Kallikrein-Related Peptidase 6 Contributes to Murine Intestinal Tumorigenesis Driven by a Mutant Adenomatous polyposis coli Gene
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Tissue Collection, Histological Analysis, and Tumor Scoring
2.3. Crypt Scoring
2.4. Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR) Analysis
2.5. Immunohistochemistry
2.6. Western Blot Analysis
2.7. Imaging of Mice Using Fluorescence Dye-Labeled KLK6 Antibody
2.8. Statistical Analysis
3. Results
3.1. Analysis of Klk6 Expression in ApcMin/+ Mice
3.2. Detection of KLK6 in Mouse Colon Using Fluorophore-Labeled Antibodies
3.3. Conditional Inactivation of Klk6 in the Mouse Intestinal Tract
3.4. Analysis of Histopathology and Tumorigenesis in CPC;Apcfl/fl;Klk6+/+ CPC;Apcfl/fl;Klk6+/fl and CPC;Apcfl/fl;Klk6fl/fl Mice
3.5. Analysis of Molecular Endpoints in CPC;Apcfl/fl;Klk6+/+, CPC;Apcfl/fl;Klk6+/fl, and CPC;Apcfl/fl;Klk6fl/fl Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 2011, 6, 479–507. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reynies, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Half, E.; Bercovich, D.; Rozen, P. Familial adenomatous polyposis. Orphanet J. Rare Dis. 2009, 4, 22. [Google Scholar] [CrossRef]
- Borras, E.; San Lucas, F.A.; Chang, K.; Zhou, R.; Masand, G.; Fowler, J.; Mork, M.E.; You, Y.N.; Taggart, M.W.; McAllister, F.; et al. Genomic Landscape of Colorectal Mucosa and Adenomas. Cancer Prev. Res. 2016, 9, 417–427. [Google Scholar] [CrossRef]
- Mook, O.R.; Frederiks, W.M.; Van Noorden, C.J. The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta 2004, 1705, 69–89. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Matrisian, L.M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer 2007, 7, 800–808. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Srinivasan, S.; Kryza, T.; Batra, J.; Clements, J. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. Nat. Rev. Cancer 2022, 22, 223–238. [Google Scholar] [CrossRef]
- Shaw, J.L.; Petraki, C.; Watson, C.; Bocking, A.; Diamandis, E.P. Role of tissue kallikrein-related peptidases in cervical mucus remodeling and host defense. Biol. Chem. 2008, 389, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfeld, P.; Bhoola, K.D.; Matus, C.E.; Figueroa, C.D. Functional interrelationships between the kallikrein-related peptidases family and the classical kinin system in the human neutrophil. Biol. Chem. 2018, 399, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Brattsand, M.; Stefansson, K.; Lundh, C.; Haasum, Y.; Egelrud, T. A proteolytic cascade of kallikreins in the stratum corneum. J. Investig. Dermatol. 2005, 124, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Bayani, J.; Diamandis, E.P. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin. Chem. Lab. Med. 2011, 50, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Filippou, P.S.; Karagiannis, G.S.; Musrap, N.; Diamandis, E.P. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit. Rev. Clin. Lab. Sci. 2016, 53, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Song, E.Y.; Chung, K.S.; Kang, M.A.; Kim, J.W.; Kim, S.J.; Yeom, Y.I.; Kim, J.H.; Kim, K.H.; Lee, H.G. Up-regulation and clinical significance of serine protease kallikrein 6 in colon cancer. Cancer 2010, 117, 2608–2619. [Google Scholar] [CrossRef]
- Ogawa, K.; Utsunomiya, T.; Mimori, K.; Tanaka, F.; Inoue, H.; Nagahara, H.; Murayama, S.; Mori, M. Clinical significance of human kallikrein gene 6 messenger RNA expression in colorectal cancer. Clin. Cancer Res. 2005, 11, 2889–2893. [Google Scholar] [CrossRef]
- Pandey, R.; Zhou, M.; Chen, Y.; Darmoul, D.; Kisiel, C.C.; Nfonsam, V.N.; Ignatenko, N.A. Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer. Genes 2021, 12, 749. [Google Scholar] [CrossRef]
- Bouzid, H.; Soualmia, F.; Oikonomopoulou, K.; Soosaipillai, A.; Walker, F.; Louati, K.; Lo Dico, R.; Pocard, M.; El Amri, C.; Ignatenko, N.A.; et al. Kallikrein-Related Peptidase 6 (KLK6) as a Contributor toward an Aggressive Cancer Cell Phenotype: A Potential Role in Colon Cancer Peritoneal Metastasis. Biomolecules 2022, 12, 1003. [Google Scholar] [CrossRef]
- Vakrakou, A.; Devetzi, M.; Papachristopoulou, G.; Malachias, A.; Scorilas, A.; Xynopoulos, D.; Talieri, M. Kallikrein-related peptidase 6 (KLK6) expression in the progression of colon adenoma to carcinoma. Biol. Chem. 2014, 395, 1105–1117. [Google Scholar] [CrossRef]
- Magklara, A.; Mellati, A.A.; Wasney, G.A.; Little, S.P.; Sotiropoulou, G.; Becker, G.W.; Diamandis, E.P. Characterization of the enzymatic activity of human kallikrein 6: Autoactivation, substrate specificity, and regulation by inhibitors. Biochem. Biophys. Res. Commun. 2003, 307, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, S.; Luo, L.Y.; Yousef, G.M.; Soosaipillai, A.; Diamandis, E.P. Purification of human kallikrein 6 from biological fluids and identification of its complex with α1-antichymotrypsin. Clin. Chem. 2003, 49, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Blaber, S.I.; Yoon, H.; Scarisbrick, I.A.; Juliano, M.A.; Blaber, M. The autolytic regulation of human kallikrein-related peptidase 6. Biochemistry 2007, 46, 5209–5217. [Google Scholar] [CrossRef]
- Bernett, M.J.; Blaber, S.I.; Scarisbrick, I.A.; Dhanarajan, P.; Thompson, S.M.; Blaber, M. Crystal structure and biochemical characterization of human kallikrein 6 reveals that a trypsin-like kallikrein is expressed in the central nervous system. J. Biol. Chem. 2002, 277, 24562–24570. [Google Scholar] [CrossRef] [PubMed]
- Tailor, P.D.; Kodeboyina, S.K.; Bai, S.; Patel, N.; Sharma, S.; Ratnani, A.; Copland, J.A.; She, J.X.; Sharma, A. Diagnostic and prognostic biomarker potential of kallikrein family genes in different cancer types. Oncotarget 2018, 9, 17876–17888. [Google Scholar] [CrossRef]
- Jiang, H.; Du, J.; Gu, J.; Jin, L.; Pu, Y.; Fei, B. A 65-gene signature for prognostic prediction in colon adenocarcinoma. Int. J. Mol. Med. 2018, 41, 2021–2027. [Google Scholar] [CrossRef]
- Henkhaus, R.S.; Gerner, E.W.; Ignatenko, N.A. Kallikrein 6 is a mediator of K-RAS-dependent migration of colon carcinoma cells. Biol. Chem. 2008, 389, 757–764. [Google Scholar] [CrossRef]
- Sells, E.; Pandey, R.; Chen, H.; Skovan, B.A.; Cui, H.; Ignatenko, N.A. Specific microRNA-mRNA Regulatory Network of Colon Cancer Invasion Mediated by Tissue Kallikrein-Related Peptidase 6. Neoplasia 2017, 19, 396–411. [Google Scholar] [CrossRef]
- Chen, H.; Sells, E.; Pandey, R.; Abril, E.R.; Hsu, C.H.; Krouse, R.S.; Nagle, R.B.; Pampalakis, G.; Sotiropoulou, G.; Ignatenko, N.A. Kallikrein 6 protease advances colon tumorigenesis via induction of the high mobility group A2 protein. Oncotarget 2019, 10, 6062–6078. [Google Scholar] [CrossRef]
- Darmoul, D.; Gratio, V.; Devaud, H.; Laburthe, M. Protease-activated receptor 2 in colon cancer: Trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J. Biol. Chem. 2004, 279, 20927–20934. [Google Scholar] [CrossRef]
- Hwang, Y.S.; Cho, H.J.; Park, E.S.; Lim, J.; Yoon, H.R.; Kim, J.T.; Yoon, S.R.; Jung, H.; Choe, Y.K.; Kim, Y.H.; et al. KLK6/PAR1 Axis Promotes Tumor Growth and Metastasis by Regulating Cross-Talk between Tumor Cells and Macrophages. Cells 2022, 11, 4101. [Google Scholar] [CrossRef] [PubMed]
- McCart, A.E.; Vickaryous, N.K.; Silver, A. Apc mice: Models, modifiers and mutants. Pathol. Res. Pract. 2008, 204, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Su, L.K.; Kinzler, K.W.; Vogelstein, B.; Preisinger, A.C.; Moser, A.R.; Luongo, C.; Gould, K.A.; Dove, W.F. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992, 256, 668–670. [Google Scholar] [CrossRef] [PubMed]
- Hinoi, T.; Akyol, A.; Theisen, B.K.; Ferguson, D.O.; Greenson, J.K.; Williams, B.O.; Cho, K.R.; Fearon, E.R. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007, 67, 9721–9730. [Google Scholar] [CrossRef] [PubMed]
- Boivin, G.P.; Washington, K.; Yang, K.; Ward, J.M.; Pretlow, T.P.; Russell, R.; Besselsen, D.G.; Godfrey, V.L.; Doetschman, T.; Dove, W.F.; et al. Pathology of mouse models of intestinal cancer: Consensus report and recommendations. Gastroenterology 2003, 124, 762–777. [Google Scholar] [CrossRef]
- Burich, A.; Hershberg, R.; Waggie, K.; Zeng, W.; Brabb, T.; Westrich, G.; Viney, J.L.; Maggio-Price, L. Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-deficient mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2001, 281, G764–G778. [Google Scholar] [CrossRef]
- Winkler, A.M.; Rice, P.F.; Weichsel, J.; Watson, J.M.; Backer, M.V.; Backer, J.M.; Barton, J.K. In vivo, dual-modality OCT/LIF imaging using a novel VEGF receptor-targeted NIR fluorescent probe in the AOM-treated mouse model. Mol. Imaging Biol. 2011, 13, 1173–1182. [Google Scholar] [CrossRef]
- Shibata, H.; Toyama, K.; Shioya, H.; Ito, M.; Hirota, M.; Hasegawa, S.; Matsumoto, H.; Takano, H.; Akiyama, T.; Toyoshima, K.; et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997, 278, 120–123. [Google Scholar] [CrossRef]
- Komatsu, N.; Takata, M.; Otsuki, N.; Toyama, T.; Ohka, R.; Takehara, K.; Saijoh, K. Expression and localization of tissue kallikrein mRNAs in human epidermis and appendages. J. Investig. Dermatol. 2003, 121, 542–549. [Google Scholar] [CrossRef]
- He, T.C.; Sparks, A.B.; Rago, C.; Hermeking, H.; Zawel, L.; da Costa, L.T.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Identification of c-MYC as a target of the APC pathway. Science 1998, 281, 1509–1512. [Google Scholar] [CrossRef]
- Fultz, K.E.; Gerner, E.W. APC-dependent regulation of ornithine decarboxylase in human colon tumor cells. Mol. Carcinog. 2002, 34, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Hu, L.L.; Gonzalez-Navajas, J.; Seo, G.S.; Shen, C.; Brick, J.; Herdman, S.; Varki, N.; Corr, M.; Lee, J.; et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nat. Med. 2010, 16, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Pardoux, C.; Hall, M.C.; Lee, P.S.; Warburton, D.; Qing, J.; Smith, S.M.; Derynck, R. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007, 26, 3957–3967. [Google Scholar] [CrossRef] [PubMed]
- Borgono, C.A.; Diamandis, E.P. The emerging roles of human tissue kallikreins in cancer. Nat. Rev. Cancer 2004, 4, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Ignatenko, N.A.; Zhang, H.; Watts, G.S.; Skovan, B.A.; Stringer, D.E.; Gerner, E.W. The chemopreventive agent alpha-difluoromethylornithine blocks Ki-ras-dependent tumor formation and specific gene expression in Caco-2 cells. Mol. Carcinog. 2004, 39, 221–233. [Google Scholar] [CrossRef]
- Henkhaus, R.S.; Roy, U.K.; Cavallo-Medved, D.; Sloane, B.F.; Gerner, E.W.; Ignatenko, N.A. Caveolin-1-mediated expression and secretion of kallikrein 6 in colon cancer cells. Neoplasia 2008, 10, 140–148. [Google Scholar] [CrossRef]
- Olsson, A.Y.; Lundwall, A. Organization and evolution of the glandular kallikrein locus in Mus musculus. Biochem. Biophys. Res. Commun. 2002, 299, 305–311. [Google Scholar] [CrossRef]
- Samantha Sykioti, V.; Karampetsou, M.; Chalatsa, I.; Polissidis, A.; Michael, I.P.; Pagaki-Skaliora, M.; Nagy, A.; Emmanouilidou, E.; Sotiropoulou, G.; Vekrelli, S.K. Deficiency of the serine peptidase Kallikrein 6 does not affect the levels and the pathological accumulation of a-synuclein in mouse brain. J. Neurochem. 2021, 157, 2024–2038. [Google Scholar] [CrossRef]
- Pampalakis, G.; Sykioti, V.S.; Ximerakis, M.; Stefanakou-Kalakou, I.; Melki, R.; Vekrellis, K.; Sotiropoulou, G. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species. Oncotarget 2017, 8, 14502–14515. [Google Scholar] [CrossRef]
- Kishibe, M.; Baida, G.; Bhalla, P.; Lavker, R.M.; Schlosser, B.; Iinuma, S.; Yoshida, S.; Dudley, J.T.; Budunova, I. Important role of kallikrein 6 for the development of keratinocyte proliferative resistance to topical glucocorticoids. Oncotarget 2016, 7, 69479–69488. [Google Scholar] [CrossRef]
- Zingkou, E.; Pampalakis, G.; Charla, E.; Nauroy, P.; Kiritsi, D.; Sotiropoulou, G. A proinflammatory role of KLK6 protease in Netherton syndrome. J. Dermatol. Sci. 2019, 95, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Kryza, T.; Silva, M.L.; Loessner, D.; Heuze-Vourc’h, N.; Clements, J.A. The kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie 2016, 122, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Niimi, K.; Fujishiro, M.; Kodashima, S.; Goto, O.; Ono, S.; Hirano, K.; Minatsuki, C.; Yamamichi, N.; Koike, K. Long-term outcomes of endoscopic submucosal dissection for colorectal epithelial neoplasms. Endoscopy 2010, 42, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Qin, W.Z.; Yao, L.Q.; Zhong, Y.S.; Zhang, Y.Q.; Chen, W.F.; Hu, J.W.; Ooi, M.; Chen, L.L.; Hou, Y.Y.; et al. Long-term outcomes of endoscopic submucosal dissection for high-grade dysplasia and early-stage carcinoma in the colorectum. Cancer Commun. 2018, 38, 3. [Google Scholar] [CrossRef] [PubMed]
- Kwong, L.N.; Dove, W.F. APC and its modifiers in colon cancer. Adv. Exp. Med. Biol. 2009, 656, 85–106. [Google Scholar] [CrossRef]
- Deng, J.; Xia, W.; Miller, S.A.; Wen, Y.; Wang, H.Y.; Hung, M.C. Crossregulation of NF-κB by the APC/GSK-3β/β-catenin pathway. Mol. Carcinog. 2004, 39, 139–146. [Google Scholar] [CrossRef]
- Valenta, T.; Hausmann, G.; Basler, K. The many faces and functions of β-catenin. EMBO J. 2012, 31, 2714–2736. [Google Scholar] [CrossRef]
- Erdman, S.H.; Ignatenko, N.A.; Powell, M.B.; Blohm-Mangone, K.A.; Holubec, H.; Guillen-Rodriguez, J.M.; Gerner, E.W. APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis 1999, 20, 1709–1713. [Google Scholar] [CrossRef]
- Jarry, A.; Dorso, L.; Gratio, V.; Forgue-Lafitte, M.E.; Laburthe, M.; Laboisse, C.L.; Darmoul, D. PAR-2 activation increases human intestinal mucin secretion through EGFR transactivation. Biochem. Biophys. Res. Commun. 2007, 364, 689–694. [Google Scholar] [CrossRef]
- Chung, H.; Hamza, M.; Oikonomopoulou, K.; Gratio, V.; Saifeddine, M.; Virca, G.D.; Diamandis, E.P.; Hollenberg, M.D.; Darmoul, D. Kallikrein-related peptidase signaling in colon carcinoma cells: Targeting proteinase-activated receptors. Biol. Chem. 2012, 393, 413–420. [Google Scholar] [CrossRef]
- Ungefroren, H.; Witte, D.; Fiedler, C.; Gadeken, T.; Kaufmann, R.; Lehnert, H.; Gieseler, F.; Rauch, B.H. The Role of PAR2 in TGF-β1-Induced ERK Activation and Cell Motility. Int. J. Mol. Sci. 2017, 18, 2776. [Google Scholar] [CrossRef] [PubMed]
- Blaj, C.; Schmidt, E.M.; Lamprecht, S.; Hermeking, H.; Jung, A.; Kirchner, T.; Horst, D. Oncogenic Effects of High MAPK Activity in Colorectal Cancer Mark Progenitor Cells and Persist Irrespective of RAS Mutations. Cancer Res. 2017, 77, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Ungefroren, H.; Gieseler, F.; Kaufmann, R.; Settmacher, U.; Lehnert, H.; Rauch, B.H. Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer. Int. J. Mol. Sci. 2018, 19, 1568. [Google Scholar] [CrossRef]
- Walker, F.; Nicole, P.; Jallane, A.; Soosaipillai, A.; Mosbach, V.; Oikonomopoulou, K.; Diamandis, E.P.; Magdolen, V.; Darmoul, D. Kallikrein-related peptidase 7 (KLK7) is a proliferative factor that is aberrantly expressed in human colon cancer. Biol. Chem. 2014, 395, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Sun, Z.; Liu, Y.; Shen, X.; Zhao, W.; Zhu, X.; Xu, P. KLK8 promotes the proliferation and metastasis of colorectal cancer via the activation of EMT associated with PAR1. Cell Death Dis. 2021, 12, 860. [Google Scholar] [CrossRef]
- Leung, S.J.; Rice, P.S.; Barton, J.K. In vivo molecular mapping of the tumor microenvironment in an azoxymethane-treated mouse model of colon carcinogenesis. Lasers Surg. Med. 2015, 47, 40–49. [Google Scholar] [CrossRef]
Location | Genotype | Animals/ Genotype | Mean ± SD | Range | % (>0) a | p-Value b | |
---|---|---|---|---|---|---|---|
Small Intestine (SI) Prox SI | |||||||
CPC;Apcfl/fl;Klk6+/+ | 10 | 2.30 ± 2.67 | 0–6 | 50.00 | |||
CPC;Apcfl/fl;Klk6+/fl | 9 | 1.67 ± 2.55 | 0–6 | 33.33 | 0.85 | ||
CPC;Apcfl/fl;Klk6fl/fl | 12 | 0.00 ± 0.00 | 0–0 | 0.00 | 0.04 | ||
Midd SI | |||||||
CPC;Apcfl/fl;Klk6+/+ | 10 | 2.30 ± 2.58 | 0–6 | 50.00 | |||
CPC;Apcfl/fl;Klk6+/fl | 9 | 2.55 ± 2.35 | 0–6 | 77.78 | 0.86 | ||
CPC;Apcfl/fl;Klk6fl/fl | 12 | 0.41 ± 0.90 | 0–3 | 25.00 | 0.03 | ||
Distal SI | |||||||
CPC;Apcfl/fl;Klk6+/+ | 10 | 9.20 ± 6.41 | 3–22 | 100.00 | |||
CPC;Apcfl/fl;Klk6+/fl | 9 | 8.44 ± 5.50 | 3–18 | 100.00 | 0.87 | ||
CPC;Apcfl/fl;Klk6fl/fl | 12 | 5.92 ± 3.34 | 1–12 | 100.00 | 0.02 | ||
Colon (CO) | |||||||
CPC;Apcfl/fl;Klk6+/+ | 10 | 1.70 ± 1.56 | 0–5 | 70.00 | |||
CPC;Apcfl/fl;Klk6+/fl | 9 | 2.33 ± 1.80 | 0–5 | 77.78 | 0.80 | ||
CPC;Apcfl/fl;Klk6fl/fl | 12 | 2.50 ± 1.38 | 0–5 | 91.67 | 0.45 | ||
Total (SI + CO) | |||||||
CPC;Apcfl/fl;Klk6+/+ | 10 | 15.50 ± 4.22 | 11–24 | 100.00 | |||
CPC;Apcfl/fl;Klk6+/fl | 9 | 15.00 ± 5.47 | 9–24 | 100.00 | 0.89 | ||
CPC;Apcfl/fl;Klk6fl/fl | 12 | 8.83 ± 4.78 | 1–18 | 100.00 | 0.01 |
Location | Genotype | Dysplasia | Mean (+/−SD) | Range | % (>0) a |
---|---|---|---|---|---|
Small | CPC;Apcfl/fl;Klk6+/+ | Low | 2.00 (+/−1.56) | 0–5 | 80.00 |
intestine | High | 1.70 (+/−0.95) | 1–4 | 100.00 | |
CPC;Apcfl/fl;Klk6+/fl | Low | 1.85 (+/−1.57) | 0–4 | 71.43 | |
High | 1.71 (+/−1.38) | 0–4 | 85.71 | ||
CPC;Apcfl/fl;Klk6fl/fl | Low | 1.50 (+/−0.80) | 1–3 | 100.00 | |
High | 0.58 (+/−0.80) | 0–3 | 33.33 | ||
Colon | CPC;Apcfl/fl;Klk6+/+ | Low | 0.30 (+/−0.67) | 0–2 | 20.00 |
High | 1.00 (+/−1.05) | 0–3 | 60.00 | ||
CPC;Apcfl/fl;Klk6+/fl | Low | 0.14 (+/−0.38) | 0–1 | 14.29 | |
High | 1.28 (+/−1.25) | 0–3 | 71.43 | ||
CPC;Apcfl/fl;Klk6fl/fl | Low | 0.25 (+/−0.45) | 0–1 | 25.00 | |
High | 0.75 (+/−1.05) | 0–3 | 41.67 |
CPC;Apcfl/fl;Klk6+/+ Versus CPC;Apcfl/fl;Klk6+/fl | CPC;Apcfl/fl;Klk6+/+ Versus CPC;Apcfl/fl;Klk6fl/fl | CPC;Apcfl/fl;Klk6+/fl Versus CPC;Apcfl/fl;Klk6fl/fl | ||
---|---|---|---|---|
Small | Low Grade | 0.83 | 0.37 | 0.56 |
intestine | High Grade | 0.98 | 0.03 | 0.04 |
Colon | Low Grade | 0.50 | 0.82 | 0.72 |
High Grade | 0.58 | 0.53 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgieva, T.G.; Darmoul, D.; Chen, H.; Cui, H.; Rice, P.F.S.; Barton, J.K.; Besselsen, D.G.; Ignatenko, N.A. Kallikrein-Related Peptidase 6 Contributes to Murine Intestinal Tumorigenesis Driven by a Mutant Adenomatous polyposis coli Gene. Cancers 2024, 16, 3842. https://doi.org/10.3390/cancers16223842
Georgieva TG, Darmoul D, Chen H, Cui H, Rice PFS, Barton JK, Besselsen DG, Ignatenko NA. Kallikrein-Related Peptidase 6 Contributes to Murine Intestinal Tumorigenesis Driven by a Mutant Adenomatous polyposis coli Gene. Cancers. 2024; 16(22):3842. https://doi.org/10.3390/cancers16223842
Chicago/Turabian StyleGeorgieva, Teodora G., Dalila Darmoul, Hwudaurw Chen, Haiyan Cui, Photini F. S. Rice, Jennifer K. Barton, David G. Besselsen, and Natalia A. Ignatenko. 2024. "Kallikrein-Related Peptidase 6 Contributes to Murine Intestinal Tumorigenesis Driven by a Mutant Adenomatous polyposis coli Gene" Cancers 16, no. 22: 3842. https://doi.org/10.3390/cancers16223842
APA StyleGeorgieva, T. G., Darmoul, D., Chen, H., Cui, H., Rice, P. F. S., Barton, J. K., Besselsen, D. G., & Ignatenko, N. A. (2024). Kallikrein-Related Peptidase 6 Contributes to Murine Intestinal Tumorigenesis Driven by a Mutant Adenomatous polyposis coli Gene. Cancers, 16(22), 3842. https://doi.org/10.3390/cancers16223842