Acute Myeloid Leukemia: Diagnosis and Evaluation by Flow Cytometry
Simple Summary
Abstract
1. Introduction
2. Updates on the Diagnostic and Classification Scheme for AML
3. Flow Cytometry in the Diagnosis and Classification of AML
3.1. Antibody Panel for Immunophenotyping
3.2. Antigenic Patterns During Normal Hematopoiesis
3.3. AML with Recurrent Genetic Abnormalities
3.3.1. Acute Promyelocytic Leukemia (APL) with PML::RARA Fusion
3.3.2. AML with NPM1 Mutation and/or FLT3 ITD
3.3.3. AML with KMT2A Rearrangement
3.3.4. AML with RUNX1::RUNX1T1 Fusion
3.3.5. AML with CCAAT/Enhancer-Binding Protein Alpha (CEBPA) Mutation
3.3.6. AML with Other Gene Mutations
3.4. Phenotypically Defined Stages of Differentiation Arrest in AML Correlates with Genetic Drivers
3.5. AML with Challenging Immunophenotypes
3.5.1. Acute Erythroid Leukemia (AEL)
3.5.2. Acute Megakaryoblastic Leukemia (AMKL)
3.5.3. Acute Leukemias of Mixed or Ambiguous Lineage (ALAL/MPAL)
4. Application of Artificial Intelligence and Machine Learning in Flow Cytometry Data Analysis for AML Diagnosis
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Dohner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- SEER. Cancer Stat Facts: Leukemia—Acute Myeloid Leukemia (AML). Available online: https://seer.cancer.gov/statfacts/html/amyl.html (accessed on 3 June 2024).
- Deschler, B.; Lubbert, M. Acute myeloid leukemia: Epidemiology and etiology. Cancer 2006, 107, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Shallis, R.M.; Wang, R.; Davidoff, A.; Ma, X.; Zeidan, A.M. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019, 36, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Desai, P.; Mencia-Trinchant, N.; Savenkov, O.; Simon, M.S.; Cheang, G.; Lee, S.; Samuel, M.; Ritchie, E.K.; Guzman, M.L.; Ballman, K.V.; et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat. Med. 2018, 24, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network; Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr.; Laird, P.W.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Chen, X.; Cherian, S. Acute Myeloid Leukemia Immunophenotyping by Flow Cytometric Analysis. Clin. Lab. Med. 2017, 37, 753–769. [Google Scholar] [CrossRef]
- Cherian, S.; Wood, B.L. Flow Cytom. In Evaluation of Hematopoietic Neoplasms: A Case-Based Approach; CAP Press: Nothfiled, IL, USA, 2012. [Google Scholar]
- Gupta, M.; Jafari, K.; Rajab, A.; Wei, C.; Mazur, J.; Tierens, A.; Hyjek, E.; Musani, R.; Porwit, A. Radar plots facilitate differential diagnosis of acute promyelocytic leukemia and NPM1+ acute myeloid leukemia by flow cytometry. Cytom. B Clin. Cytom. 2021, 100, 409–420. [Google Scholar] [CrossRef]
- Tatarian, J.; Tupper, N.; Li, P.; Feusier, J.; Abdo, M.; Hyter, S.; Gonzales, P.R.; Zhang, D.; Woodroof, J.; Kelting, S.; et al. Morphologic, immunophenotypic, molecular genetic, and clinical characterization in patients with SRSF2-mutated acute myeloid leukemia. Am. J. Clin. Pathol. 2023, 160, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Herborg, L.L.; Nederby, L.; Brondum, R.F.; Hansen, M.; Hokland, P.; Roug, A.S. Antigen Expression Varies Significantly between Molecular Subgroups of Acute Myeloid Leukemia Patients: Clinical Applicability Is Hampered by Establishment of Relevant Cutoffs. Acta Haematol. 2021, 144, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Mason, E.F.; Hasserjian, R.P.; Aggarwal, N.; Seegmiller, A.C.; Pozdnyakova, O. Blast phenotype and comutations in acute myeloid leukemia with mutated NPM1 influence disease biology and outcome. Blood Adv. 2019, 3, 3322–3332. [Google Scholar] [CrossRef] [PubMed]
- Marcolin, R.; Guolo, F.; Minetto, P.; Clavio, M.; Manconi, L.; Ballerini, F.; Carli, A.; Passannante, M.; Colombo, N.; Carminati, E.; et al. A simple cytofluorimetric score may optimize testing for biallelic CEBPA mutations in patients with acute myeloid leukemia. Leuk. Res. 2019, 86, 106223. [Google Scholar] [CrossRef] [PubMed]
- Perriello, V.M.; Gionfriddo, I.; Rossi, R.; Milano, F.; Mezzasoma, F.; Marra, A.; Spinelli, O.; Rambaldi, A.; Annibali, O.; Avvisati, G.; et al. CD123 Is Consistently Expressed on NPM1-Mutated AML Cells. Cancers 2021, 13, 496. [Google Scholar] [CrossRef]
- Lewis, J.E.; Cooper, L.A.D.; Jaye, D.L.; Pozdnyakova, O. Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia Using Flow Cytometry. Mod. Pathol. 2024, 37, 100373. [Google Scholar] [CrossRef]
- Cox, A.M.; Kim, D.; Garcia, R.; Fuda, F.S.; Weinberg, O.K.; Chen, W. Automated prediction of acute promyelocytic leukemia from flow cytometry data using a graph neural network pipeline. Am. J. Clin. Pathol. 2024, 161, 264–272. [Google Scholar] [CrossRef]
- Didi, I.; Alliot, J.M.; Dumas, P.Y.; Vergez, F.; Tavitian, S.; Largeaud, L.; Bidet, A.; Rieu, J.B.; Luquet, I.; Lechevalier, N.; et al. Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: A DATAML registry study. Leuk. Res. 2024, 136, 107437. [Google Scholar] [CrossRef]
- Aanei, C.M.; Veyrat-Masson, R.; Selicean, C.; Marian, M.; Rigollet, L.; Trifa, A.P.; Tomuleasa, C.; Serban, A.; Cherry, M.; Flandrin-Gresta, P.; et al. Database-Guided Analysis for Immunophenotypic Diagnosis and Follow-Up of Acute Myeloid Leukemia With Recurrent Genetic Abnormalities. Front. Oncol. 2021, 11, 746951. [Google Scholar] [CrossRef]
- Lhermitte, L.; Mejstrikova, E.; van der Sluijs-Gelling, A.J.; Grigore, G.E.; Sedek, L.; Bras, A.E.; Gaipa, G.; Sobral da Costa, E.; Novakova, M.; Sonneveld, E.; et al. Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia. Leukemia 2018, 32, 874–881. [Google Scholar] [CrossRef]
- Jaffe, E.S.; Harris, N.L.; Stein, H.; Vardiman, J.W. World Health Organization Classification of Tumors: Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues; IARC: Lyon, France, 2001. [Google Scholar]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Vardiman, J.W. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; IARC: Lyon, France, 2008. [Google Scholar]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Vardiman, J.W. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed.; IARC: Lyon, France, 2017. [Google Scholar]
- Arber, D.A.; Hasserjian, R.P.; Orazi, A.; Mathews, V.; Roberts, A.W.; Schiffer, C.A.; Roug, A.S.; Cazzola, M.; Dohner, H.; Tefferi, A. Classification of myeloid neoplasms/acute leukemia: Global perspectives and the international consensus classification approach. Am. J. Hematol. 2022, 97, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Estey, E.; Hasserjian, R.P.; Dohner, H. Distinguishing AML from MDS: A fixed blast percentage may no longer be optimal. Blood 2022, 139, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Othus, M.; Wood, B.L.; Walter, R.B.; Becker, P.S.; Percival, M.E.; Abkowitz, J.L.; Appelbaum, F.R.; Estey, E.H. Comparison of myeloid blast counts and variant allele frequencies of gene mutations in myelodysplastic syndrome with excess blasts and secondary acute myeloid leukemia. Leuk. Lymphoma 2021, 62, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Bewersdorf, J.P.; Buckstein, R.; Sekeres, M.A.; Steensma, D.P.; Platzbecker, U.; Loghavi, S.; Boultwood, J.; Bejar, R.; Bennett, J.M.; et al. Finding consistency in classifications of myeloid neoplasms: A perspective on behalf of the International Workshop for Myelodysplastic Syndromes. Leukemia 2022, 36, 2939–2946. [Google Scholar] [CrossRef] [PubMed]
- Arnoulet, C.; Bene, M.C.; Durrieu, F.; Feuillard, J.; Fossat, C.; Husson, B.; Jouault, H.; Maynadie, M.; Lacombe, F. Four- and five-color flow cytometry analysis of leukocyte differentiation pathways in normal bone marrow: A reference document based on a systematic approach by the GTLLF and GEIL. Cytom. B Clin. Cytom. 2010, 78, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.L. Myeloid malignancies: Myelodysplastic syndromes, myeloproliferative disorders, and acute myeloid leukemia. Clin. Lab. Med. 2007, 27, 551–575. [Google Scholar] [CrossRef]
- Gorczyca, W.; Sun, Z.Y.; Cronin, W.; Li, X.; Mau, S.; Tugulea, S. Immunophenotypic pattern of myeloid populations by flow cytometry analysis. Methods Cell Biol. 2011, 103, 221–266. [Google Scholar] [CrossRef]
- Wood, B.L. Flow cytometric monitoring of residual disease in acute leukemia. Methods Mol. Biol. 2013, 999, 123–136. [Google Scholar] [CrossRef]
- Wood, B.L.; Arroz, M.; Barnett, D.; DiGiuseppe, J.; Greig, B.; Kussick, S.J.; Oldaker, T.; Shenkin, M.; Stone, E.; Wallace, P. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: Optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytom. B Clin. Cytom. 2007, 72 (Suppl. 1), S14–S22. [Google Scholar] [CrossRef]
- Garg, S.; Madkaikar, M.; Ghosh, K. Investigating cell surface markers on normal hematopoietic stem cells in three different niche conditions. Int. J. Stem Cells 2013, 6, 129–133. [Google Scholar] [CrossRef]
- Ratajczak, M.Z. Phenotypic and functional characterization of hematopoietic stem cells. Curr. Opin. Hematol. 2008, 15, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Manz, M.G.; Miyamoto, T.; Akashi, K.; Weissman, I.L. Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl. Acad. Sci. USA 2002, 99, 11872–11877. [Google Scholar] [CrossRef] [PubMed]
- Kussick, S.J.; Wood, B.L. Using 4-color flow cytometry to identify abnormal myeloid populations. Arch. Pathol. Lab. Med. 2003, 127, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- van Lochem, E.G.; van der Velden, V.H.; Wind, H.K.; te Marvelde, J.G.; Westerdaal, N.A.; van Dongen, J.J. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: Reference patterns for age-related changes and disease-induced shifts. Cytom. B Clin. Cytom. 2004, 60, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Boyette, L.B.; Macedo, C.; Hadi, K.; Elinoff, B.D.; Walters, J.T.; Ramaswami, B.; Chalasani, G.; Taboas, J.M.; Lakkis, F.G.; Metes, D.M. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE 2017, 12, e0176460. [Google Scholar] [CrossRef]
- Matarraz, S.; Almeida, J.; Flores-Montero, J.; Lecrevisse, Q.; Guerri, V.; Lopez, A.; Barrena, S.; Van Der Velden, V.H.J.; Te Marvelde, J.G.; Van Dongen, J.J.M.; et al. Introduction to the diagnosis and classification of monocytic-lineage leukemias by flow cytometry. Cytom. B Clin. Cytom. 2017, 92, 218–227. [Google Scholar] [CrossRef]
- Orfao, A.; Matarraz, S.; Perez-Andres, M.; Almeida, J.; Teodosio, C.; Berkowska, M.A.; van Dongen, J.J.M. Immunophenotypic dissection of normal hematopoiesis. J. Immunol. Methods 2019, 475, 112684. [Google Scholar] [CrossRef]
- Fajtova, M.; Kovarikova, A.; Svec, P.; Kankuri, E.; Sedlak, J. Immunophenotypic profile of nucleated erythroid progenitors during maturation in regenerating bone marrow. Leuk. Lymphoma 2013, 54, 2523–2530. [Google Scholar] [CrossRef]
- Westers, T.M.; Cremers, E.M.; Oelschlaegel, U.; Johansson, U.; Bettelheim, P.; Matarraz, S.; Orfao, A.; Moshaver, B.; Brodersen, L.E.; Loken, M.R.; et al. Immunophenotypic analysis of erythroid dysplasia in myelodysplastic syndromes. A report from the IMDSFlow working group. Haematologica 2017, 102, 308–319. [Google Scholar] [CrossRef]
- Machherndl-Spandl, S.; Suessner, S.; Danzer, M.; Proell, J.; Gabriel, C.; Lauf, J.; Sylie, R.; Klein, H.U.; Bene, M.C.; Weltermann, A.; et al. Molecular pathways of early CD105-positive erythroid cells as compared with CD34-positive common precursor cells by flow cytometric cell-sorting and gene expression profiling. Blood Cancer J. 2013, 3, e100. [Google Scholar] [CrossRef]
- Fang, H.; Wang, S.A.; You, M.J.; Hu, S.; Miranda, R.N.; Tang, Z.; Lin, P.; Jorgensen, J.L.; Xu, J.; Thakral, B.; et al. Flow cytometry immunophenotypic features of pure erythroid leukemia and the distinction from reactive erythroid precursors. Cytom. B Clin. Cytom. 2022, 102, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Wangen, J.R.; Eidenschink Brodersen, L.; Stolk, T.T.; Wells, D.A.; Loken, M.R. Assessment of normal erythropoiesis by flow cytometry: Important considerations for specimen preparation. Int. J. Lab. Hematol. 2014, 36, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Wood, B. Multicolor immunophenotyping: Human immune system hematopoiesis. Methods Cell Biol. 2004, 75, 559–576. [Google Scholar] [PubMed]
- Kafer, G.; Willer, A.; Ludwig, W.; Kramer, A.; Hehlmann, R.; Hastka, J. Intracellular expression of CD61 precedes surface expression. Ann. Hematol. 1999, 78, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Koike, T.; Aoki, S.; Maruyama, S.; Narita, M.; Ishizuka, T.; Imanaka, H.; Adachi, T.; Maeda, H.; Shibata, A. Cell surface phenotyping of megakaryoblasts. Blood 1987, 69, 957–960. [Google Scholar] [CrossRef]
- Tomer, A.; Harker, L.A.; Burstein, S.A. Flow cytometric analysis of normal human megakaryocytes. Blood 1988, 71, 1244–1252. [Google Scholar] [CrossRef]
- Lucas, F.; Hergott, C.B. Advances in Acute Myeloid Leukemia Classification, Prognostication and Monitoring by Flow Cytometry. Clin. Lab. Med. 2023, 43, 377–398. [Google Scholar] [CrossRef]
- Albano, F.; Mestice, A.; Pannunzio, A.; Lanza, F.; Martino, B.; Pastore, D.; Ferrara, F.; Carluccio, P.; Nobile, F.; Castoldi, G.; et al. The biological characteristics of CD34+ CD2+ adult acute promyelocytic leukemia and the CD34 CD2 hypergranular (M3) and microgranular (M3v) phenotypes. Haematologica 2006, 91, 311–316. [Google Scholar]
- Di Noto, R.; Mirabelli, P.; Del Vecchio, L. Flow cytometry analysis of acute promyelocytic leukemia: The power of ‘surface hematology’. Leukemia 2007, 21, 4–8. [Google Scholar] [CrossRef]
- Dong, H.Y.; Kung, J.X.; Bhardwaj, V.; McGill, J. Flow cytometry rapidly identifies all acute promyelocytic leukemias with high specificity independent of underlying cytogenetic abnormalities. Am. J. Clin. Pathol. 2011, 135, 76–84. [Google Scholar] [CrossRef]
- Orfao, A.; Chillon, M.C.; Bortoluci, A.M.; Lopez-Berges, M.C.; Garcia-Sanz, R.; Gonzalez, M.; Tabernero, M.D.; Garcia-Marcos, M.A.; Rasillo, A.I.; Hernandez-Rivas, J.; et al. The flow cytometric pattern of CD34, CD15 and CD13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARalpha gene rearrangements. Haematologica 1999, 84, 405–412. [Google Scholar] [PubMed]
- Paietta, E.; Goloubeva, O.; Neuberg, D.; Bennett, J.M.; Gallagher, R.; Racevskis, J.; Dewald, G.; Wiernik, P.H.; Tallman, M.S.; Eastern Cooperative Oncology, G. A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytom. B Clin. Cytom. 2004, 59, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jorgensen, J.L.; Wang, S.A.; Ravandi, F.; Cortes, J.; Kantarjian, H.M.; Medeiros, L.J.; Konoplev, S. Usefulness of CD11a and CD18 in flow cytometric immunophenotypic analysis for diagnosis of acute promyelocytic leukemia. Am. J. Clin. Pathol. 2012, 138, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Matarraz, S.; Leoz, P.; Fernandez, C.; Colado, E.; Chillon, M.C.; Vidriales, M.B.; Gonzalez, M.; Rivera, D.; Osuna, C.S.; Caballero-Velazquez, T.; et al. Basophil-lineage commitment in acute promyelocytic leukemia predicts for severe bleeding after starting therapy. Mod. Pathol. 2018, 31, 1318–1331. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Morabito, F.; Martino, B.; Specchia, G.; Liso, V.; Nobile, F.; Boccuni, P.; Di Noto, R.; Pane, F.; Annunziata, M.; et al. CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J. Clin. Oncol. 2000, 18, 1295–1300. [Google Scholar] [CrossRef]
- Ito, S.; Ishida, Y.; Oyake, T.; Satoh, M.; Aoki, Y.; Kowata, S.; Uchiyama, T.; Enomoto, S.; Sugawara, T.; Numaoka, H.; et al. Clinical and biological significance of CD56 antigen expression in acute promyelocytic leukemia. Leuk. Lymphoma 2004, 45, 1783–1789. [Google Scholar] [CrossRef]
- Murray, C.K.; Estey, E.; Paietta, E.; Howard, R.S.; Edenfield, W.J.; Pierce, S.; Mann, K.P.; Bolan, C.; Byrd, J.C. CD56 expression in acute promyelocytic leukemia: A possible indicator of poor treatment outcome? J. Clin. Oncol. 1999, 17, 293–297. [Google Scholar] [CrossRef]
- Tallman, M.S.; Hakimian, D.; Snower, D.; Rubin, C.M.; Reisel, H.; Variakojis, D. Basophilic differentiation in acute promyelocytic leukemia. Leukemia 1993, 7, 521–526. [Google Scholar]
- Shameli, A.; Jamani, K. Acute promyelocytic leukemia presenting with atypical basophils. Clin. Case Rep. 2020, 8, 584–585. [Google Scholar] [CrossRef]
- Masamoto, Y.; Nannya, Y.; Arai, S.; Koike, Y.; Hangaishi, A.; Yatomi, Y.; Kurokawa, M. Evidence for basophilic differentiation of acute promyelocytic leukaemia cells during arsenic trioxide therapy. Br. J. Haematol. 2009, 144, 798–799. [Google Scholar] [CrossRef]
- Iwakiri, R.; Inokuchi, K.; Dan, K.; Nomura, T. Marked basophilia in acute promyelocytic leukaemia treated with all-trans retinoic acid: Molecular analysis of the cell origin of the basophils. Br. J. Haematol. 1994, 86, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Le Deley, M.C.; Castaigne, S.; Archimbaud, E.; Chomienne, C.; Link, H.; Guerci, A.; Duarte, M.; Daniel, M.T.; Bowen, D.; et al. Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. European APL 91 Group. Blood 1993, 82, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Tallman, M.S.; Andersen, J.W.; Schiffer, C.A.; Appelbaum, F.R.; Feusner, J.H.; Woods, W.G.; Ogden, A.; Weinstein, H.; Shepherd, L.; Willman, C.; et al. All-trans retinoic acid in acute promyelocytic leukemia: Long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood 2002, 100, 4298–4302. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K.; Gupta, R.; Singh, M.K.; Sarkar, M.K.; Gupta, A.; Nityanand, S. The triple-negative (CD34-/HLA-DR-/CD11b-) profile rapidly and specifically identifies an acute promyelocytic leukemia. Int. J. Lab. Hematol. 2018, 40, 144–151. [Google Scholar] [CrossRef]
- Tran, V.T.; Phan, T.T.; Mac, H.P.; Tran, T.T.; Ho, T.T.; Pho, S.P.; Nguyen, V.N.; Vo, T.M.; Nguyen, H.T.; Le, T.T.; et al. The diagnostic power of CD117, CD13, CD56, CD64, and MPO in rapid screening acute promyelocytic leukemia. BMC Res. Notes 2020, 13, 394. [Google Scholar] [CrossRef]
- Mosleh, M.; Mehrpouri, M.; Ghaffari, S.; Saei, Z.; Agaeipoor, M.; Jadali, F.; Satlsar, E.S.; Gholampour, R. Report of a new six-panel flow cytometry marker for early differential diagnosis of APL from HLA-DR negative Non-APL leukemia. Scand. J. Clin. Lab. Investig. 2020, 80, 87–92. [Google Scholar] [CrossRef]
- Horna, P.; Zhang, L.; Sotomayor, E.M.; Lancet, J.E.; Moscinski, L.C. Diagnostic immunophenotype of acute promyelocytic leukemia before and early during therapy with all-trans retinoic acid. Am. J. Clin. Pathol. 2014, 142, 546–552. [Google Scholar] [CrossRef]
- Liu, Y.R.; Zhu, H.H.; Ruan, G.R.; Qin, Y.Z.; Shi, H.X.; Lai, Y.Y.; Chang, Y.; Wang, Y.Z.; Lu, D.; Hao, L.; et al. NPM1-mutated acute myeloid leukemia of monocytic or myeloid origin exhibit distinct immunophenotypes. Leuk. Res. 2013, 37, 737–741. [Google Scholar] [CrossRef]
- Zhou, Y.; Moon, A.; Hoyle, E.; Fromm, J.R.; Chen, X.; Soma, L.; Salipante, S.J.; Wood, B.L.; Wu, D. Pattern associated leukemia immunophenotypes and measurable disease detection in acute myeloid leukemia or myelodysplastic syndrome with mutated NPM1. Cytom. B Clin. Cytom. 2019, 96, 67–72. [Google Scholar] [CrossRef]
- Ferrari, A.; Bussaglia, E.; Ubeda, J.; Facchini, L.; Aventin, A.; Sierra, J.; Nomdedeu, J.F. Immunophenotype distinction between acute promyelocytic leukaemia and CD15- CD34- HLA-DR- acute myeloid leukaemia with nucleophosmin mutations. Hematol. Oncol. 2012, 30, 109–114. [Google Scholar] [CrossRef]
- Arana Rosainz, M.J.; Nguyen, N.; Wahed, A.; Lelenwa, L.C.; Aakash, N.; Schaefer, K.; Rios, A.; Kanaan, Z.; Chen, L. Acute myeloid leukemia with mutated NPM1 mimics acute promyelocytic leukemia presentation. Int. J. Lab. Hematol. 2021, 43, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.; Tan, B. Acute myeloid leukemia with NPM1 and FLT3 ITD mimicking acute promyelocytic leukemia. Blood 2020, 136, 1467. [Google Scholar] [CrossRef] [PubMed]
- Bras, A.E.; de Haas, V.; van Stigt, A.; Jongen-Lavrencic, M.; Beverloo, H.B.; Te Marvelde, J.G.; Zwaan, C.M.; van Dongen, J.J.M.; Leusen, J.H.W.; van der Velden, V.H.J. CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. Cytom. B Clin. Cytom. 2019, 96, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Wang, S.A.; Hu, S.; Konoplev, S.N.; Mo, H.; Liu, W.; Zuo, Z.; Xu, J.; Jorgensen, J.L.; Yin, C.C.; et al. Acute promyelocytic leukemia: Immunophenotype and differential diagnosis by flow cytometry. Cytom. B Clin. Cytom. 2022, 102, 283–291. [Google Scholar] [CrossRef]
- Gajendra, S.; Gupta, R.; Thakral, D.; Gupta, S.K.; Jain, G.; Bakhshi, S.; Sharma, A.; Sahoo, R.K.; Kumar, L.; Rai, S.; et al. CD34 negative HLA-DR negative acute myeloid leukaemia: A higher association with NPM1 and FLT3-ITD mutations. Int. J. Lab. Hematol. 2023, 45, 221–228. [Google Scholar] [CrossRef]
- Angelini, D.F.; Ottone, T.; Guerrera, G.; Lavorgna, S.; Cittadini, M.; Buccisano, F.; De Bardi, M.; Gargano, F.; Maurillo, L.; Divona, M.; et al. A Leukemia-Associated CD34/CD123/CD25/CD99+ Immunophenotype Identifies FLT3-Mutated Clones in Acute Myeloid Leukemia. Clin. Cancer Res. 2015, 21, 3977–3985. [Google Scholar] [CrossRef]
- Craig, F.E.; Foon, K.A. Flow cytometric immunophenotyping for hematologic neoplasms. Blood 2008, 111, 3941–3967. [Google Scholar] [CrossRef]
- Konoplev, S.; Wang, X.; Tang, G.; Li, S.; Wang, W.; Xu, J.; Pierce, S.A.; Jia, F.; Jorgensen, J.L.; Ravandi, F.; et al. Comprehensive immunophenotypic study of acute myeloid leukemia with KMT2A (MLL) rearrangement in adults: A single-institution experience. Cytom. B Clin. Cytom. 2022, 102, 123–133. [Google Scholar] [CrossRef]
- Sameeta, F.; Wang, S.A.; Tang, Z.; Khoury, J.D.; Fang, H.; Wang, D.; Xu, J.; Li, S.; Hu, Z.; Hu, S.; et al. Integrative immunophenotypic and genetic characterization of acute myeloid leukemia with CBFB rearrangement. Am. J. Clin. Pathol. 2024, 162, 455–463. [Google Scholar] [CrossRef]
- Pinero, P.; Morillas, M.; Gutierrez, N.; Barragan, E.; Such, E.; Brena, J.; Garcia-Hernandez, M.C.; Gil, C.; Botella, C.; Gonzalez-Navajas, J.M.; et al. Identification of Leukemia-Associated Immunophenotypes by Databaseguided Flow Cytometry Provides a Highly Sensitive and Reproducible Strategy for the Study of Measurable Residual Disease in Acute Myeloblastic Leukemia. Cancers 2022, 14, 4010. [Google Scholar] [CrossRef]
- Shang, L.; Chen, X.; Liu, Y.; Cai, X.; Shi, Y.; Shi, L.; Li, Y.; Song, Z.; Zheng, B.; Sun, W.; et al. The immunophenotypic characteristics and flow cytometric scoring system of acute myeloid leukemia with t(8;21) (q22;q22); RUNX1-RUNX1T1. Int. J. Lab. Hematol. 2019, 41, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yang, B.; Ling, Y.; Zhang, J.; Hua, X.; Gu, W.; Yan, F. Role of CD19 and specific KIT-D816 on risk stratification refinement in t(8;21) acute myeloid leukemia induced with different cytarabine intensities. Cancer Med. 2021, 10, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Shiba, N.; Deguchi, T.; Kiyokawa, N.; Hashii, Y.; Moriya-Saito, A.; Tomizawa, D.; Taga, T.; Adachi, S.; Horibe, K.; et al. Negative CD19 expression is associated with inferior relapse-free survival in children with RUNX1-RUNX1T1-positive acute myeloid leukaemia: Results from the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 study. Br. J. Haematol. 2019, 187, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Tarlock, K.; Lamble, A.J.; Wang, Y.C.; Gerbing, R.B.; Ries, R.E.; Loken, M.R.; Brodersen, L.E.; Pardo, L.; Leonti, A.; Smith, J.L.; et al. CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: A report from the Children’s Oncology Group. Blood 2021, 138, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Taube, F.; Georgi, J.A.; Kramer, M.; Stasik, S.; Middeke, J.M.; Rollig, C.; Krug, U.; Kramer, A.; Scholl, S.; Hochhaus, A.; et al. CEBPA mutations in 4708 patients with acute myeloid leukemia: Differential impact of bZIP and TAD mutations on outcome. Blood 2022, 139, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Wakita, S.; Sakaguchi, M.; Oh, I.; Kako, S.; Toya, T.; Najima, Y.; Doki, N.; Kanda, J.; Kuroda, J.; Mori, S.; et al. Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv. 2022, 6, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Mannelli, F.; Ponziani, V.; Bencini, S.; Bonetti, M.I.; Benelli, M.; Cutini, I.; Gianfaldoni, G.; Scappini, B.; Pancani, F.; Piccini, M.; et al. CEBPA-double-mutated acute myeloid leukemia displays a unique phenotypic profile: A reliable screening method and insight into biological features. Haematologica 2017, 102, 529–540. [Google Scholar] [CrossRef]
- Lin, L.I.; Chen, C.Y.; Lin, D.T.; Tsay, W.; Tang, J.L.; Yeh, Y.C.; Shen, H.L.; Su, F.H.; Yao, M.; Huang, S.Y.; et al. Characterization of CEBPA mutations in acute myeloid leukemia: Most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin. Cancer Res. 2005, 11, 1372–1379. [Google Scholar] [CrossRef]
- Xiao, W.; Chan, A.; Waarts, M.R.; Mishra, T.; Liu, Y.; Cai, S.F.; Yao, J.; Gao, Q.; Bowman, R.L.; Koche, R.P.; et al. Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leukemia. Blood 2021, 137, 1377–1391. [Google Scholar] [CrossRef]
- Wang, W.; Xu, J.; Khoury, J.D.; Pemmaraju, N.; Fang, H.; Miranda, R.N.; Yin, C.C.; Hussein, S.E.; Jia, F.; Tang, Z.; et al. Immunophenotypic and Molecular Features of Acute Myeloid Leukemia with Plasmacytoid Dendritic Cell Differentiation Are Distinct from Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers 2022, 14, 3375. [Google Scholar] [CrossRef]
- Zalmai, L.; Viailly, P.J.; Biichle, S.; Cheok, M.; Soret, L.; Angelot-Delettre, F.; Petrella, T.; Collonge-Rame, M.A.; Seilles, E.; Geffroy, S.; et al. Plasmacytoid dendritic cells proliferation associated with acute myeloid leukemia: Phenotype profile and mutation landscape. Haematologica 2021, 106, 3056–3066. [Google Scholar] [CrossRef] [PubMed]
- Renosi, F.; Callanan, M.; Lefebvre, C. Genetics and Epigenetics in Neoplasms with Plasmacytoid Dendritic Cells. Cancers 2022, 14, 4132. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.M.; Richardson, D.R.; Galeotti, J.; Esparza, S.; Zhu, A.; Fedoriw, Y.; Weck, K.E.; Foster, M.C.; Coombs, C.C.; Zeidner, J.F.; et al. Acute Myeloid Leukemia with Co-mutated ASXL1 and SRSF2 Exhibits Monocytic Differentiation and has a Mutational Profile Overlapping with Chronic Myelomonocytic Leukemia. Hemasphere 2019, 3, e292. [Google Scholar] [CrossRef] [PubMed]
- Vergez, F.; Largeaud, L.; Bertoli, S.; Nicolau, M.L.; Rieu, J.B.; Vergnolle, I.; Saland, E.; Sarry, A.; Tavitian, S.; Huguet, F.; et al. Phenotypically-defined stages of leukemia arrest predict main driver mutations subgroups, and outcome in acute myeloid leukemia. Blood Cancer J. 2022, 12, 117. [Google Scholar] [CrossRef]
- Terwijn, M.; Zeijlemaker, W.; Kelder, A.; Rutten, A.P.; Snel, A.N.; Scholten, W.J.; Pabst, T.; Verhoef, G.; Lowenberg, B.; Zweegman, S.; et al. Leukemic stem cell frequency: A strong biomarker for clinical outcome in acute myeloid leukemia. PLoS ONE 2014, 9, e107587. [Google Scholar] [CrossRef]
- Zeijlemaker, W.; Grob, T.; Meijer, R.; Hanekamp, D.; Kelder, A.; Carbaat-Ham, J.C.; Oussoren-Brockhoff, Y.J.M.; Snel, A.N.; Veldhuizen, D.; Scholten, W.J.; et al. CD34(+)CD38(−) leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia 2019, 33, 1102–1112. [Google Scholar] [CrossRef]
- Hanekamp, D.; Denys, B.; Kaspers, G.J.L.; Te Marvelde, J.G.; Schuurhuis, G.J.; De Haas, V.; De Moerloose, B.; de Bont, E.S.; Zwaan, C.M.; de Jong, A.; et al. Leukaemic stem cell load at diagnosis predicts the development of relapse in young acute myeloid leukaemia patients. Br. J. Haematol. 2018, 183, 512–516. [Google Scholar] [CrossRef]
- Li, S.Q.; Xu, L.P.; Wang, Y.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Wang, F.R.; Han, W.; Sun, Y.Q.; Yan, C.H.; et al. An LSC-based MRD assay to complement the traditional MFC method for prediction of AML relapse: A prospective study. Blood 2022, 140, 516–520. [Google Scholar] [CrossRef]
- Zeijlemaker, W.; Kelder, A.; Oussoren-Brockhoff, Y.J.; Scholten, W.J.; Snel, A.N.; Veldhuizen, D.; Cloos, J.; Ossenkoppele, G.J.; Schuurhuis, G.J. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia 2016, 30, 439–446. [Google Scholar] [CrossRef]
- Das, N.; Panda, D.; Gajendra, S.; Gupta, R.; Thakral, D.; Kaur, G.; Khan, A.; Singh, V.K.; Vemprala, A.; Bakhshi, S.; et al. Immunophenotypic characterization of leukemic stem cells in acute myeloid leukemia using single tube 10-colour panel by multiparametric flow cytometry: Deciphering the spectrum, complexity and immunophenotypic heterogeneity. Int. J. Lab. Hematol. 2024, 46, 646–656. [Google Scholar] [CrossRef]
- Hanekamp, D.; Cloos, J.; Schuurhuis, G.J. Leukemic stem cells: Identification and clinical application. Int. J. Hematol. 2017, 105, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Haubner, S.; Perna, F.; Kohnke, T.; Schmidt, C.; Berman, S.; Augsberger, C.; Schnorfeil, F.M.; Krupka, C.; Lichtenegger, F.S.; Liu, X.; et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia 2019, 33, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Kersten, B.; Valkering, M.; Wouters, R.; van Amerongen, R.; Hanekamp, D.; Kwidama, Z.; Valk, P.; Ossenkoppele, G.; Zeijlemaker, W.; Kaspers, G.; et al. CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia. Br. J. Haematol. 2016, 173, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Jamieson, C.H.; Pang, W.W.; Park, C.Y.; Chao, M.P.; Majeti, R.; Traver, D.; van Rooijen, N.; Weissman, I.L. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009, 138, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Touzet, L.; Dumezy, F.; Roumier, C.; Berthon, C.; Bories, C.; Quesnel, B.; Preudhomme, C.; Boyer, T. CD9 in acute myeloid leukemia: Prognostic role and usefulness to target leukemic stem cells. Cancer Med. 2019, 8, 1279–1288. [Google Scholar] [CrossRef]
- van Rhenen, A.; van Dongen, G.A.; Kelder, A.; Rombouts, E.J.; Feller, N.; Moshaver, B.; Stigter-van Walsum, M.; Zweegman, S.; Ossenkoppele, G.J.; Jan Schuurhuis, G. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 2007, 110, 2659–2666. [Google Scholar] [CrossRef]
- Mizuta, S.; Iwasaki, M.; Bandai, N.; Yoshida, S.; Watanabe, A.; Takashima, H.; Ueshimo, T.; Bandai, K.; Fujiwara, K.; Hiranuma, N.; et al. Flow cytometric analysis of CD34(+) CD38(−) cells; cell frequency and immunophenotype based on CD45RA expression pattern. Cytom. B Clin. Cytom. 2024, 106, 35–44. [Google Scholar] [CrossRef]
- Marra, A.; Akarca, A.U.; Martino, G.; Ramsay, A.; Ascani, S.; Perriello, V.M.; O’Nions, J.; Wilson, A.J.; Gupta, R.; Childerhouse, A.; et al. CD47 expression in acute myeloid leukemia varies according to genotype. Haematologica 2023, 108, 3491–3495. [Google Scholar] [CrossRef]
- Jan, M.; Chao, M.P.; Cha, A.C.; Alizadeh, A.A.; Gentles, A.J.; Weissman, I.L.; Majeti, R. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc. Natl. Acad. Sci. USA 2011, 108, 5009–5014. [Google Scholar] [CrossRef]
- Dufva, O.; Polonen, P.; Bruck, O.; Keranen, M.A.I.; Klievink, J.; Mehtonen, J.; Huuhtanen, J.; Kumar, A.; Malani, D.; Siitonen, S.; et al. Immunogenomic Landscape of Hematological Malignancies. Cancer Cell 2020, 38, 424–428. [Google Scholar] [CrossRef]
- Hu, Z.; Yuan, J.; Long, M.; Jiang, J.; Zhang, Y.; Zhang, T.; Xu, M.; Fan, Y.; Tanyi, J.L.; Montone, K.T.; et al. The Cancer Surfaceome Atlas integrates genomic, functional and drug response data to identify actionable targets. Nat. Cancer 2021, 2, 1406–1422. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Wang, S.A.; Khoury, J.D.; El Hussein, S.; Kim, D.H.; Tashakori, M.; Tang, Z.; Li, S.; Hu, Z.; Jelloul, F.Z.; et al. Pure erythroid leukemia is characterized by biallelic TP53 inactivation and abnormal p53 expression patterns in de novo and secondary cases. Haematologica 2022, 107, 2232–2237. [Google Scholar] [CrossRef] [PubMed]
- Montalban-Bravo, G.; Benton, C.B.; Wang, S.A.; Ravandi, F.; Kadia, T.; Cortes, J.; Daver, N.; Takahashi, K.; DiNardo, C.; Jabbour, E.; et al. More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood 2017, 129, 2584–2587. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, N.; Matarraz, S.; Nierkens, S.; Hofmans, M.; Novakova, M.; da Costa, E.S.; Fernandez, P.; Bras, A.E.; de Mello, F.V.; Mejstrikova, E.; et al. Immunophenotypic Analysis of Acute Megakaryoblastic Leukemia: A EuroFlow Study. Cancers 2022, 14, 1583. [Google Scholar] [CrossRef] [PubMed]
- Eidenschink Brodersen, L.; Alonzo, T.A.; Menssen, A.J.; Gerbing, R.B.; Pardo, L.; Voigt, A.P.; Kahwash, S.B.; Hirsch, B.; Raimondi, S.; Gamis, A.S.; et al. A recurrent immunophenotype at diagnosis independently identifies high-risk pediatric acute myeloid leukemia: A report from Children’s Oncology Group. Leukemia 2016, 30, 2077–2080. [Google Scholar] [CrossRef]
- Panda, D.; Chatterjee, G.; Sardana, R.; Khanka, T.; Ghogale, S.; Deshpande, N.; Badrinath, Y.; Shetty, D.; Narula, G.; Banavali, S.; et al. Utility of CD36 as a novel addition to the immunophenotypic signature of RAM-phenotype acute myeloid leukemia and study of its clinicopathological characteristics. Cytom. B Clin. Cytom. 2021, 100, 206–217. [Google Scholar] [CrossRef]
- Gajendra, S.; Anupurba, S.; Gupta, R.; Mallick, S.; Panda, D.; Thakral, D.; Gupta, S.K.; Bakhshi, S.; Seth, R.; Rai, S.; et al. Acute myeloid leukemia with RAM immunophenotype: A new underdiagnosed entity. Int. J. Lab. Hematol. 2023, 45, 541–552. [Google Scholar] [CrossRef]
- Gruber, T.A.; Larson Gedman, A.; Zhang, J.; Koss, C.S.; Marada, S.; Ta, H.Q.; Chen, S.C.; Su, X.; Ogden, S.K.; Dang, J.; et al. An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 2012, 22, 683–697. [Google Scholar] [CrossRef]
- Smith, J.L.; Ries, R.E.; Hylkema, T.; Alonzo, T.A.; Gerbing, R.B.; Santaguida, M.T.; Eidenschink Brodersen, L.; Pardo, L.; Cummings, C.L.; Loeb, K.R.; et al. Comprehensive Transcriptome Profiling of Cryptic CBFA2T3-GLIS2 Fusion-Positive AML Defines Novel Therapeutic Options: A COG and TARGET Pediatric AML Study. Clin. Cancer Res. 2020, 26, 726–737. [Google Scholar] [CrossRef]
- Chen Wongworawat, Y.; Eskandari, G.; Gaikwad, A.; Marcogliese, A.N.; Ferguson, L.S.; Brackett, J.; Punia, J.N.; Elghetany, M.T.; Kulkarni, R.; Rao, P.H.; et al. Frequent detection of CBFA2T3::GLIS2 fusion and RAM-phenotype in pediatric non-Down syndrome acute megakaryoblastic leukemia: A possible novel relationship with aberrant cytoplasmic CD3 expression. Leuk. Lymphoma 2023, 64, 462–467. [Google Scholar] [CrossRef]
- Rossi, J.G.; Rubio, P.; Alonso, C.N.; Bernasconi, A.R.; Sajaroff, E.O.; Digiorge, J.; Baialardo, E.; Eandi-Eberle, S.; Guitter, M.; Fernandez-Barbieri, A.; et al. Cytoplasmic CD3 expression in infant acute megakaryoblastic leukemia: A new ambiguous lineage subtype? Leuk. Res. 2018, 71, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.; Hadland, B.; Smith, J.L.; Leonti, A.; Huang, B.J.; Ries, R.; Hylkema, T.A.; Castro, S.; Tang, T.T.; McKay, C.N.; et al. CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target. J. Clin. Investig. 2022, 132, e157101. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.Y.; Williamson, D.F.K.; Chen, T.Y.; Chen, R.J.; Barbieri, M.; Mahmood, F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 2021, 5, 555–570. [Google Scholar] [CrossRef] [PubMed]
- Bras, A.E.; Osmani, Z.; de Haas, V.; Jongen-Lavrencic, M.; Te Marvelde, J.G.; Zwaan, C.M.; Mejstrikova, E.; Fernandez, P.; Szczepanski, T.; Orfao, A.; et al. Standardised immunophenotypic analysis of myeloperoxidase in acute leukaemia. Br. J. Haematol. 2021, 193, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Guy, J.; Antony-Debre, I.; Benayoun, E.; Arnoux, I.; Fossat, C.; Le Garff-Tavernier, M.; Raimbault, A.; Imbert, M.; Maynadie, M.; Lacombe, F.; et al. Flow cytometry thresholds of myeloperoxidase detection to discriminate between acute lymphoblastic or myeloblastic leukaemia. Br. J. Haematol. 2013, 161, 551–555. [Google Scholar] [CrossRef]
- van den Ancker, W.; Westers, T.M.; de Leeuw, D.C.; van der Veeken, Y.F.; Loonen, A.; van Beckhoven, E.; Ossenkoppele, G.J.; van de Loosdrecht, A.A. A threshold of 10% for myeloperoxidase by flow cytometry is valid to classify acute leukemia of ambiguous and myeloid origin. Cytom. B Clin. Cytom. 2013, 84, 114–118. [Google Scholar] [CrossRef]
- Amir, E.A.D.; Davis, K.L.; Tadmor, M.D.; Simonds, E.F.; Levine, J.H.; Bendall, S.C.; Shenfeld, D.K.; Krishnaswamy, S.; Nolan, G.P.; Pe’er, D. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 2013, 31, 545–552. [Google Scholar] [CrossRef]
- Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2018, 37, 38–44. [Google Scholar] [CrossRef]
- Ferrer-Font, L.; Mayer, J.U.; Old, S.; Hermans, I.F.; Irish, J.; Price, K.M. High-Dimensional Data Analysis Algorithms Yield Comparable Results for Mass Cytometry and Spectral Flow Cytometry Data. Cytom. A 2020, 97, 824–831. [Google Scholar] [CrossRef]
- Van Gassen, S.; Callebaut, B.; Van Helden, M.J.; Lambrecht, B.N.; Demeester, P.; Dhaene, T.; Saeys, Y. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytom. A 2015, 87, 636–645. [Google Scholar] [CrossRef]
- Weber, L.M.; Robinson, M.D. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytom. A 2016, 89, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Porwit, A.; Violidaki, D.; Axler, O.; Lacombe, F.; Ehinger, M.; Bene, M.C. Unsupervised cluster analysis and subset characterization of abnormal erythropoiesis using the bioinformatic Flow-Self Organizing Maps algorithm. Cytom. B Clin. Cytom. 2022, 102, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Seifert, R.P.; Gorlin, D.A.; Borkowski, A.A. Artificial Intelligence for Clinical Flow Cytometry. Clin. Lab. Med. 2023, 43, 485–505. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, S.A.; Li, J.L.; Liu, Y.C.; Ko, M.Y.; Boyiadzis, M.; Chang, T.Y.; Wang, Y.F.; Lee, C.C.; Swerdlow, S.H.; Ko, B.S. A Machine Learning Approach to the Classification of Acute Leukemias and Distinction From Nonneoplastic Cytopenias Using Flow Cytometry Data. Am. J. Clin. Pathol. 2022, 157, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Ko, B.S.; Wang, Y.F.; Li, J.L.; Li, C.C.; Weng, P.F.; Hsu, S.C.; Hou, H.A.; Huang, H.H.; Yao, M.; Lin, C.T.; et al. Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome. EBioMedicine 2018, 37, 91–100. [Google Scholar] [CrossRef]
- Zhong, P.; Hong, M.; He, H.; Zhang, J.; Chen, Y.; Wang, Z.; Chen, P.; Ouyang, J. Diagnosis of Acute Leukemia by Multiparameter Flow Cytometry with the Assistance of Artificial Intelligence. Diagnostics 2022, 12, 827. [Google Scholar] [CrossRef]
- Ng, D.P.; Zuromski, L.M. Augmented Human Intelligence and Automated Diagnosis in Flow Cytometry for Hematologic Malignancies. Am. J. Clin. Pathol. 2021, 155, 597–605. [Google Scholar] [CrossRef]
- Simonson, P.D.; Wu, Y.; Wu, D.; Fromm, J.R.; Lee, A.Y. De Novo Identification and Visualization of Important Cell Populations for Classic Hodgkin Lymphoma Using Flow Cytometry and Machine Learning. Am. J. Clin. Pathol. 2021, 156, 1092–1102. [Google Scholar] [CrossRef]
- Zhao, M.; Mallesh, N.; Hollein, A.; Schabath, R.; Haferlach, C.; Haferlach, T.; Elsner, F.; Luling, H.; Krawitz, P.; Kern, W. Hematologist-Level Classification of Mature B-Cell Neoplasm Using Deep Learning on Multiparameter Flow Cytometry Data. Cytom. A 2020, 97, 1073–1080. [Google Scholar] [CrossRef]
- Gaidano, V.; Tenace, V.; Santoro, N.; Varvello, S.; Cignetti, A.; Prato, G.; Saglio, G.; De Rosa, G.; Geuna, M. A Clinically Applicable Approach to the Classification of B-Cell Non-Hodgkin Lymphomas with Flow Cytometry and Machine Learning. Cancers 2020, 12, 1684. [Google Scholar] [CrossRef]
- Clichet, V.; Harrivel, V.; Delette, C.; Guiheneuf, E.; Gautier, M.; Morel, P.; Assouan, D.; Merlusca, L.; Beaumont, M.; Lebon, D.; et al. Accurate classification of plasma cell dyscrasias is achieved by combining artificial intelligence and flow cytometry. Br. J. Haematol. 2022, 196, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Ng, D.P.; Simonson, P.D.; Tarnok, A.; Lucas, F.; Kern, W.; Rolf, N.; Bogdanoski, G.; Green, C.; Brinkman, R.R.; Czechowska, K. Recommendations for using artificial intelligence in clinical flow cytometry. Cytom. B Clin. Cytom. 2024, 106, 228–238. [Google Scholar] [CrossRef] [PubMed]
AML with Defining Genetic Abnormalities |
---|
Acute promyelocytic leukemia with PML::RARA fusion |
AML with RUNX1::RUNX1T1 fusion |
AML with CBFB::MYH11 fusion |
AML with DEK::NUP214 fusion |
AML with RBM15::MRTFA fusion |
AML with BCR::ABL1 fusion |
AML with KMT2A rearrangement |
AML with MECOM rearrangement |
AML with NUP98 rearrangement |
AML with NPM1 mutation |
AML with CEBPA mutation |
AML, myelodysplasia-related |
AML with other defined genetic alterations |
AML, Defined by Differentiation |
AML with minimal differentiation |
AML without maturation |
AML with maturation |
Acute basophilic leukemia |
Acute myelomonocytic leukemia |
Acute monocytic leukemia |
Acute erythroid leukemia |
Acute megakaryoblastic leukemia |
Laser | Violet | Blue | Red | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fluorochrome | PB | SN v428 | BV510 | BV605 | BV711 | BV786 | A488 | FITC | PE | PE-Cy5 | PE-Cy7 | APC | APC-A700 | APC-H7 |
Myeloid 1 | HLA-DR | CD38 | CD19 | CD33 | CD15 | CD117 | CD13 | CD34 | CD71 | CD45 | ||||
Myeloid 2 | HLA-DR | CD38 | CD4 | CD14 | CD64 | CD123 | CD13 | CD34 | CD16 | CD45 | ||||
Myeloid 3 | HLA-DR | CD38 | CD5 | CD56 | CD7 | CD33 | CD34 | CD45 | ||||||
Lineage | CD22 | cCD3 | CD7 | cMPO | cCD79a | CD117 | CD19 | CD34 | CD45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ally, F.; Chen, X. Acute Myeloid Leukemia: Diagnosis and Evaluation by Flow Cytometry. Cancers 2024, 16, 3855. https://doi.org/10.3390/cancers16223855
Ally F, Chen X. Acute Myeloid Leukemia: Diagnosis and Evaluation by Flow Cytometry. Cancers. 2024; 16(22):3855. https://doi.org/10.3390/cancers16223855
Chicago/Turabian StyleAlly, Feras, and Xueyan Chen. 2024. "Acute Myeloid Leukemia: Diagnosis and Evaluation by Flow Cytometry" Cancers 16, no. 22: 3855. https://doi.org/10.3390/cancers16223855
APA StyleAlly, F., & Chen, X. (2024). Acute Myeloid Leukemia: Diagnosis and Evaluation by Flow Cytometry. Cancers, 16(22), 3855. https://doi.org/10.3390/cancers16223855