Artificial Intelligence–Driven Computational Approaches in the Development of Anticancer Drugs
Simple Summary
Abstract
1. Introduction
AI-Driven Methodology | Application in Anticancer Drug Development | Key Advantages | Software Tools (Version/Website Access Details) | Drug/Compound Examples | Challenges and Limitations | References |
---|---|---|---|---|---|---|
Machine Learning (ML) | Predicting drug–target interactions, optimizing drug efficacy, identifying novel compounds | Reduces experimental costs and time, improves prediction accuracy | AutoDock Vina 1.2.x (Documentation), Chemprop (GitHub, https://github.com/chemprop/chemprop (accessed on 7 October 2024)) | Alpelisib (PI3K inhibitor) identified using ML tools for breast cancer | Requires extensive, high-quality datasets; risk of over-fitting. | [11,12] |
Deep Learning (DL) | Screening drug candidates, predicting patient-specific drug responses, discovering hidden patterns | Handles large, complex datasets, enhances novel discovery | DeepChem 2.7.1, AtomNet (Atomwise, https://www.atomwise.com/ (accessed on 7 October 2024)) | Lapatinib (EGFR/ErbB2 inhibitor) prediction improved with DL screening tools | DL models are “black boxes”, making them difficult to interpret; computationally expensive. | [13] |
Natural Language Processing (NLP) | Mining literature and patents for drug discovery insights, identifying emerging drug trends | Extracts valuable information from unstructured data | SciBite (https://scibite.com/ (accessed on 7 October 2024)), TextMining (spaCy, https://spacy.io/ (accessed on 7 October 2024)) | Identified Pembrolizumab in conjunction with other immune checkpoint inhibitors from literature mining | Struggles with domain-specific language; customization required to interpret scientific literature. | [14] |
Generative Adversarial Networks (GANs) | Designing new chemical entities (NCEs), generating drug-like compounds with desired properties | Generates diverse and novel compounds, reduces reliance on traditional synthesis methods | MoleculeGAN (Academic Repos, https://github.com/ (accessed on 7 October 2024)), REINVENT (GitHub, https://github.com/MolecularAI/Reinvent (accessed on 7 October 2024)) | Generated new EGFR inhibitors with properties for targeting cancer | Difficult to control quality of generated molecules; clinical validation often lacking. | [4] |
Reinforcement Learning (RL) | Optimizing drug combinations, exploring synergistic effects, guiding decision-making in drug design | Provides adaptive learning, maximizes efficacy | Deep RL (Resources, https://github.com/ (accessed on 7 October 2024)), ChemTS (GitHub, https://github.com/tsudalab/ChemTS (accessed on 7 October 2024)) | Combination of Vemurafenib and Cobimetinib for melanoma identified through RL | High computational requirements; accurate reward signals needed for clinical validation. | [15] |
Quantum Computing (QC) | Simulating complex molecular interactions, optimizing quantum machine learning for faster discovery. | Solves complex computational chemistry problems. | Qiskit (https://www.ibm.com/quantum/qiskit (accessed on 7 October 2024)), IBM Quantum (IBM, https://quantum-computing.ibm.com/ (accessed on 7 October 2024)) | Quantum simulations for Taxol drug interactions with tubulin in cancer treatment | Still in infancy with limited practical applications; scalability is a challenge. | [9] |
AI for Biomarker Discovery | Identifying predictive biomarkers, facilitating personalized medicine, linking genetic profiles | Enhances personalized treatment strategies, improves patient selection for trials | OncoKB (https://oncokb.org (accessed on 7 October 2024)), BioX-press (https://bioxpress.org/ (accessed on 7 October 2024)) | Identified biomarkers for Pembrolizumab effectiveness in melanoma | Large multi-omics datasets required; data privacy concerns and complex integration challenges. | [11,16] |
AI-Based Virtual Screening | High-throughput screening (HTS) of drug libraries, accelerating lead identification | Increases speed and accuracy in identifying promising candidates | Schrödinger (https://www.schrodinger.com/ (accessed on 7 October 2024)), PyRx (https://pyrx.sourceforge.io/ (accessed on 7 October 2024)), VSpipe (GitHub, https://github.com/ (accessed on 7 October 2024)) | Screened inhibitors for ERα (estrogen receptor) in breast cancer | Not always accurate predictor of in vitro success; requires follow-up validation. | [5,15] |
AI in Drug Repurposing | Identifying existing drugs with potential anticancer properties, analyzing multidimensional data | Lowers costs, speeds up clinical trials, reduces risks | CANDO, DTC (Research Resources, https://github.com/ (accessed on 7 October 2024)) | Repurposed Metformin as a potential anticancer agent for pancreatic cancer | Known toxicity profiles can limit repurposing; incomplete data can miss key interactions. | [12] |
AI in Clinical Trial Optimization | Predicting patient outcomes, optimizing inclusion/exclusion criteria, improving trial design | Reduces trial costs, improves recruitment, enhances efficacy predictions | Deep 6 AI (https://www.deep6.ai (accessed on 7 October 2024)), IBM Watson for Clinical Trial Matching | Optimized trials for immunotherapy agents like Nivolumab | Ethical concerns in AI-driven patient selection; risk of introducing biases affecting trial diversity. | [17] |
1.1. Background/History of AI Role in Drug Discovery and Development
1.1.1. Evolution of AI: From Machine Learning (ML) to Deep Learning (DL)
1.1.2. AI’s Role in Accelerating Drug Development: From Early Target Discovery to Clinical Trials
2. AI Capability to Integrate Information from Diverse Sources
3. AI in Anticancer Drug Target Identification
4. AI Predicts the Viability of Drug Targets for Anticancer Therapies
5. AI Screening of Potential Hit Compounds for Anticancer Drugs
5.1. Strategies for Structure-Based Screening
5.1.1. Molecular Docking
5.1.2. Integrating Molecular Docking with AI for Comprehensive Processing
5.1.3. Structure-Based Pharmacophore Mapping
5.1.4. Integration of AI in Pharmacophore Mapping
5.2. Ligand-Based Pharmacophore Mapping in Drug Discovery
5.2.1. AI Integrated Software Tools for Ligand-Based Pharmacophore Mapping
5.2.2. Ligand-Based Quantitative Structure–Activity Relationship (QSAR) Modeling
5.2.3. Integration of AI Tools with QSAR Modeling
6. Molecular Dynamics (MD) Simulation in Finding New Drug Binding Sites
Integration of MD Simulation with AI
7. Identification of Anticancer Drugs Using AI-Based De Novo Drug Design
8. Role of AI in Anticancer Drug Repurposing
8.1. Overview of Anticancer Drug Repurposing
8.2. AI-Driven Insights into Drug–Target Interactions
8.3. Enhancing Data Analysis and Clinical Trials Through AI
9. Conclusions and Future Perspectives
10. Clinical Impact
- AI-driven models enhance the ability to predict patient-specific drug responses, enabling personalized treatment plans. This results in more precise and effective cancer therapies, reducing adverse effects and improving patient outcomes.
- AI expedites the screening and optimization of anticancer compounds, significantly shortening drug development timelines. This leads to faster clinical implementation of novel therapies, offering new treatment options for cancer patients.
11. Significance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Fatima, K.; Aisha, S.; Malik, F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun. Signal. 2024, 22, 109. [Google Scholar] [CrossRef] [PubMed]
- Iwaloye, O.; Ottu, P.O.; Olawale, F.; Babalola, O.O.; Elekofehinti, O.O.; Kikiowo, B.; Adegboyega, A.E.; Ogbonna, H.N.; Adeboboye, C.F.; Folorunso, I.M.; et al. Computer-aided drug design in anti-cancer drug discovery: What have we learnt and what is the way forward? Inform. Med. Unlocked 2023, 41, 101332. [Google Scholar] [CrossRef]
- Niazi, S.K.; Mariam, Z. Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. Pharmaceuticals 2023, 17, 22. [Google Scholar] [CrossRef]
- Cui, W.; Aouidate, A.; Wang, S.; Yu, Q.; Li, Y.; Yuan, S. Discovering Anti-Cancer Drugs via Computational Methods. Front. Pharmacol. 2020, 11, 733. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Mohanty, A.; Ramisetty, S.; Kulkarni, P.; Horne, D.; Pisick, E.; Salgia, R.; Singhal, S.S. Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 189026. [Google Scholar] [CrossRef]
- Sebastian, A.M.; Peter, D. Artificial Intelligence in Cancer Research: Trends, Challenges and Future Directions. Life 2022, 12, 1991. [Google Scholar] [CrossRef]
- Wang, L.; Song, Y.; Wang, H.; Zhang, X.; Wang, M.; He, J.; Li, S.; Zhang, L.; Li, K.; Cao, L. Advances of Artificial Intelligence in Anti-Cancer Drug Design: A Review of the Past Decade. Pharmaceuticals 2023, 16, 253. [Google Scholar] [CrossRef]
- Bailleux, C.; Gal, J.; Chamorey, E.; Mograbi, B.; Milano, G. Artificial Intelligence and Anticancer Drug Development—Keep a Cool Head. Pharmaceutics 2024, 16, 211. [Google Scholar] [CrossRef]
- Frasca, M.; La-Torre, D.; Repetto, M.; De Nicolo, V.; Pravettoni, G.; Cutica, I. Artificial intelligence applications to genomic data in cancer research: A review of recent trends and emerging areas. Discov. Anal. 2024, 2, 10. [Google Scholar] [CrossRef]
- Wei, L.; Niraula, D.; Gates, E.D.H.; Fu, J.; Luo, Y.; Nyflot, M.J.; Bowen, S.R.; El-Naqa, I.M.; Cui, S. Artificial intelligence (AI) and machine learning (ML) in precision oncology: A review on enhancing discoverability through multiomics integration. Br. J. Radiol. 2023, 96, 20230211. [Google Scholar] [CrossRef]
- Lee, M. Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review. Molecules 2023, 28, 5169. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, A.; Tayara, H.; Xuan, Z.; Chong, K.T. CSatDTA: Prediction of Drug-Target Binding Affinity Using Convolution Model with Self-Attention. Int. J. Mol. Sci. 2022, 23, 8453. [Google Scholar] [CrossRef]
- You, Y.; Lai, X.; Pan, Y. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct. Target. Ther. 2022, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Visan, A.I.; Negut, I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life 2024, 14, 233. [Google Scholar] [CrossRef] [PubMed]
- Olayan, R.S.; Ashoor, H.; Bajic, V.B. DDR: Efficient computational method to predict drug-target interactions using graph mining and machine learning approaches. Bioinformatics 2018, 34, 1164–1173. [Google Scholar] [CrossRef]
- Madhukar, N.S.; Khade, P.K.; Huang, L.; Gayvert, K.; Galletti, G.; Stogniew, M.; Allen, J.E.; Giannakakou, P.; Elemento, O. A Bayesian machine learning approach for drug target identification using diverse data types. Nat. Commun. 2019, 10, 5221. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, H.; Pirgazi, J.; Ghanbari Sorkhi, A. Improving prediction of drug-target interactions based on fusing multiple features with data balancing and feature selection techniques. PLoS ONE 2023, 18, e0288173. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Guan, J.; Li, J.; Han, R.; Hao, J.; Wei, Z.; Shang, X. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction. Brief. Bioinform. 2021, 22, bbaa430. [Google Scholar] [CrossRef]
- Shao, K.; Zhang, Y.; Wen, Y.; Zhang, Z.; He, S.; Bo, X. DTI-HETA: Prediction of drug-target interactions based on GCN and GAT on heterogeneous graph. Brief. Bioinform. 2022, 23, bbac109. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhong, W.; Zhao, L.; Chen, C.Y.C. ML-DTI: Mutual Learning Mechanism for Interpretable Drug-Target Interaction Prediction. J. Phys. Chem. Lett. 2021, 12, 4247–4261. [Google Scholar] [CrossRef] [PubMed]
- López-Cortés, A.; Cabrera-Andrade, A.; Echeverría-Garcés, G. Unraveling druggable cancer-driving proteins and targeted drugs using artificial intelligence and multi-omics analyses. Sci. Rep. 2024, 14, 19359. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, H.; Sharma, P.; Sahi, S. Advances in Artificial Intelligence (AI)-assisted approaches in drug screening. Artif. Intell. Chem. 2024, 2, 100039. [Google Scholar] [CrossRef]
- Raies, A.; Tulodziecka, E.; Stainer, J.; Middleton, L.; Dhindsa, R.S.; Hill, P.; Engkvist, O.; Harper, A.R.; Petrovski, S.; Vitsios, D. DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets. Commun. Biol. 2022, 5, 1291. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, F.; Li, Y.; Wang, J.; Zhang, K.; Liu, Y.; Wu, M.; Zheng, J. KG4SL: Knowledge graph neural network for synthetic lethality prediction in human cancers. Bioinformatics 2021, 37, i418–i425. [Google Scholar] [CrossRef]
- Lu, S.H.; Wu, J.W.; Liu, H.L.; Zhao, J.H.; Liu, K.T.; Chuang, C.K.; Lin, H.Y.; Tsai, W.B.; Ho, Y. The discovery of potential acetylcholinesterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. J. Biomed. Sci. 2011, 18, 8. [Google Scholar] [CrossRef]
- Du, P.; Fan, R.; Zhang, N.; Wu, C.; Zhang, Y. Advances in Integrated Multiomics Analysis for Drug-Target Identification. Biomolecules 2024, 14, 692. [Google Scholar] [CrossRef]
- Bello, B.; Bundey, Y.N.; Bhave, R.; Khotimchenko, M.; Baran, S.W.; Chakravarty, K.; Varshney, J. Integrating AI/ML Models for Patient Stratification Leveraging Omics Dataset and Clinical Biomarkers from COVID-19 Patients: A Promising Approach to Personalized Medicine. Int. J. Mol. Sci. 2023, 24, 6250. [Google Scholar] [CrossRef]
- Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de Novo Drug Design: From Conventional to Machine Learning Methods. Int. J. Mol. Sci. 2021, 22, 1676. [Google Scholar] [CrossRef]
- Kulkarni, V.S.; Alagarsamy, V.; Solomon, V.R.; Jose, P.A.; Murugesan, S. Drug Repurposing: An Effective Tool in Modern Drug Discovery. Russ. J. Bioorganic Chem. 2023, 49, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Kokudeva, M.; Vichev, M.; Naseva, E.; Miteva, D.G.; Velikova, T. Artificial intelligence as a tool in drug discovery and development. World J. Exp. Med. 2024, 14, 96042. [Google Scholar] [CrossRef] [PubMed]
- Maltarollo, V.G.; Gertrudes, J.C.; Oliveira, P.R.; Honorio, K.M. Applying machine learning techniques for ADME-Tox prediction: A review. Expert Opin. Drug Metab. Toxicol. 2015, 11, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Blanco-González, A.; Cabezón, A.; Seco-González, A.; Conde-Torres, D.; Antelo-Riveiro, P.; Piñeiro, Á.; Garcia-Fandino, R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals 2023, 16, 891. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Payra, S.; Singh, S.K. Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery. Cureus 2023, 15, e44359. [Google Scholar] [CrossRef]
- Pushkaran, A.C.; Arabi, A.A. From understanding diseases to drug design: Can artificial intelligence bridge the gap? Artif. Intell. Rev. 2024, 57, 86. [Google Scholar] [CrossRef]
- Chen, H.; Engkvist, O. Has Drug Design Augmented by Artificial Intelligence Become a Reality? Trends Pharmacol. Sci. 2019, 40, 806–809. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA 2000, 97, 7124–7129. [Google Scholar] [CrossRef]
- Lu, P.; Bevan, D.R.; Leber, A.; Hontecillas, R.; Tubau-Juni, N.; Bassaganya, R.J. Computer-aided drug discovery. In Accelerated Path to Cures; Springer: Berlin/Heidelberg, Germany, 2018; pp. 7–24. [Google Scholar] [CrossRef]
- Prada-Gracia, D.; Huerta-Yepez, S.; Moreno-Vargas, L.M. Application of computational methods for anticancer drug discovery, design, and optimization. Boletín Médico Del Hospital Infantil de México 2016, 73, 411–423. [Google Scholar] [CrossRef]
- Urwyler, S. Allosteric Modulation of Family C G-Protein-Coupled Receptors: From Molecular Insights to Therapeutic Perspectives. Pharmacol. Rev. 2011, 63, 59–126. [Google Scholar] [CrossRef]
- Sheng, C.; Dong, G.; Miao, Z.; Zhang, W.; Wang, W. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem. Soc. Rev. 2015, 44, 8238–8259. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Liu, S.; Shi, W.; Yu, J.; Zhou, Z.; Zhang, X.; Lu, X.; Cai, F.; Xia, N.; Wang, Y. Systemic evolutionary chemical space exploration for drug discovery. J. Cheminformatics 2022, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Yasuo, N.; Sekijima, M. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning. J. Chem. Inf. Model. 2019, 59, 1050–1061. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Han, R.; Yoon, H.; Kim, G.; Lee, H.; Lee, Y. Revolutionizing Medicinal Chemistry: The Application of Artificial Intelligence (AI) in Early Drug Discovery. Pharmaceuticals 2023, 16, 1259. [Google Scholar] [CrossRef]
- Xia, S.; Chen, E.; Zhang, Y. Integrated Molecular Modeling and Machine Learning for Drug Design. J. Chem. Theory Comput. 2023, 19, 7478–7495. [Google Scholar] [CrossRef]
- Yang, H.; Lin, H.; Yuan, Y.; Li, Y.; Zou, R.; Zhou, G.; Zhang, L.; Zheng, H. Synergistic Application of Molecular Docking and Machine Learning for Improved Protein-Ligand Binding Pose Prediction. ChemRxiv 2023. [Google Scholar] [CrossRef]
- Soleymani, F.; Paquet, E.; Viktor, H.; Michalowski, W.; Spinello, D. Protein–protein interaction prediction with deep learning: A comprehensive review. Comput. Struct. Biotechnol. J. 2022, 20, 5316–5341. [Google Scholar] [CrossRef]
- Zheng, L.; Meng, J.; Jiang, K.; Lan, H.; Wang, Z.; Lin, M.; Li, W.; Guo, H.; Wei, Y.; Mu, Y. Improving protein-ligand docking and screening accuracies by incorporating a scoring function correction term. Brief. Bioinform. 2022, 23, bbac051. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, F.; Luo, Y.; Kang, S.G.; Tang, J.; Lightstone, F.C.; Fang, E.F.; Cornell, W.; Nussinov, R.; Cheng, F. Deep generative molecular design reshapes drug discovery. Cell Rep. Med. 2022, 3, 100794. [Google Scholar] [CrossRef]
- Mahajan, P.; Uddin, S.; Hajati, F.; Moni, M.A. Ensemble Learning for Disease Prediction: A Review. Healthcare 2023, 11, 1808. [Google Scholar] [CrossRef] [PubMed]
- Clyde, A.; Liu, X.; Brettin, T.; Yoo, H.; Partin, A.; Babuji, Y.; Blaiszik, B.; Mohd-Yusof, J.; Merzky, A.; Turilli, M.; et al. AI-accelerated protein-ligand docking for SARS-CoV-2 is 100-fold faster with no significant change in detection. Sci. Rep. 2023, 13, 2105. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022, 15, 646. [Google Scholar] [CrossRef]
- Kumar, S.; Deepika, D.; Kumar, V. Pharmacophore Modeling Using Machine Learning for Screening the Blood-Brain Barrier Permeation of Xenobiotics. Int. J. Environ. Res. Public Health 2022, 19, 13471. [Google Scholar] [CrossRef]
- Askr, H.; Elgeldawi, E.; Aboul-Ella, H.; Elshaier, Y.A.; Gomaa, M.M.; Hassanien, A.E. Deep learning in drug discovery: An integrative review and future challenges. Artif. Intell. Rev. 2023, 56, 5975–6037. [Google Scholar] [CrossRef]
- Ozaki, Y.; Broughton, P.; Abdollahi, H.; Valafar, H.; Blenda, A.V. Integrating Omics Data and AI for Cancer Diagnosis and Prognosis. Cancers 2024, 16, 2448. [Google Scholar] [CrossRef]
- Vijayan, R.S.K.; Kihlberg, J.; Jason, B.; Cross, J.B.; Poongavanam, V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discov. Today 2022, 27, 967–984. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, J.; López, M.; Gibert, E.; Herrero, E.; Luque, F.J. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches. Molecules 2020, 25, 4723. [Google Scholar] [CrossRef]
- Pal, S.; Kumar, V.; Kundu, B.; Bhattacharya, D.; Preethy, N.; Reddy, M.P.; Talukdar, A. Ligand-based Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Discovery of Potential Topoisomerase I Inhibitors. Comput. Struct. Biotechnol. J. 2019, 17, 291–310. [Google Scholar] [CrossRef]
- Vuorinen, A.; Schuster, D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. Methods 2015, 71, 113–134. [Google Scholar] [CrossRef]
- Krasoulis, A.; Antonopoulos, N.; Pitsikalis, V.; Theodorakis, S. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features. J. Chem. Inf. Model. 2022, 62, 4642–4659. [Google Scholar] [CrossRef] [PubMed]
- Turkina, V.; Messih, M.R.W.; Kant, E.; Gringhuis, J.; Petrignani, A.; Corthals, G. Molecular Fingerprints Optimization for Enhanced Predictive Modeling. ChemRxiv 2024. [Google Scholar] [CrossRef]
- Bastikar, V.; Bastikar, A.; Gupta, P. Quantitative structure–activity relationship-based computational approaches. In Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection; Academic Press: Cambridge, MA, USA, 2021; pp. 191–205. [Google Scholar] [CrossRef]
- Mao, J.; Akhtar, J.; Zhang, X.; Sun, L.; Guan, S.; Li, X.; Chen, G.; Liu, J.; Jeon, H.N.; Kim, M.S.; et al. Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models. iScience 2021, 24, 103052. [Google Scholar] [CrossRef] [PubMed]
- Soares, T.A.; Nunes-Alves, A.; Mazzolari, A.; Ruggiu, F.; Wei, G.W.; Merz, K. The (Re)-Evolution of Quantitative Structure-Activity Relationship (QSAR) Studies Propelled by the Surge of Machine Learning Methods. J. Chem. Inf. Model. 2022, 62, 5317–5320. [Google Scholar] [CrossRef]
- Tropsha, A.; Isayev, O.; Varnek, A.; Schneider, G.; Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR. Nat. Rev. Drug Discov. 2024, 23, 141–155. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Li, H.; Zheng, H.; Zhang, J.; Olsen, M.S.; Varshney, R.K.; Prasanna, B.M.; Qian, Q. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Mol. Plant 2022, 15, 1664–1695. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Pal, S.; Sang-Soo Lee, S.S. From machine learning to deep learning: Advances of the recent data-driven paradigm shift in medicine and healthcare. Curr. Res. Biotechnol. 2024, 7, 100164. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Adeshina, I.; Nyirenda, O.C.; Christoffels, A.; Egieyeh, S.A. Artificial intelligence in antidiabetic drug discovery: The advances in QSAR and the prediction of α-glucosidase inhibitors. Comput. Struct. Biotechnol. J. 2024, 23, 2964–2977. [Google Scholar] [CrossRef]
- Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A.S.; et al. Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes 2021, 9, 71. [Google Scholar] [CrossRef]
- Kuzmanic, A.; Bowman, G.R.; Juarez-Jimenez, J.; Michel, J.; Gervasio, F.L. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. Acc. Chem. Res. 2020, 53, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.; Kokh, D.B.; Bomke, J. Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat. Commun. 2017, 8, 2276. [Google Scholar] [CrossRef]
- Son, A.; Kim, W.; Park, J.; Lee, W.; Lee, Y.; Choi, S.; Kim, H. Utilizing Molecular Dynamics Simulations, Machine Learning, Cryo-EM, and NMR Spectroscopy to Predict and Validate Protein Dynamics. Int. J. Mol. Sci. 2024, 25, 9725. [Google Scholar] [CrossRef]
- Heo, L.; Janson, G.; Feig, M. Physics-based protein structure refinement in the era of artificial intelligence. Proteins 2021, 89, 1870–1887. [Google Scholar] [CrossRef]
- Konovalov, K.A.; Unarta, I.C.; Cao, S.; Goonetilleke, E.C.; Huang, X. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning. JACS Au 2021, 1, 1330–1341. [Google Scholar] [CrossRef]
- Khandelwal, A.; Lukacova, V.; Comez, D.; Kroll, D.M.; Raha, S.; Balaz, S. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J. Med. Chem. 2005, 48, 5437–5447. [Google Scholar] [CrossRef] [PubMed]
- Fereidoonnezhad, M.; Faghih, Z.; Mojaddami, A.; Rezaei, Z.; Sakhteman, A. A Comparative QSAR Analysis, Molecular Docking and PLIF Studies of Some N-arylphenyl-2, 2-Dichloroacetamide Analogues as Anticancer Agents. Iran. J. Pharm. Res. IJPR 2017, 16, 981–998. [Google Scholar] [PubMed]
- Gao, W.; Sai Pooja Mahajan, P.; Sulam, J.; Gray, J.J. Deep Learning in Protein Structural Modeling and Design. Patterns 2020, 1, 100142. [Google Scholar] [CrossRef] [PubMed]
- Nicolotti, O.; Giangreco, I.; Introcaso, A.; Leonetti, F.; Stefanachi, A.; Carotti, A. Strategies of multi-objective optimization in drug discovery and development. Expert Opin. Drug Discov. 2011, 6, 871–884. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef]
- Mottini, C.; Napolitano, F.; Li, Z.; Gao, X.; Cardone, L. Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Semin. Cancer Biol. 2021, 68, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.; Vashishth, S.; Kukreti, N.; Gulia, A.; Russell, A.; Ambasta, R.K.; Kumar, P. Chapter Six—Synergizing drug repurposing and target identification for neurodegenerative diseases. Prog. Mol. Biol. Transl. Sci. 2024, 205, 111–169. [Google Scholar] [CrossRef] [PubMed]
- Cortial, L.; Montero, V.; Tourlet, S.; Del-Bano, J.; Blin, O. Artificial intelligence in drug repurposing for rare diseases: A mini-review. Front. Med. 2024, 11, 1404338. [Google Scholar] [CrossRef]
- Anokian, E.; Bernett, J.; Freeman, A.; List, M.; Santamaria, L.P.; Tanoli, Z.; Bonnin, S. Machine Learning and Artificial Intelligence in Drug Repurposing—Challenges and Perspectives. DrugRxiv 2024, 1, 1–18. [Google Scholar] [CrossRef]
- Bhatnagar, R.; Sardar, S.; Beheshti, M.; Podichetty, J.T. How can natural language processing help model informed drug development? a review. JAMIA Open 2022, 5, ooac043. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol. Sci. 2019, 40, 592–604. [Google Scholar] [CrossRef]
- Nazer, L.H.; Zatarah, R.; Waldrip, S.; Ke, J.X.C.; Moukheiber, M.; Khanna, A.K.; Hicklen, R.S.; Moukheiber, L.; Moukheiber, D.; Ma, H.; et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLoS Digit. Health 2023, 2, e0000278. [Google Scholar] [CrossRef]
AI Application in Anticancer Drug Design | Description | Key Advantages | Challenges and Limitations | AI-Integrated Software Tools (Version/Access Details) * | References |
---|---|---|---|---|---|
Drug–Target Interaction Prediction | AI algorithms predict potential interactions between drugs and their targets | Increases the speed of identifying viable drug candidates; enhances accuracy of predictions | Requires large, high-quality datasets; predictions can be biased based on training data; overfitting is a risk if not managed properly. | Chemoinformatics Software: BindingDB (Version 2023.09, accessed November 2024) Docking Tools: AutoDock (Version 4.2.6, accessed November 2024); MOE (Version 2023.09, subscription) | [22] |
Compound Screening and Optimization | AI methods screen vast chemical libraries to identify promising candidates | Reduces time and costs associated with traditional high-throughput screening methods | Virtual predictions may not always correlate with in vitro results; requires thorough experimental validation. | Virtual Screening Platforms: Schrödinger Suite (2024.2, accessed November 2024); DeepChem (Version 2.7.1, accessed November 2024) | [27] |
Patient-Specific Drug Response Prediction | AI models analyze patient data to predict individual responses to specific drugs | Facilitates personalized medicine; helps in tailoring treatments for better outcomes | Data privacy concerns; requires comprehensive patient data and validation; risk of misclassification based on model bias. | Predictive Modeling Tools: IBM Watson for Drug Discovery (Updated 2023, subscription-based); Tempus (Platform details, https://www.tempus.com accessed November 2024) | [28] |
Biomarker Discovery | AI identifies potential biomarkers that predict responses to therapies | Enhances patient stratification; supports the development of personalized treatment plans | Requires integration of multi-omics data; potential ethical concerns regarding genetic data usage. | Bioinformatics Software: GenePattern (Version 3.9.0, accessed November 2024); CBioPortal (Version 2024.10, open access) | [29] |
De Novo Drug Design | AI generates novel chemical entities that can act as new anticancer drugs | Accelerates the discovery of innovative compounds; opens up new avenues for drug discovery | Generated compounds may lack drug-like properties; quality control of generated structures is crucial. | Generative Design Tools: DeepGen (Platform, https://github.com/ details not disclosed); MolecularAI (Proprietary, inquire at MolecularAI site, https://www.molecularai.com/) | [30] |
Drug Repurposing | AI analyzes existing drugs for new anticancer applications | Reduces development costs and timelines; known safety profiles can expedite clinical trials | Limited by existing drugs’ toxicity profiles; AI may overlook some interactions due to data limitations. | Repurposing Platforms: Drug Repurposing Hub (Open Access, curated, accessed November 2024); RepoDB (Free, [Version 2024]) | [31] |
Clinical Trial Design Optimization | AI optimizes trial protocols, including patient selection and endpoint definitions | Improves recruitment efficiency; enhances trial success rates and reduces timelines | Ethical concerns related to AI-driven patient selection; requires careful validation against traditional trial designs. | Trial Optimization Tools: Trialspark (Platform Details, version not specified); Medidata (Version 2024.10, subscription required) | [32] |
Toxicity Prediction | AI models assess the potential toxicity of new compounds early in the design process | Reduces the likelihood of late-stage failures in clinical trials due to safety issues | High false-positive rates can occur; requires extensive toxicology datasets for accurate predictions. | Toxicity Prediction Software: DEREK Nexus (Version 7.0, proprietary); DeepTox (Accessed via GitHub, https://github.com/DeepTox) | [33] |
Integration of Multi-Omics Data | AI integrates genomic, proteomic, and metabolomic data to provide comprehensive insights | Facilitates understanding of complex cancer biology; enhances target identification | Data integration challenges; requires advanced computational resources; may face data heterogeneity issues. | Multi-Omics Platforms: GATK (Version 4.4.0, open source); OmicsHub (Commercial access) | [12] |
Real-Time Monitoring of Trials | AI technologies enable continuous monitoring of trial data and patient responses | Facilitates adaptive trial designs; allows for real-time adjustments based on findings | Relies on the availability of real-time data; requires robust data infrastructure and ethical considerations for patient privacy. | Real-Time Monitoring Tools: Medidata Rave (Commercial Suite, updated November 2024); Clinical Ink (Contact for Info, https://clinicalink.com) | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garg, P.; Singhal, G.; Kulkarni, P.; Horne, D.; Salgia, R.; Singhal, S.S. Artificial Intelligence–Driven Computational Approaches in the Development of Anticancer Drugs. Cancers 2024, 16, 3884. https://doi.org/10.3390/cancers16223884
Garg P, Singhal G, Kulkarni P, Horne D, Salgia R, Singhal SS. Artificial Intelligence–Driven Computational Approaches in the Development of Anticancer Drugs. Cancers. 2024; 16(22):3884. https://doi.org/10.3390/cancers16223884
Chicago/Turabian StyleGarg, Pankaj, Gargi Singhal, Prakash Kulkarni, David Horne, Ravi Salgia, and Sharad S. Singhal. 2024. "Artificial Intelligence–Driven Computational Approaches in the Development of Anticancer Drugs" Cancers 16, no. 22: 3884. https://doi.org/10.3390/cancers16223884
APA StyleGarg, P., Singhal, G., Kulkarni, P., Horne, D., Salgia, R., & Singhal, S. S. (2024). Artificial Intelligence–Driven Computational Approaches in the Development of Anticancer Drugs. Cancers, 16(22), 3884. https://doi.org/10.3390/cancers16223884