An Exploratory Study: Can Native T1 Mapping Differentiate Sarcoma from Benign Soft Tissue Tumors at 1.5 T and 3 T?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Inclusion Criteria
2.2. MRI Protocol
2.3. Image Analysis
2.4. Statistics
3. Results
3.1. Patient Inclusion
3.2. T1 Values in Sarcomas and Benign Tumors
3.3. T1 Histogram Parameters in Sarcomas and Benign Tumors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiss, S.; Korthaus, A.; Baumann, N.; Yamamura, J.; Spiro, A.S.; Lübke, A.M.; Frosch, K.-H.; Schlickewei, C.; Priemel, M. Musculoskeletal Soft-Tissue Sarcoma: Quality Assessment of Initial MRI Reports Shows Frequent Deviation from ESSR Guidelines. Diagnostics 2021, 11, 695. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R. Soft Tissue Sarcomas. Semin. Ultrasound CT MR 2021, 42, 194–200. [Google Scholar] [CrossRef] [PubMed]
- De La Hoz Polo, M.; Dick, E.; Bhumbra, R.; Pollock, R.; Sandhu, R.; Saifuddin, A. Surgical Considerations When Reporting MRI Studies of Soft Tissue Sarcoma of the Limbs. Skelet. Radiol. 2017, 46, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Drapé, J.-L. Advances in Magnetic Resonance Imaging of Musculoskeletal Tumours. Orthop. Traumatol. Surg. Res. 2013, 99, S115–S123. [Google Scholar] [CrossRef] [PubMed]
- Crombé, A.; Kind, M.; Fadli, D.; Miceli, M.; Linck, P.-A.; Bianchi, G.; Sambri, A.; Spinnato, P. Soft-Tissue Sarcoma in Adults: Imaging Appearances, Pitfalls and Diagnostic Algorithms. Diagn. Interv. Imaging 2023, 104, 207–220. [Google Scholar] [CrossRef]
- Fang, S.; Yang, Y.; Xu, N.; Tu, Y.; Yin, Z.; Zhang, Y.; Liu, Y.; Duan, Z.; Liu, W.; Wang, S. An Update in Imaging Evaluation of Histopathological Grade of Soft Tissue Sarcomas Using Structural and Quantitative Imaging and Radiomics. J. Magn. Reson. Imaging 2022, 55, 1357–1375. [Google Scholar] [CrossRef]
- Igrec, J.; Fuchsjäger, M.H. Imaging of Bone Sarcomas and Soft-Tissue Sarcomas. RöFo—Fortschritte Geb. Röntgenstrahlen Bildgeb. Verfahr. 2021, 193, 1171–1182. [Google Scholar] [CrossRef]
- Ioannidis, G.S.; Nikiforaki, K.; Karantanas, A. Statistical and Spatial Correlation between Diffusion and Perfusion MR Imaging Parameters: A Study on Soft Tissue Sarcomas. Phys. Med. 2019, 65, 59–66. [Google Scholar] [CrossRef]
- Wang, X.; Jacobs, M.A.; Fayad, L. Therapeutic Response in Musculoskeletal Soft Tissue Sarcomas: Evaluation by MRI. NMR Biomed. 2011, 24, 750–763. [Google Scholar] [CrossRef]
- Uhl, M.; Saueressig, U.; van Buiren, M.; Kontny, U.; Niemeyer, C.; Köhler, G.; Ilyasov, K.; Langer, M. Osteosarcoma: Preliminary Results of in Vivo Assessment of Tumor Necrosis after Chemotherapy with Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Investig. Radiol. 2006, 41, 618–623. [Google Scholar] [CrossRef]
- Chodyla, M.; Demircioglu, A.; Schaarschmidt, B.M.; Bertram, S.; Morawitz, J.; Bauer, S.; Podleska, L.; Rischpler, C.; Forsting, M.; Herrmann, K.; et al. Evaluation of the Predictive Potential of 18F-FDG PET and DWI Data Sets for Relevant Prognostic Parameters of Primary Soft-Tissue Sarcomas. Cancers 2021, 13, 2753. [Google Scholar] [CrossRef] [PubMed]
- Gondim Teixeira, P.A.; Renaud, A.; Aubert, S.; Ben Haj Amor, M.; Robin, Y.-M.; Cotten, A.; Ceugnart, L. Perfusion MR Imaging at 3-Tesla: Can It Predict Tumor Grade and Histologic Necrosis Rate of Musculoskeletal Sarcoma? Diagn. Interv. Imaging 2018, 99, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, L.; Wang, Q.; Tao, J.; Pan, Z.; Wang, S. Soft Tissue Sarcomas: IVIM and DKI Correlate with the Expression of HIF-1α on Direct Comparison of MRI and Pathological Slices. Eur. Radiol. 2021, 31, 4669–4679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Dai, Y.; Liu, Y.; Tao, J.; Pan, Z.; Xie, L.; Wang, S. Soft Tissue Sarcoma: IVIM and DKI Parameters Correlate with Ki-67 Labeling Index on Direct Comparison of MRI and Histopathological Slices. Eur. Radiol. 2022, 32, 5659–5668. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Tao, J.; Yin, Z.; Zhu, Y.; Zhang, Y.; Wang, S. Value of Intravoxel Incoherent Motion and Diffusion Kurtosis Imaging in Predicting Peritumoural Infiltration of Soft-Tissue Sarcoma: A Prospective Study Based on MRI-Histopathology Comparisons. Clin. Radiol. 2021, 76, 532–539. [Google Scholar] [CrossRef]
- Pepin, K.; Grimm, R.; Kargar, S.; Howe, B.M.; Fritchie, K.; Frick, M.; Wenger, D.; Okuno, S.; Ehman, R.; McGee, K.; et al. Soft Tissue Sarcoma Stiffness and Perfusion Evaluation by MRE and DCE-MRI for Radiation Therapy Response Assessment: A Technical Feasibility Study. Biomed. Phys. Eng. Express 2019, 5, 047003. [Google Scholar] [CrossRef]
- Shomal Zadeh, F.; Pooyan, A.; Alipour, E.; Hosseini, N.; Thurlow, P.C.; Del Grande, F.; Shafiei, M.; Chalian, M. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Differentiation of Soft Tissue Sarcoma from Benign Lesions: A Systematic Review of Literature. Skelet. Radiol. 2024, 53, 1343–1357. [Google Scholar] [CrossRef]
- Kwee, R.M.; Kwee, T.C. Diagnostic Performance of MRI in Detecting Locally Recurrent Soft Tissue Sarcoma: Systematic Review and Meta-Analysis. Eur. Radiol. 2022, 32, 3915–3930. [Google Scholar] [CrossRef]
- Ahlawat, S.; Fritz, J.; Morris, C.D.; Fayad, L.M. Magnetic Resonance Imaging Biomarkers in Musculoskeletal Soft Tissue Tumors: Review of Conventional Features and Focus on Nonmorphologic Imaging. J. Magn. Reson. Imaging 2019, 50, 11–27. [Google Scholar] [CrossRef]
- Bull, S.; White, S.K.; Piechnik, S.K.; Flett, A.S.; Ferreira, V.M.; Loudon, M.; Francis, J.M.; Karamitsos, T.D.; Prendergast, B.D.; Robson, M.D.; et al. Human Non-Contrast T1 Values and Correlation with Histology in Diffuse Fibrosis. Heart 2013, 99, 932–937. [Google Scholar] [CrossRef]
- Piper, R.J.; Mikhael, S.; Wardlaw, J.M.; Laidlaw, D.H.; Whittle, I.R.; Bastin, M.E. Imaging Signatures of Meningioma and Low-Grade Glioma: A Diffusion Tensor, Magnetization Transfer and Quantitative Longitudinal Relaxation Time MRI Study. Magn. Reson. Imaging 2016, 34, 596. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xiao, Q.; Yang, M.; Chai, Q.; Huang, Y.; Wu, P.-Y.; Niu, Q.; Gu, Y. Histogram Analysis of Quantitative Parameters from Synthetic MRI: Correlations with Prognostic Factors and Molecular Subtypes in Invasive Ductal Breast Cancer. Eur. J. Radiol. 2021, 139, 109697. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, A.; Goktepeli, M.; Taydas, O.; Sayar, I. Native T1 Mapping of the Breast in MRI to Differentiate Fibroadenomas from Benign Phyllodes Tumors: A Preliminary Study. Magn. Reson. Mater. Phys. Biol. Med. 2022, 35, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, X.; Dominik Nickel, M.; Cheng, J.; Zhu, J. Native T1 Mapping for Differentiating the Histopathologic Type, Grade, and Stage of Rectal Adenocarcinoma: A Pilot Study. Cancer Imaging 2022, 22, 30. [Google Scholar] [CrossRef]
- Baur, A.D.J.; Hansen, C.M.; Rogasch, J.; Posch, H.; Elezkurtaj, S.; Maxeiner, A.; Erb-Eigner, K.; Makowski, M.R. Evaluation of T1 Relaxation Time in Prostate Cancer and Benign Prostate Tissue Using a Modified Look-Locker Inversion Recovery Sequence. Sci. Rep. 2020, 10, 3121. [Google Scholar] [CrossRef]
- Baidya Kayal, E.; Sharma, N.; Sharma, R.; Bakhshi, S.; Kandasamy, D.; Mehndiratta, A. T1 Mapping as a Surrogate Marker of Chemotherapy Response Evaluation in Patients with Osteosarcoma. Eur. J. Radiol. 2022, 148, 110170. [Google Scholar] [CrossRef]
- Gold, G.E.; Han, E.; Stainsby, J.; Wright, G.; Brittain, J.; Beaulieu, C. Musculoskeletal MRI at 3.0 T: Relaxation Times and Image Contrast. Am. J. Roentgenol. 2004, 183, 343–351. [Google Scholar] [CrossRef]
- Meng, T.; He, N.; He, H.; Liu, K.; Ke, L.; Liu, H.; Zhong, L.; Huang, C.; Yang, A.; Zhou, C.; et al. The Diagnostic Performance of Quantitative Mapping in Breast Cancer Patients: A Preliminary Study Using Synthetic MRI. Cancer Imaging 2020, 20, 88. [Google Scholar] [CrossRef]
- Stanisz, G.J.; Odrobina, E.E.; Pun, J.; Escaravage, M.; Graham, S.J.; Bronskill, M.J.; Henkelman, R.M. T1, T2 Relaxation and Magnetization Transfer in Tissue at 3T. Magn. Reson. Med. 2005, 54, 507–512. [Google Scholar] [CrossRef]
- Bane, O.; Hectors, S.J.; Wagner, M.; Arlinghaus, L.L.; Aryal, M.P.; Cao, Y.; Chenevert, T.L.; Fennessy, F.; Huang, W.; Hylton, N.M.; et al. Accuracy, Repeatability, and Interplatform Reproducibility of T 1 Quantification Methods Used for DCE-MRI: Results from a Multicenter Phantom Study. Magn. Reson. Med. 2018, 79, 2564–2575. [Google Scholar] [CrossRef]
- Yuan, J.; Kwok, S.; Chow, K.; Ka, D.; Yeung, W.; Ahuja, A.T.; King, A.D. Quantitative Evaluation of Dual-Flip-Angle T1 Mapping on DCE-MRI Kinetic Parameter Estimation in Head and Neck. Quant. Imaging Med. Surg. 2012, 2, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, Y.; Xie, Y.; Lu, R.; Li, Q.; Tao, H.; Chen, S. Whole-Tumor Histogram Analysis of Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced MRI for Soft Tissue Sarcoma: Correlation with HIF-1alpha Expression. Eur. Radiol. 2023, 33, 3961–3973. [Google Scholar] [CrossRef] [PubMed]
- Benfante, V.; Salvaggio, G.; Ali, M.; Cutaia, G.; Salvaggio, L.; Salerno, S.; Busè, G.; Tulone, G.; Pavan, N.; Di Raimondo, D.; et al. Grading and Staging of Bladder Tumors Using Radiomics Analysis in Magnetic Resonance Imaging. In Proceedings of the Image Analysis and Processing—ICIAP 2023 Workshops, Udine, Italy, 11–15 September 2023; Foresti, G.L., Fusiello, A., Hancock, E., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 93–103. [Google Scholar]
- Yan, Q.; Yi, Y.; Shen, J.; Shan, F.; Zhang, Z.; Yang, G.; Shi, Y. Preliminary Study of 3 T-MRI Native T1-Mapping Radiomics in Differential Diagnosis of Non-Calcified Solid Pulmonary Nodules/Masses. Cancer Cell Int. 2021, 21, 539. [Google Scholar] [CrossRef] [PubMed]
- Schick, U.; Lucia, F.; Dissaux, G.; Visvikis, D.; Badic, B.; Masson, I.; Pradier, O.; Bourbonne, V.; Hatt, M. MRI-Derived Radiomics: Methodology and Clinical Applications in the Field of Pelvic Oncology. Br. J. Radiol. 2019, 92, 20190105. [Google Scholar] [CrossRef]
Patient | Category | Voxel Reconstruction Size | Acquisition Time per Flip Angle | Flip Angle (°) | TE/TR (ms) | Number of Slices | Magnetic Field Strength (T) | MRI System |
---|---|---|---|---|---|---|---|---|
S1 | Sarcoma | 0.35 × 0.35 × 3 mm | 16 s | 4/8 | 3.6/7.4 | 19 | 3 | Philips |
S2 | Sarcoma | 1.14 × 1.14 × 3 mm | 4 s | 4/8 | 1.4/3.7 | 20 | 1.5 | Siemens |
S3 | Sarcoma | 0.9 × 0.9 × 3.5 mm | 12 s | 4/8 | 2/4.4 | 40 | 1.5 | Siemens |
S4 | Sarcoma | 1.1 × 1.1 × 4 mm | 10 s | 4/8 | 1.9/4.2 | 40 | 1.5 | Siemens |
S5 | Sarcoma | 1.6 × 1.6 × 3.5 mm | 11 s | 4/8 | 1.6/4.7 | 40 | 3 | Siemens |
S6 | Sarcoma | 1.3 × 1.3 × 3 mm | 11 s | 4/8 | 1.6/4.7 | 36 | 3 | Siemens |
S7 | Sarcoma | 0.75 × 0.75 × 4 mm | 13 s | 4/8 | 1.8/5.3 | 36 | 3 | Siemens |
S8 | Sarcoma | 1.8 × 1.8 × 3 mm | 13 s | 4/8 | 1.5/4.9 | 36 | 3 | Siemens |
S9 | Sarcoma | 0.35 × 0.35 × 3 mm | 17 s | 4/8 | 3.7/7.5 | 68 | 3 | Philips |
S10 | Sarcoma | 1.1 × 1.1 × 3 mm | 13 s | 4/8 | 1.7/4.6 | 36 | 3 | Siemens |
S11 | Sarcoma | 0.9 × 0.9 × 3.5 mm | 8 s | 4/8 | 1.9/4.3 | 40 | 1.5 | Siemens |
S12 | Sarcoma | 0.73 × 0.73 × 3 mm | 18 s | 4/8 | 3.4/6.9 | 44 | 3 | Philips |
S13 | Sarcoma | 0.8 × 0.8 × 3.4 mm | 17 s | 4/8 | 3.6/7.4 | 44 | 3 | Philips |
S14 | Sarcoma | 1.1 × 1.1 × 3 mm | 13 s | 4/8 | 1.7/4.6 | 36 | 3 | Siemens |
S15 | Sarcoma | 0.78 × 0.78 × 3 mm | 12 s | 4/8 | 1.6/3.3 | 25 | 1.5 | Philips |
S16 | Sarcoma | 0.89 × 0.89 × 3.5 mm | 8 s | 4/8 | 2.0/4.3 | 40 | 1.5 | Siemens |
T1 | Benign tumor | 1.5 × 1.5 × 4 mm | 13 s | 4/8 | 1.8/4.2 | 64 | 1.5 | Siemens |
T2 | Benign tumor | 1.15 × 1.15 × 3 mm | 3.5 s | 4/8 | 1.4/3.7 | 20 | 1.5 | Siemens |
T3 | Benign tumor | 1.0 × 1.0 × 4 mm | 8 s | 4/8 | 1.4/3.7 | 36 | 1.5 | Siemens |
T4 | Benign tumor | 1.2 × 1.2 × 4 mm | 7 s | 4/8 | 1.4/3.7 | 80 | 1.5 | Siemens |
T5 | Benign tumor | 0.8 × 0.8 × 3.4 mm | 17 s | 4/8 | 3.4/7.0 | 44 | 3 | Philips |
T6 | Benign tumor | 0.63 × 0.63 × 3 mm | 8 s | 4/8 | 1.9/5.4 | 18 | 3 | Siemens |
T7 | Benign tumor | 0.9 × 0.9 × 3.5 mm | 8 s | 4/8 | 2.0/4.3 | 40 | 1.5 | Siemens |
T8 | Benign tumor | 1.1 × 1.1 × 4 mm | 9.8 s | 4/8 | 1.9/4.2 | 40 | 1.5 | Siemens |
T9 | Benign tumor | 1.1 × 1.1 × 4 mm | 13 s | 4/8 | 1.9/4.2 | 64 | 1.5 | Siemens |
Patient | Diagnosis | Grade | Mean T1 in Lesion (ms) | T1 Standard Deviation in Lesion (ms) | Mean T1 in Muscle (ms) | T1 Standard Deviation in Muscle (ms) | Field Strength |
---|---|---|---|---|---|---|---|
S1 | Undifferentiated Sarcoma | 3 | 3312 | 434 | 1668 | 136 | 3 |
S2 | Dermatofibrosarcoma protuberans | - | 2092 | 638 | 1192 | 231 | 1.5 |
S3 | Synovial sarcoma | 2 | 810 | 147 | 728 | 122 | 1.5 |
S4 | Synovial sarcoma | 3 | 2766 | 1085 | 1022 | 216 | 1.5 |
S5 | Pleomorphic sarcoma | 3 | 3138 | 599 | 1435 | 460 | 3 |
S6 | Leiomyosarcoma | 2 | 2247 | 983 | 1586 | 257 | 3 |
S7 | Myxoid fusocellular sarcoma | 3 | 3132 | 336 | 3320 | 565 | 3 |
S8 | Myxofibrosarcoma | 3 | 2294 | 261 | 831 | 158 | 3 |
S9 | Synovial sarcoma | 2 | 3208 | 536 | 1175 | 259 | 3 |
S10 | Pleomorphic sarcoma | 3 | 3494 | 582 | 1832 | 374 | 3 |
S11 | Fusiform cell sarcoma | 2 | 1696 | 656 | 929 | 521 | 1.5 |
S12 | Myxofibrosarcoma | 3 | 1134 | 491 | 2180 | 484 | 3 |
S13 | Leiomyosarcoma | 2 | 694 | 89 | 1092 | 141 | 3 |
S14 | Osteogenic sarcoma | 3 | 2645 | 613 | 1357 | 193 | 3 |
S15 | Osteogenic sarcoma | 3 | 1831 | 2039 | 1574 | 491 | 1.5 |
S16 | Leiomyosarcoma | - | 3196 | 679 | 899 | 133 | 1.5 |
T1 | Desmoid tumor | - | 1246 | 275 | 1216 | 131 | 1.5 |
T2 | Myxoma | - | 3191 | 864 | 1266 | 220 | 1.5 |
T3 | Solitary fibrous tumor | - | 2021 | 375 | 1013 | 212 | 1.5 |
T4 | Mesothelial cyst | - | 814 | 424 | 1162 | 144 | 1.5 |
T5 | Schwannoma | - | 814 | 60 | 509 | 58 | 3 |
T6 | Inflammatory pseudotumor | - | 1651 | 254 | 1386 | 178 | 3 |
T7 | Angiolipoma | - | 750 | 572 | 853 | 119 | 1.5 |
T8 | Desmoid tumor | - | 1106 | 295 | 311 | 33 | 1.5 |
T9 | Desmoid tumor | - | 1206 | 227 | 280 | 45 | 1.5 |
Sarcoma | Benign Tumor | p-Value Sarcoma-Benign Tumor | ||||||
---|---|---|---|---|---|---|---|---|
Lesion | Healthy Muscle | p-Value | Lesion | Healthy Muscle | p-Value | |||
1.5 T | Mean [ms] (mean ± SD) | 1701 ± 450 | 1072 ± 269 | 0.063 | 1502 ± 720 | 1131 ± 274 | 0.156 | 0.260 |
Median [ms] | 1802 | 950 | 950 | 1238 | ||||
N | 6 | 7 | ||||||
Skewness (mean ± SD) | 3.22 ± 3.69 | 2.48 ± 1.25 | 1.000 | 0.58 ± 1.92 | 0.79 ± 0.64 | 0.375 | 0.022 | |
Kurtosis (mean ± SD) | 31.00 ± 52.9 | 32.67 ± 39.24 | 0.844 | 5.94 ± 13.29 | 4.12 ± 3.84 | 0.578 | 0.195 | |
3 T | Mean [ms] | 2214 ± 809 | 1470 ± 358 | 0.020 | 1126 ± 367 | 1056 ± 550 | 1.000 | 0.119 |
Median [ms] | 2510 | 1499 | 1126 | 1056 | ||||
N | 10 | 2 | ||||||
Skewness (mean ± SD) | 0.04 ± 0.87 | 0.94 ± 0.69 | 0.027 | 0.22 ± 0.20 | 1.26 ± 0.36 | 0.500 | 0.373 | |
Kurtosis (mean ± SD) | 1.00 ± 2.53 | 4.92 ± 5.33 | 0.160 | −0.71 ± 0.00 | 7.98 ± 4.13 | 0.500 | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dupont, L.; Delattre, B.M.A.; Sans Merce, M.; Poletti, P.A.; Boudabbous, S. An Exploratory Study: Can Native T1 Mapping Differentiate Sarcoma from Benign Soft Tissue Tumors at 1.5 T and 3 T? Cancers 2024, 16, 3852. https://doi.org/10.3390/cancers16223852
Dupont L, Delattre BMA, Sans Merce M, Poletti PA, Boudabbous S. An Exploratory Study: Can Native T1 Mapping Differentiate Sarcoma from Benign Soft Tissue Tumors at 1.5 T and 3 T? Cancers. 2024; 16(22):3852. https://doi.org/10.3390/cancers16223852
Chicago/Turabian StyleDupont, Laura, Bénédicte M. A. Delattre, Marta Sans Merce, Pierre Alexandre Poletti, and Sana Boudabbous. 2024. "An Exploratory Study: Can Native T1 Mapping Differentiate Sarcoma from Benign Soft Tissue Tumors at 1.5 T and 3 T?" Cancers 16, no. 22: 3852. https://doi.org/10.3390/cancers16223852
APA StyleDupont, L., Delattre, B. M. A., Sans Merce, M., Poletti, P. A., & Boudabbous, S. (2024). An Exploratory Study: Can Native T1 Mapping Differentiate Sarcoma from Benign Soft Tissue Tumors at 1.5 T and 3 T? Cancers, 16(22), 3852. https://doi.org/10.3390/cancers16223852