The Use of Blood-Based Biomarkers in the Prediction of Colorectal Neoplasia at the Time of Primary Screening Colonoscopy Among Average-Risk Patients: A Systematic Literature Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
3. Results
3.1. Study Details
3.2. Model Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. (In English) [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.J.; van de Veerdonk, W.; Seibert, D.M.; Boke, M.M.; Gutiérrez-Ortiz, C.; Yimer, N.B.; Feyen, K.; Ferrari, A.; Van Hal, G. From Algorithms to Clinical Utility: A Systematic Review of Individualized Risk Prediction Models for Colorectal Cancer. Gastrointest. Disord. 2023, 5, 549–579. [Google Scholar] [CrossRef]
- Ma, G.K.; Ladabaum, U. Personalizing colorectal cancer screening: A systematic review of models to predict risk of colorectal neoplasia. Clin. Gastroenterol. Hepatol. 2014, 12, 1624–1634.e1. Available online: https://www.cghjournal.org/article/S1542-3565(14)00240-7/pdf (accessed on 21 February 2024). [CrossRef]
- Peng, L.; Weigl, K.; Boakye, D.; Brenner, H. Risk Scores for Predicting Advanced Colorectal Neoplasia in the Average-risk Population: A Systematic Review and Meta-analysis. Am. J. Gastroenterol. 2018, 113, 1788–1800. (In English) [Google Scholar] [CrossRef] [PubMed]
- Usher-Smith, J.A.; Walter, F.M.; Emery, J.D.; Win, A.K.; Griffin, S.J. Risk Prediction Models for Colorectal Cancer: A Systematic Review. Cancer Prev. Res. 2016, 9, 13–26. [Google Scholar] [CrossRef]
- Knudsen, A.B.; Rutter, C.M.; Peterse, E.F.P.; Lietz, A.P.; Seguin, C.L.; Meester, R.G.S.; Perdue, L.A.; Lin, J.S.; Siegel, R.L.; Doria-Rose, V.P.; et al. Colorectal Cancer Screening: An Updated Modeling Study for the US Preventive Services Task Force. JAMA 2021, 325, 1998–2011. (In English) [Google Scholar] [CrossRef]
- Johnson, C.M.; Wei, C.; Ensor, J.E.; Smolenski, D.J.; Amos, C.I.; Levin, B.; Berry, D.A. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 2013, 24, 1207–1222. [Google Scholar] [CrossRef]
- Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Góra, A.; Rudzki, S. Risk Factors for the Diagnosis of Colorectal Cancer. Cancer Control 2022, 29, 10732748211056692. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, A.B.; Zauber, A.G.; Rutter, C.M.; Naber, S.K.; Doria-Rose, V.P.; Pabiniak, C.; Johanson, C.; Fischer, S.E.; Lansdorp-Vogelaar, I.; Kuntz, K.M. Estimation of Benefits, Burden, and Harms of Colorectal Cancer Screening Strategies: Modeling Study for the US Preventive Services Task Force. JAMA 2016, 315, 2595–2609. [Google Scholar] [CrossRef]
- Lech, G.; Słotwiński, R.; Słodkowski, M.; Krasnodębski, I.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol. 2016, 22, 1745–1755. (In English) [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. (In English) [Google Scholar] [CrossRef] [PubMed]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014, 370, 1287–1297. (In English) [Google Scholar] [CrossRef] [PubMed]
- Clebak, K.T.; Nickolich, S.; Mendez-Miller, M. Multitarget Stool DNA Testing (Cologuard) for Colorectal Cancer Screening. Am. Fam. Physician 2022, 105, 198–200. Available online: https://www.aafp.org/pubs/afp/issues/2022/0200/p198.pdf (accessed on 21 February 2024). (In English). [PubMed]
- Imperiale, T.F.; Porter, K.; Zella, J.; Gagrat, Z.D.; Olson, M.C.; Statz, S.; Garces, J.; Lavin, P.T.; Aguilar, H.; Brinberg, D.; et al. Next-Generation Multitarget Stool DNA Test for Colorectal Cancer Screening. N. Engl. J. Med. 2024, 390, 984–993. (In English) [Google Scholar] [CrossRef]
- Schneider, C.; Bodmer, M.; Jick, S.S.; Meier, C.R. Colorectal cancer and markers of anemia. Eur. J. Cancer Prev. 2018, 27, 530–538. Available online: https://journals.lww.com/eurjcancerprev/fulltext/2018/11000/colorectal_cancer_and_markers_of_anemia.2.aspx (accessed on 21 February 2024). [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, T.; Zhang, R.; Zhu, X.; Wu, X.; Tan, S.; Jian, Z. Predicting colorectal cancer risk: A novel approach using anemia and blood test markers. Front. Oncol. 2024, 14, 1347058. (In English) [Google Scholar] [CrossRef]
- Fang, Z.; Hang, D.; Wang, K.; Joshi, A.; Wu, K.; Chan, A.T.; Ogino, S.; Giovannucci, E.L.; Song, M. Risk prediction models for colorectal cancer: Evaluating the discrimination due to added biomarkers. Int. J. Cancer 2021, 149, 1021–1030. [Google Scholar] [CrossRef]
- Schneider, J.L.; Layefsky, E.; Udaltsova, N.; Levin, T.R.; Corley, D.A. Validation of an algorithm to identify patients at risk for colorectal cancer based on laboratory test and demographic data in diverse, community-based population. Clin. Gastroenterol. Hepatol. 2020, 18, 2734–2741.e6. Available online: https://www.cghjournal.org/article/S1542-3565(20)30599-1/pdf (accessed on 22 February 2024). [CrossRef]
- Wei, S.; Tsao, P.; Wang, Y.; Lin, B.; Wu, D.; Tsai, W.; Chen, J.; Wong, J. Using serum placenta growth factor could improve the sensitivity of colorectal cancer screening in fecal occult blood negative population: A multicenter with independent cohort validation study. Cancer Med. 2019, 8, 3583–3591. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601572/pdf/CAM4-8-3583.pdf (accessed on 22 February 2024). [CrossRef]
- Bhardwaj, M.; Gies, A.; Weigl, K.; Tikk, K.; Benner, A.; Schrotz-King, P.; Borchers, C.H.; Brenner, H. Evaluation and validation of plasma proteins using two different protein detection methods for early detection of colorectal cancer. Cancers 2019, 11, 1426. [Google Scholar] [CrossRef] [PubMed]
- Ayling, R.M.; Lewis, S.J.; Cotter, F. Potential roles of artificial intelligence learning and faecal immunochemical testing for prioritisation of colonoscopy in anaemia. Br. J. Haematol. 2019, 185, 311–316. (In English) [Google Scholar] [CrossRef] [PubMed]
- Hilsden, R.J.; Heitman, S.J.; Mizrahi, B.; Narod, S.A.; Goshen, R. Prediction of findings at screening colonoscopy using a machine learning algorithm based on complete blood counts (ColonFlag). PLoS ONE 2018, 13, e0207848. Available online: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0207848&type=printable (accessed on 22 February 2024). [CrossRef]
- Nishiumi, S.; Kobayashi, T.; Kawana, S.; Unno, Y.; Sakai, T.; Okamoto, K.; Yamada, Y.; Sudo, K.; Yamaji, T.; Saito, Y.; et al. Investigations in the possibility of early detection of colorectal cancer by gas chromatog-raphy/triple-quadrupole mass spectrometry. Oncotarget 2017, 8, 17115. Available online: https://www.oncotarget.com/article/15081/pdf/ (accessed on 24 February 2024). [CrossRef]
- Rodríguez, J.M.N.; Plazas, J.G.; Rico, R.C.; Rocher, F.B.; Macia, J.A.R.; Ródenas, M.M. Is It possible to predict the presence of colorectal cancer in a blood test? A probabilistic approach method. Rev. Esp. Enfermedades Dig. 2017, 109, 694–701. [Google Scholar] [CrossRef]
- Hornbrook, M.C.; Goshen, R.; Choman, E.; O’Keeffe-Rosetti, M.; Kinar, Y.; Liles, E.G.; Rust, K.C. Early colorectal cancer detected by machine learning model using gender, age, and complete blood count data. Dig. Dis. Sci. 2017, 62, 2719–2727. Available online: https://link.springer.com/content/pdf/10.1007/s10620-017-4722-8.pdf (accessed on 24 February 2024). [CrossRef]
- Goshen, R.; Mizrahi, B.; Akiva, P.; Kinar, Y.; Choman, E.; Shalev, V.; Sopik, V.; Kariv, R.; ANarod, S. Predicting the presence of colon cancer in members of a health maintenance organisation by evaluating analytes from standard laboratory records. Br. J. Cancer 2017, 116, 944–950. (In English) [Google Scholar] [CrossRef] [PubMed]
- Birks, J.; Bankhead, C.; Holt, T.A.; Fuller, A.; Patnick, J. Evaluation of a prediction model for colorectal cancer: Retrospective analysis of 2.5 million patient records. Cancer Med. 2017, 6, 2453–2460. (In English) [Google Scholar] [CrossRef]
- Kinar, Y.; Kalkstein, N.; Akiva, P.; Levin, B.; Half, E.E.; Goldshtein, I.; Chodick, G.; Shalev, V. Development and validation of a predictive model for detection of colorectal cancer in primary care by analysis of complete blood counts: A binational retrospective study. J. Am. Med Inform. Assoc. 2016, 23, 879–890. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997037/pdf/ocv195.pdf (accessed on 24 February 2024). [CrossRef]
- Boursi, B.; Mamtani, R.; Hwang, W.-T.; Haynes, K.; Yang, Y.-X. A Risk Prediction Model for Sporadic CRC Based on Routine Lab Results. Dig. Dis. Sci. 2016, 61, 2076–2086. (In English) [Google Scholar] [CrossRef]
- Joshi, P.; Joshi, R.K.; Kim, W.J.; Lee, S.A. Insulin-like growth factor-1, IGF-binding protein-3, C-peptide and col-orectal cancer: A case-control study. Asian Pac. J. Cancer Prev. 2015, 16, 3735–3740. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Choi, S.; Park, S.; Jung, Y.S.; Choi, K.Y.; Park, T.; Kim, J.Y.; Park, D.I. Derivation and validation of a risk scoring model to predict advanced colorectal neoplasm in adults of all ages. J. Gastroenterol. Hepatol. 2017, 32, 1328–1335. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. BMC Med. 2015, 13, 1. [Google Scholar] [CrossRef]
- Kastrinos, F.; Kupfer, S.S.; Gupta, S. Colorectal Cancer Risk Assessment and Precision Approaches to Screening: Brave New World or Worlds Apart? Gastroenterology 2023, 164, 812–827. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Wang, Y.; Du, L. Cost-effectiveness of risk-tailored screening strategy for colorectal cancer: A systematic review. J. Gastroenterol. Hepatol. 2022, 37, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, S.D.; Wilschut, J.; Boer, R.; van Ballegooijen, M. A decision-analytic evaluation of the cost-effectiveness of family history–based colorectal cancer screening programs. Am. J. Gastroenterol. 2010, 105, 1861–1869. (In English) [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, M.; Igarashi, A.; Sakamoto, T.; Saito, Y.; Esaki, M.; Matsuda, T. Cost-effectiveness analysis of colorectal cancer screening using colonoscopy, fecal immunochemical test, and risk score. J. Gastroenterol. Hepatol. 2020, 35, 1555–1561. (In English) [Google Scholar] [CrossRef]
- Subramanian, S.; Bobashev, G.; Morris, R.J.; Hoover, S. Personalized medicine for prevention: Can risk stratified screening decrease colorectal cancer mortality at an acceptable cost? Cancer Causes Control 2017, 28, 299–308. [Google Scholar] [CrossRef]
- Thomas, C.; Mandrik, O.; Saunders, C.; Thompson, D.; Whyte, S.; Griffin, S.; Usher-Smith, J. The costs and benefits of risk stratification for colorectal cancer screening based on phenotypic and genetic risk: A health economic analysis. Cancer Prev. Res. 2021, 14, 811–822. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC7611464/pdf/811.pdf (accessed on 25 February 2024). [CrossRef]
- Ladabaum, U.; Mannalithara, A.; Mitani, A.; Desai, M. Clinical and Economic Impact of Tailoring Screening to Predicted Colorectal Cancer Risk: A Decision Analytic Modeling Study. Cancer Epidemiology Biomarkers Prev. 2020, 29, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lu, M.; Liu, C.; Zou, S.; Du, L.; Liao, X.; Dong, D.; Wei, D.; Gao, Y.; Zhu, C.; et al. Comparative Evaluation of Participation and Diagnostic Yield of Colonoscopy vs Fecal Immunochemical Test vs Risk-Adapted Screening in Colorectal Cancer Screening: Interim Analysis of a Multicenter Randomized Controlled Trial (TARGET-C). Am. J. Gastroenterol. 2020, 115, 1264–1274. (In English) [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shi, J.; Lu, M.; Li, Y.; Du, L.; Liao, X.; Wei, D.; Dong, D.; Gao, Y.; Zhu, C.; et al. Comparison of Colonoscopy, Fecal Immunochemical Test, and Risk-Adapted Approach in a Colorectal Cancer Screening Trial (TARGET-C). Clin. Gastroenterol. Hepatol. 2022, 21, 808–818. (In English) [Google Scholar] [CrossRef] [PubMed]
Author, Year | Country | Outcome * | Method ** | Biomarker | Study Type |
---|---|---|---|---|---|
Zhang, 2024 [17] | China | CRC | LR | Red blood cell count, anemia, and platelet count, and red cell distribution width—standard deviation | Development and validation |
Fang, 2021 [18] | USA | CRC | LR | 25-hydroxyvitamin D, total adiponection, C-reactive protein, growth/differentiation factor 15, insulin-like growth factor 1, insulin-like growth factor-binding protein, interleukin 6, leptin receptor, sex hormone binding globulin, and tumour necrosis factor receptor superfamily member 1B | Development and validation |
Schneider, 2020 [19] | USA | CRC | ML (gradient boosting/random forest) | Complete blood count | External validation |
Ayling, 2019 [22] | UK | CRC | ML (gradient boosting/random forest) | Complete blood count | External validation |
Wei, 2019 [20] | Taiwan | CRC | LR | Serum placenta growth factor | Development |
Bhardwaj, 2019 [21] | Germany | CRC | LR | Mannan binding lectin serine protease 1, serum paraoxonase lactinase 3, transferrin receptor protein 1, and amphiregulin | Development |
Hilsden, 2018 [23] | Canada | CRC, AA, non-AA | ML (gradient boosting/random forest) | Complete blood count | External validation |
Birks, 2017 [28] | UK | CRC | ML (gradient boosting/random forest) | Complete blood count | Development and external validation |
Goshen, 2017 for males [27] | Israel | CRC | LR | Hemoglobin, mean corpuscular volume, monocyte count, platelets, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, iron, and ferritin | Development |
Goshen, 2017 for females [27] | Israel | CRC | LR | Hemoglobin, mean corpuscular volume, neutrophil count, platelets, red blood cell distribution width, alanine aminotransferase, protein, iron, and ferritin | Development |
Hornbrook, 2017 [26] | USA | CRC | ML (gradient boosting/random forest) | Complete blood count | External validation |
Navarro-Rodriguez, 2017 [25] | Spain | CRC | LR | Fibrinogen, hemoglobin, relative neutrophil, absolute platelet count, and eosinophils | Development |
Nishiumi, 2017 [24] | Japan | CRC | LR | Pyruvic acid-meto-TMS, glycolic acid-2TMS, tryptophan-3TMS, palimtoleic acid-TMS, fumaric acid-2TMS, ornithine-4TMS, lysine-4TMS, and 3-hydroxyisovaleric acid-2TMS | Development |
Yang, 2017 [32] | South Korea | ACN | LR | Fasting glucose, low-density lipoprotein cholesterol, and carcinoembryonic antigen | Development and validation |
Boursi, 2016 [30] | UK | CRC | LR | Hematocrit, mean corpuscular volume, lymphocyte count, and neutrophil–lymphocyte ratio | Development and validation |
Kinar, 2016 [29] | Israel and UK | CRC | ML (gradient boosting/random forest) | Complete blood count | Development, validation, and external validation |
Pankaj, 2015 [31] | South Korea | CRC | LR | IGF-1, IGFBP-3, and C-Peptide | Development |
Author, Year | Biomarker | AUC * | Sensitivity (%) * | Specificity (%) * |
---|---|---|---|---|
Fang, 2021 [18] | Circulating plasma panel | 0.73, men; 0.66, women | ||
Schneider, 2020 [19] | Complete blood count | 0.78 | 35.4 | |
Bhardwaj, 2019 [21] | ||||
Wei, 2019 [20] | Serum placenta growth factor | 0.797 | 0.5708 | 0.8614 |
Hilsden, 2018 [23] | Hemoglobin, WBC, and platelets | |||
Hornbrook, 2017 [26] | Complete blood count | 0.81 | ||
Navarro Rodriguez, 2017 [25] | Fibrinogen, hemoglobin, relative neutrophils, absolute platelet count, and eosinophils | 0.854 | ||
Nishiumi, 2017 [24] | Plasma metabolite panel | 0.996 | 99.3 | 93.8 |
Kinar, 2016 [29] | Complete blood count | 0.82 | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutherland, R.L.; O’Sullivan, D.E.; Ruan, Y.; Chow, K.; Mah, B.; Kim, D.; Basmadjian, R.B.; Forbes, N.; Cheung, W.Y.; Hilsden, R.J.; et al. The Use of Blood-Based Biomarkers in the Prediction of Colorectal Neoplasia at the Time of Primary Screening Colonoscopy Among Average-Risk Patients: A Systematic Literature Review. Cancers 2024, 16, 3824. https://doi.org/10.3390/cancers16223824
Sutherland RL, O’Sullivan DE, Ruan Y, Chow K, Mah B, Kim D, Basmadjian RB, Forbes N, Cheung WY, Hilsden RJ, et al. The Use of Blood-Based Biomarkers in the Prediction of Colorectal Neoplasia at the Time of Primary Screening Colonoscopy Among Average-Risk Patients: A Systematic Literature Review. Cancers. 2024; 16(22):3824. https://doi.org/10.3390/cancers16223824
Chicago/Turabian StyleSutherland, R. Liam, Dylan E. O’Sullivan, Yibing Ruan, Kristian Chow, Brittany Mah, Dayoung Kim, Robert B. Basmadjian, Nauzer Forbes, Winson Y. Cheung, Robert J. Hilsden, and et al. 2024. "The Use of Blood-Based Biomarkers in the Prediction of Colorectal Neoplasia at the Time of Primary Screening Colonoscopy Among Average-Risk Patients: A Systematic Literature Review" Cancers 16, no. 22: 3824. https://doi.org/10.3390/cancers16223824
APA StyleSutherland, R. L., O’Sullivan, D. E., Ruan, Y., Chow, K., Mah, B., Kim, D., Basmadjian, R. B., Forbes, N., Cheung, W. Y., Hilsden, R. J., & Brenner, D. R. (2024). The Use of Blood-Based Biomarkers in the Prediction of Colorectal Neoplasia at the Time of Primary Screening Colonoscopy Among Average-Risk Patients: A Systematic Literature Review. Cancers, 16(22), 3824. https://doi.org/10.3390/cancers16223824