J. Gastroenterol. 2004, 99, 492–501. [Google Scholar] [CrossRef]
- Rivadeneira, D.E.; Pochapin, M.; Grobmyer, S.R.; Lieberman, M.D.; Christos, P.J.; Jacobson, I.; Daly, J.M. Comparison of Linear Array Endoscopic Ultrasound and Helical Computed Tomography for the Staging of Periampullary Malignancies. Ann. Surg. Oncol. 2003, 10, 890–897. [Google Scholar] [CrossRef]
- Vahrmeijer, A.L.; Hutteman, M.; Van Der Vorst, J.R.; Van De Velde, C.J.; Frangioni, J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518. [Google Scholar] [CrossRef]
- Lwin, T.M.; Murakami, T.; Miyake, K.; Yazaki, P.J.; Shivley, J.E.; Hoffman, R.M.; Bouvet, M. Tumor-Specific Labeling of Pancreatic Cancer Using a Humanized Anti-CEA Antibody Conjugated to a Near-Infrared Fluorophore. Ann. Surg. Oncol. 2018, 25, 1079–1085. [Google Scholar] [CrossRef]
- Nelson, D.W.; Blanchard, T.H.; Causey, M.W.; Homann, J.F.; Brown, T.A. Examining the accuracy and clinical usefulness of intraoperative frozen section analysis in the management of pancreatic lesions. Am. J. Surg. 2013, 205, 613–617. [Google Scholar] [CrossRef]
- Bonaroti, J.W.; Doane, S.; McCue, P.A.; Winter, J.M. Intraoperative Frozen Section Analysis of the Pancreas: A Case Report and Review of the Literature. Case Rep. Pancreat. Cancer 2016, 2, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Kooby, D.A.; Lad, N.L.; Squires, M.H.; Maithel, S.K.; Sarmiento, J.M.; Staley, C.A.; Adsay, N.V.; El-Rayes, B.F.; Weber, S.M.; Winslow, E.R.; et al. Value of Intraoperative Neck Margin Analysis during Whipple for Pancreatic Adenocarcinoma. Ann. Surg. 2014, 260, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Plesco, I.; Strobel, J.; Schütt, F.; Himcinschi, C.; Ben Sedrine, N.; Monteiro, T.; Correia, M.R.; Gorceac, L.; Cinic, B.; Ursaki, V.; et al. Hierarchical Aerographite 3D flexible networks hybridized by InP micro/nanostructures for strain sensor applications. Sci. Rep. 2018, 8, 13880. [Google Scholar] [CrossRef]
- Fong, Z.V.; Alvino, D.M.L.; Castillo, C.F.-D.; Mehtsun, W.T.; Pergolini, I.; Warshaw, A.L.; Chang, D.C.; Lillemoe, K.D.; Ferrone, C.R. Reappraisal of Staging Laparoscopy for Patients with Pancreatic Adenocarcinoma: A Contemporary Analysis of 1001 Patients. Ann. Surg. Oncol. 2017, 24, 3203–3211. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Y.; Li, X.; Zou, X. Perineural Invasion and Associated Pain Transmission in Pancreatic Cancer. Cancers 2021, 13, 4594. [Google Scholar] [CrossRef]
- Sahin, I.H.; Elias, H.; Chou, J.F.; Capanu, M.; O’reilly, E.M. Pancreatic adenocarcinoma: Insights into patterns of recurrence and disease behavior. BMC Cancer 2018, 18, 769. [Google Scholar] [CrossRef]
- Durczyński, A.; Hogendorf, P.; Szymański, D.; Grzelak, P.; Strzelczyk, J. Sentinel LN mapping in tumors of the pancreatic body: Preliminary report. Wspolczesna Onkol. Oncol. 2012, 3, 206–209. [Google Scholar] [CrossRef]
- Kocher, H.; Sohail, M.; Benjamin, I.; Patel, A. Technical limitations of LN mapping in pancreatic cancer. Eur. J. Surg. Oncol. (EJSO) 2007, 33, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Hirono, S.; Tani, M.; Kawai, M.; Okada, K.-I.; Miyazawa, M.; Shimizu, A.; Uchiyama, K.; Yamaue, H. Identification of the Lymphatic Drainage Pathways from the Pancreatic Head Guided by Indocyanine Green Fluorescence Imaging during Pancreaticoduodenectomy. Dig. Surg. 2012, 29, 132–139. [Google Scholar] [CrossRef]
- Sadeghi, R. Unilateral sentinel node detection in midline tumors: We should report the “whole truth”. Ann. Nucl. Med. 2020, 34, 875–876. [Google Scholar] [CrossRef]
- Ali, E.S.; Sharker, S.M.; Islam, M.T.; Khan, I.N.; Shaw, S.; Rahman, A.; Uddin, S.J.; Shill, M.C.; Rehman, S.; Das, N.; et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin. Cancer Biol. 2021, 69, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Ćwik, G.; Solecki, M.; Wallner, G. Applications of intraoperative ultrasound in the treatment of complicated cases of acute and chronic pancreatitis and pancreatic cancer-own experience. J. Ultrason. 2015, 15, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Michiels, N.; Doppenberg, D.; Groen, J.V.; van Veldhuisen, E.; Bonsing, B.A.; Busch, O.R.; Crobach, A.S.L.P.; van Delden, O.M.; van Dieren, S.; Farina, A.; et al. Intraoperative Ultrasound During Surgical Exploration in Patients with Pancreatic Cancer and Vascular Involvement (ULTRAPANC): A Prospective Multicenter Study. Ann. Surg. Oncol. 2023, 30, 3455–3463. [Google Scholar] [CrossRef]
- Machi, J.; Sigel, B.; Zaren, H.A.; Kurohiji, T.; Yamashita, Y. Operative ultrasonography during hepatobiliary and pancreatic surgery. World J. Surg. 1993, 17, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Nakamura, Y.A.; Choyke, P.L.; Kobayashi, H. Fluorescence-Guided Surgery. Front. Oncol. 2017, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- Karandish, F.; Mallik, S. Biomarkers and Targeted Therapy in Pancreatic Cancer. Biomark. Cancer 2016, 8 (Suppl. 1), 27–35. [Google Scholar] [CrossRef]
- van Dam, M.A.; Vuijk, F.A.; Stibbe, J.A.; Houvast, R.D.; Luelmo, S.A.C.; Crobach, S.; Feshtali, S.S.; de Geus-Oei, L.-F.; Bonsing, B.A.; Sier, C.F.M.; et al. Overview and Future Perspectives on Tumor-Targeted Positron Emission Tomography and Fluorescence Imaging of Pancreatic Cancer in the Era of Neoadjuvant Therapy. Cancers 2021, 13, 6088. [Google Scholar] [CrossRef]
- Zöpf, T.; Schneider, A.R.; Weickert, U.; Riemann, J.F.; Arnold, J.C. Improved preoperative tumor staging by 5-aminolevulinic acid induced fluorescence laparoscopy. Gastrointest. Endosc. 2005, 62, 763–767. [Google Scholar] [CrossRef]
- Orth, K.; Russ, D.; Steiner, R.; Beger, H. Fluorescence detection of small gastrointestinal tumours: Principles, technique, first clinical experience. Langenbeck’s Arch. Surg. 2000, 385, 488–494. [Google Scholar] [CrossRef]
- Labib, P.; Yaghini, E.; Davidson, B.; MacRobert, A.; Pereira, S. 5-Aminolevulinic acid for fluorescence-guided surgery in pancreatic cancer: Cellular transport and fluorescence quantification studies. Transl. Oncol. 2021, 14, 100886. [Google Scholar] [CrossRef]
- Lwin, T.M.; Hoffman, R.M.; Bouvet, M. The development of fluorescence guided surgery for pancreatic cancer: From bench to clinic. Expert Rev. Anticancer. Ther. 2018, 18, 651–662. [Google Scholar] [CrossRef] [PubMed]
- NNeira, J.A.; Ung, T.H.; Sims, J.S.; Malone, H.R.; Chow, D.S.; Samanamud, J.L.; Zanazzi, G.J.; Guo, X.; Bowden, S.G.; Zhao, B.; et al. Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance. J. Neurosurg. 2017, 127, 111–122. [Google Scholar] [CrossRef]
- Lu, G.; van den Berg, N.S.; Martin, B.A.; Nishio, N.; Hart, Z.P.; van Keulen, S.; Fakurnejad, S.; Chirita, S.U.; Raymundo, R.C.; Yi, G.; et al. Tumour-specific fluorescence-guided surgery for pancreatic cancer using panitumumab-IRDye800CW: A phase 1 single-centre, open-label, single-arm, dose-escalation study. Lancet Gastroenterol. Hepatol. 2020, 5, 753–764. [Google Scholar] [CrossRef]
- Hoogstins, C.E.S.; Boogerd, L.S.F.; Mulder, B.G.S.; Mieog, J.S.D.; Swijnenburg, R.J.; Van De Velde, C.J.H.; Farina Sarasqueta, A.; Bonsing, B.A.; Framery, B.; Pèlegrin, A.; et al. Image-Guided Surgery in Patients with Pancreatic Cancer: First Results of a Clinical Trial Using SGM-101, a Novel Carcinoembryonic Antigen-Targeting, Near-Infrared Fluorescent Agent. Ann. Surg. Oncol. 2018, 25, 3350–3357. [Google Scholar] [CrossRef]
- Katada, T.; Hashidate, H.; Yokoyama, N.; Sudo, N.; Mitsuma, K.; Otani, T. Initial Features of Hepatic Metastases From Pancreatic Cancer. Pancreas 2017, 46, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, W.; Häusler, S.; Heger, M.; van Ginhoven, T.M.; van Cappellen, G.; Bennink, R.J.; Kullak-Ublick, G.A.; Hesselmann, R.; van Gulik, T.M.; Stieger, B. Transporters involved in the hepatic uptake of 99mTc-mebrofenin and indocyanine green. J. Hepatol. 2011, 54, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Heger, M.; de Graaf, W.; Bennink, R.J.; Beuers, U.; van Gulik, T.M. A Clinical Perspective on the Criteria for Liver Resection and the Use of Liver Function Tests. World J. Surg. 2010, 34, 868–869. [Google Scholar] [CrossRef]
- de Geus, S.W.L.; Boogerd, L.S.F.; Swijnenburg, R.-J.; Mieog, J.S.D.; Tummers, W.S.F.J.; Prevoo, H.A.J.M.; Sier, C.F.M.; Morreau, H.; Bonsing, B.A.; van de Velde, C.J.H.; et al. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol. Imaging Biol. 2016, 18, 807–819. [Google Scholar] [CrossRef]
- Tummers, W.S.; Miller, S.E.; Teraphongphom, N.T.; van den Berg, N.S.; Hasan, A.; Longacre, T.A.; Fisher, G.A.; Bonsing, B.A.; Vahrmeijer, A.L.; Gambhir, S.S.; et al. Detection of visually occult metastatic LNs using molecularly targeted fluorescent imaging during surgical resection of pancreatic cancer. HPB 2019, 21, 883–890. [Google Scholar] [CrossRef]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; et al. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef]
- Fujimoto, J.G.; Pitris, C.; Boppart, S.A.; Brezinski, M.E. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. Neoplasia 2000, 2, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Vakoc, B.J.; Fukumura, D.; Jain, R.K.; Bouma, B.E. Cancer imaging by optical coherence tomography: Preclinical progress and clinical potential. Nat. Rev. Cancer 2012, 12, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, N.; Otani, T.; Hashidate, H.; Maeda, C.; Katada, T.; Sudo, N.; Manabe, S.; Ikeno, Y.; Toyoda, A.; Katayanagi, N. Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging. Cancer 2012, 118, 2813–2819. [Google Scholar] [CrossRef] [PubMed]
- van der Vorst, J.R.; Vahrmeijer, A.L.; Hutteman, M.; Bosse, T.; Smit, V.T.; Frangioni, J.V.; A Bonsing, B. Near-infrared fluorescence imaging of a solitary fibrous tumor of the pancreas using methylene blue. World J. Gastrointest. Surg. 2012, 4, 180–184. [Google Scholar] [CrossRef] [PubMed]
- SShirakawa, S.; Toyama, H.; Kido, M.; Fukumoto, T. A prospective single-center protocol for using near-infrared fluorescence imaging with indocyanine green during staging laparoscopy to detect small metastasis from pancreatic cancer. BMC Surg. 2019, 19, 165. [Google Scholar] [CrossRef]
- Tummers, W.S.; Miller, S.E.; Teraphongphom, N.T.; Gomez, A.; Steinberg, I.; Huland, D.M.; Hong, S.; Kothapalli, S.-R.; Hasan, A.; Ertsey, R.; et al. Intraoperative Pancreatic Cancer Detection using Tumor-Specific Multimodality Molecular Imaging. Ann. Surg. Oncol. 2018, 25, 1880–1888. [Google Scholar] [CrossRef]
- van Manen, L.; Stegehuis, P.L.; Fariña-Sarasqueta, A.; de Haan, L.M.; Eggermont, J.; Bonsing, B.A.; Morreau, H.; Lelieveldt, B.P.F.; van de Velde, C.J.H.; Vahrmeijer, A.L.; et al. Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens. PLoS ONE 2017, 12, e0175862. [Google Scholar] [CrossRef]
- Testoni, P.A.; Mangiavillano, B.; Albarello, L.; Arcidiacono, P.G.; Mariani, A.; Masci, E.; Doglioni, C. Optical Coherence Tomography to Detect Epithelial Lesions of the Main Pancreatic Duct: An Ex Vivo Study. Am. J. Gastroenterol. 2005, 100, 2777–2783. [Google Scholar] [CrossRef]
- LaValle, G.J.; A Martinez, D.; Sobel, D.; DeYoung, B.; Martin, E.W. Assessment of disseminated pancreatic cancer: A comparison of traditional exploratory laparotomy and radioimmunoguided surgery. Surgery 1997, 122, 867–873, discussion 871–873. [Google Scholar] [CrossRef]
- Wendler, T.; Herrmann, K.; Schnelzer, A.; Lasser, T.; Traub, J.; Kutter, O.; Ehlerding, A.; Scheidhauer, K.; Schuster, T.; Kiechle, M.; et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur. J. Nucl. Med. 2010, 37, 1452–1461. [Google Scholar] [CrossRef]
- Sun, D.; Bloomston, M.; Hinkle, G.; Al-Saif, O.H.; Hall, N.C.; Povoski, S.P.; Arnold, M.W.; Martin, E.W. Radioimmunoguided surgery (RIGS), PET/CT image-guided surgery, and fluorescence image-guided surgery: Past, present, and future. J. Surg. Oncol. 2007, 96, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Sergides; Austin; Winslet Radioimmunoguided surgery (RIGS) in the clinical management of colorectal cancer. Color. Dis. 1999, 1, 310–314. [CrossRef] [PubMed]
- Li, X. Endoscopic ultrasound elastography for differentiating between pancreatic adenocarcinoma and inflammatory masses: A meta-analysis. World J. Gastroenterol. 2013, 19, 6284–6291. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Kawashima, H.; Ohno, E.; Ishikawa, T.; Tanaka, H.; Nakamura, M.; Miyahara, R.; Ishigami, M.; Hirooka, Y.; Fujishiro, M. Diagnosis of vascular invasion in pancreatic ductal adenocarcinoma using endoscopic ultrasound elastography. BMC Gastroenterol. 2020, 20, 81. [Google Scholar] [CrossRef]
- Inoue, Y.; Takahashi, M.; Arita, J.; Aoki, T.; Hasegawa, K.; Beck, Y.; Makuuchi, M.; Kokudo, N. Intra-operative freehand real-time elastography for small focal liver lesions: “Visual palpation” for non-palpable tumors. Surgery 2010, 148, 1000–1011. [Google Scholar] [CrossRef]
- Elias, J.; Mauad, F.M.; Muglia, V.F.; Caetano, E.; dos Santos, J.S.; Kemp, R.; Pavan, T.Z.; Carneiro, A.A. Intraoperative application of real-time tissue elastography for the diagnosis and staging of pancreatic tumours. In Proceedings of the 2011 Pan American Health Care Exchanges, Rio de Janeiro, Brazil, 28 March–1 April 2011; pp. 179–181. [Google Scholar]
- Bari, H.; Wadhwani, S.; Dasari, B.V.M. Role of artificial intelligence in hepatobiliary and pancreatic surgery. World J. Gastrointest. Surg. 2021, 13, 7–18. [Google Scholar] [CrossRef]
Technique | Detection Modality | Tumour Specific | LN Specific | Advantages | Disadvantages |
---|---|---|---|---|---|
Frozen section | Histological assessment | Yes | Yes | Rapid histological assessment of tumour cells presence in tissue samples | Operator dependent, high false-negative rate, anatomical accessibility limitation |
SL | Direct visualisation | No | No | Minimally invasive | Non-specific visualisation of abdominal solid organs and peritoneum, operator-dependent, inherent laparoscopy complications |
LNM | Dye/fluorescence | No | Yes | Minimally invasive, with fewer complications than lymphadenectomy | More invasive procedure than other diagnostic tests, difficult data interpretation, time consuming |
IOUS | Ultrasound transducer | No | No | Real-time visualisation, guides surgical resection margins, performed in a relatively short amount of time | Expertise needed for the ultrasound operator. Need better visualisation of the target area. Limited by excess fat in the area, determined by the size of the ultrasound probe |
FGS | Fluorescence | Yes | Yes | Provides both static and dynamic images, molecular level detail. No radiation exposure | Accuracy dependent on the agent used |
OCT | Optical probe and interferometer | No | No | High-resolution, non-invasive | Penetration depth is limited, expensive, expertise required |
RIGS | Hand-held gamma probe | Yes | Yes | Sensitive, specific, safe | Radioactive material, handling and disposal constraints, time consuming |
UEG | Ultrasound transducer | No | No | Non-invasive, inexpensive, safe | Steep learning curve, low specificity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotb, A.; Hafeji, Z.; Jesry, F.; Lintern, N.; Pathak, S.; Smith, A.M.; Lutchman, K.R.D.; de Bruin, D.M.; Hurks, R.; Heger, M.; et al. Intra-Operative Tumour Detection and Staging in Pancreatic Cancer Surgery: An Integrative Review of Current Standards and Future Directions. Cancers 2024, 16, 3803. https://doi.org/10.3390/cancers16223803
Kotb A, Hafeji Z, Jesry F, Lintern N, Pathak S, Smith AM, Lutchman KRD, de Bruin DM, Hurks R, Heger M, et al. Intra-Operative Tumour Detection and Staging in Pancreatic Cancer Surgery: An Integrative Review of Current Standards and Future Directions. Cancers. 2024; 16(22):3803. https://doi.org/10.3390/cancers16223803
Chicago/Turabian StyleKotb, Ahmed, Zaynab Hafeji, Fadel Jesry, Nicole Lintern, Samir Pathak, Andrew M. Smith, Kishan R. D. Lutchman, Daniel M. de Bruin, Rob Hurks, Michal Heger, and et al. 2024. "Intra-Operative Tumour Detection and Staging in Pancreatic Cancer Surgery: An Integrative Review of Current Standards and Future Directions" Cancers 16, no. 22: 3803. https://doi.org/10.3390/cancers16223803
APA StyleKotb, A., Hafeji, Z., Jesry, F., Lintern, N., Pathak, S., Smith, A. M., Lutchman, K. R. D., de Bruin, D. M., Hurks, R., Heger, M., & Khaled, Y. S. (2024). Intra-Operative Tumour Detection and Staging in Pancreatic Cancer Surgery: An Integrative Review of Current Standards and Future Directions. Cancers, 16(22), 3803. https://doi.org/10.3390/cancers16223803