Intratumoral Treatment in Lung Cancer: Is It Time to Move Towards Clinical Practice?
Simple Summary
Abstract
1. Introduction
2. Intratumoral Therapy: Biological Principles
3. Research Methods
4. Results
4.1. Delivery of Effective Intratumoral Treatment
4.1.1. Intratumoral Antiblastic Strategy
4.1.2. Intratumoral Immunomodulation
4.1.3. Intrapleural Therapy
4.1.4. Inhalation Strategy
4.2. Ablation Strategies
4.2.1. Photodynamic Therapy
4.2.2. Thermal Ablation
Technique of Ablation | Type of Energy | Notes | Complications [87,116,117,118,119,120] |
---|---|---|---|
Radiofrequency (RFA) | Alternating current (heat) | Dependent on conductance which is low in lungs. | RFA is the most investigated procedure. PNX is the most common complication (30–67%; grade 3 is <2%) and the rate of tube placement is 13–21%. Overall procedure-related rate of major complications is 9.8% (mainly interstitial pneumonia and haemothorax) and mortality is 0.4%. |
Microwave (MWA) | Electromagnetic waves (heat > 100°) | Thanks to higher energy and higher temperature than RFA, the addiction of tissue impedance is reduced as is the heat-sink effect; but the greater energy may cause more potential problems than RFA. | |
Cryoablation | Temperature reduction (−160°) | Less painful but it has a lower deed filled –compared to others, so it requires more cryoprobes, with an elevation of complication |
4.2.3. Other Thermal Ablative Strategies
4.3. Brachytherapy
4.4. Tumor Treating Fields (TTFields)
4.5. Nanoparticles
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin. Oncol. 2023, 20, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Waite, C.L.; Roth, C.M. Nanoscale drug delivery systems for enhanced drug penetration into solid tumours: Current progress and opportunities. Crit. Rev. Biomed. Eng. 2012, 40, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Tannock, I.; Lee, C.M.; Tunggal, J.K.; Cowan, D.S.; Egorin, M.J. Limited penetration of anticancer drugs through tumour tissue: A potential cause of resistance of solid tumours to chemotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002, 8, 878–884. [Google Scholar] [PubMed]
- Minchinton, A.I.; Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Abuhelwa, Z.; Alloghbi, A.; Nagasaka, M. A comprehensive review on antibody-drug conjugates (ADCs) in the treatment landscape of non-small cell lung cancer (NSCLC). Cancer Treat. Rev. 2022, 106, 102393. [Google Scholar] [CrossRef]
- Tsuchikama, K.; Anami, Y.; Ha, S.Y.Y.; Yamazaki, C.M. Exploring the next generation of antibody–drug conjugates. Nat. Rev. Clin. Oncol. 2024, 21, 203–223. [Google Scholar] [CrossRef]
- Takayama, Y.; Kusamori, K.; Nishikawa, M. Mesenchymal stem/stromal cells as next-generation drug delivery vehicles for cancer therapeutics. Expert Opin. Drug Deliv. 2021, 18, 1627–1642. [Google Scholar] [CrossRef] [PubMed]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fridman, W.H.; Zitvogel, L.; Sautès–Fridman, C.; Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. [Google Scholar] [CrossRef]
- Bernstein, M.B.; Krishnan, S.; Hodge, J.W.; Chang, J.Y. Immunotherapy and stereotactic ablative radiotherapy (ISABR): A curative approach? Nat. Rev. Clin. Oncol. 2016, 13, 516–524. [Google Scholar] [CrossRef]
- Yuan, Z.; Fromm, A.; Ahmed, K.A.; Grass, G.D.; Yang, G.Q.; Oliver, D.E.; Dilling, T.J.; Antonia, S.J.; Perez, B.A. Radiotherapy Rescue of a Nivolumab-Refractory Immune Response in a Patient with PD-L1–Negative Metastatic Squamous Cell Carcinoma of the Lung. J. Thorac. Oncol. 2017, 12, e135–e136. [Google Scholar] [CrossRef] [PubMed]
- Barker, H.E.; Paget, J.T.E.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409–425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marabelle, A.; Tselikas, L.; de Baere, T.; Houot, R. Intertumoral immunotherapy: Using the tumour as the remedy. Ann. Oncol. 2017, 28, xii33–xii43. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Ghosn, M.; Cheema, W.; Adusumilli, P.S.; Solomon, S.B.; Srimathveeralli, G. Expanding the role of interventional oncology for advancing precision immunotherapy of solid tumours. Mol. Ther. Oncolytics 2022, 24, 194–204. [Google Scholar] [CrossRef]
- Vitale, I.; Shema, E.; Loi, S.; Galluzzi, L. Intertumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 2021, 27, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Hohenforst-Schmidt, W.; Zarogoulidis, P.; Darwiche, K.; Vogl, T.; Goldberg, E.P.; Huang, H.; Simoff, M.; Li, Q.; Browning, R.; Turner, F.J.; et al. Intratumoral chemotherapy for lung cancer: Re-challenge current targeted therapies. Drug Des. Dev. Ther. 2013, 7, 571–583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vogl, T.J.; Wissniowski, T.T.; Naguib, N.N.; Hammerstingl, R.M.; Mack, M.G.; Münch, S.; Ocker, M.; Strobel, D.; Hahn, E.G.; Hänsler, J. Activation of tumour-specific T lymphocytes after laser-induced thermotherapy in patients with colorectal liver metastases. Cancer Immunol. Immunother. 2009, 58, 1557–1563. [Google Scholar] [CrossRef]
- Hong, W.X.; Haebe, S.; Lee, A.S.; Westphalen, C.B.; Norton, J.A.; Jiang, W.; Levy, R. Intratumoral Immunotherapy for Early-stage Solid Tumors. Clin. Cancer Res. 2020, 26, 3091–3099. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef]
- Foster, C.C.; Pitroda, S.P.; Weichselbaum, R.R. Definition, Biology, and History of Oligometastatic and Oligoprogressive Disease. Cancer J. 2020, 26, 96–99. [Google Scholar] [CrossRef]
- Reyes, D.K.; Pienta, K.J. The biology and treatment of oligometastatic cancer. Oncotarget 2015, 6, 8491–8524. [Google Scholar] [CrossRef]
- Bergsma, D.P.; Salama, J.K.; Singh, D.P.; Chmura, S.J.; Milano, M.T. Radiotherapy for Oligometastatic Lung Cancer. Front. Oncol. 2017, 7, 210. [Google Scholar] [CrossRef]
- Barnum, K.J.; Weiss, S.A. Prognostic and predictive biomarkers in oligometastatic disease. Cancer J. 2020, 26, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Guckenberger, M.; Lievens, Y.; Bouma, A.B.; Collette, L.; Dekker, A.; Desouza, N.M.; Dingemans, A.-M.C.; Fournier, B.; Hurkmans, C.; Lecouvet, F.E.; et al. Characterisation and classification of oligometastatic disease: A European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020, 21, e18–e28. [Google Scholar] [CrossRef] [PubMed]
- Niibe, Y.; Hayakawa, K. Oligometastases and oligo-recurrence: The new era of cancer therapy. Jpn. J. Clin. Oncol. 2010, 40, 107–111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lievens, Y.; Guckenberger, M.; Gomez, D.; Hoyer, M.; Iyengar, P.; Kindts, I.; Romero, A.M.; Nevens, D.; Palma, D.; Park, C.; et al. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother. Oncol. 2020, 148, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Rashdan, S.; Iyengar, P.; Minna, J.D.; Gerber, D.E. Narrative review: Molecular and genetic profiling of oligometastatic non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 3351–3368. [Google Scholar] [CrossRef]
- Zarogoulidis, P.; Hohenforst-Schmidt, W.; Huang, H.; Zhou, J.; Wang, Q.; Wang, X.; Xia, Y.; Ding, Y.; Bai, C.; Kosmidis, C.; et al. Intratumoral Treatment with Chemotherapy and Immunotherapy for NSCLC with EBUS-TBNA 19G. J. Cancer 2021, 12, 2560–2569. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- NCT04809103; A Phase 1 Trial of Intertumoral Cisplatin for Early Stage, Resectable, Non-Small Cell Lung Cancer. University of Vermont: Burlington, VT, USA, 2024.
- Ji, Y.; Luan, S.; Yang, X.; Yin, B.; Jin, X.; Wang, H.; Jiang, W. Efficacy of bronchoscopic intratumoral injection of endostar and cisplatin in lung squamous cell carcinoma patients underwent conventional chemoradiotherapy. Open Med. 2023, 18, 20230640. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaissert, H.A.; Grillo, H.C.; Shadmehr, M.; Wright, C.D.; Gokhale, M.; Wain, J.C.; Mathisen, D.J. Long-term survival after Resection of primary adenoid cystic and squamous cell carcinoma of the trachea and carina. Ann. Thorac. Surg. 2004, 78, 1889–1897. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Y.; Guan, W.; Huang, L.; Xu, X.; Zhang, C.; Chen, X.; Wu, Y.; Zeng, G.; Zhong, N. Antitumor effect of para-toluenesulfonamide against lung cancer xenograft in a mouse model. J. Thorac. Dis. 2013, 5, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Li, Q.; Guan, W.-J.; Huang, J.; Yang, H.-P.; Wu, G.-M.; Jin, F.-G.; Hu, C.-P.; Chen, L.-A.; Xu, G.-L.; et al. Effects of para–toluenesulfonamide intratumoral injection on non-small cell lung carcinoma with severe central airway obstruction: A multi-center, non-randomized, single-arm, open-label trial. Lung Cancer 2016, 98, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.C.; Batra, R.K.; Hillinger, S.; Reckamp, K.L.; Strieter, R.M.; Dubinett, S.M.; Sharma, S. Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumour burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res. 2006, 66, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Hovden, A.-O.; Appel, S. The first dendritic cell-based therapeutic cancer vaccine is approved by the FDA. Scand. J. Immunol. 2010, 72, 554. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, M.-H.; Garon, E.; Goldman, J.W.; Salehi-Rad, R.; Baratelli, F.E.; Schaue, D.; Wang, G.; Rosen, F.; Yanagawa, J.; et al. Phase I Trial of Intratumoral Injection of CCL21 Gene–Modified Dendritic Cells in Lung Cancer Elicits Tumor-Specific Immune Responses and CD8+ T-cell Infiltration. Clin. Cancer Res. 2017, 23, 4556–4568. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- NCT03546361; A Phase I Trial of Intertumoral Administration of CCL21-Gene Modified Dendritic Cell (Ad-CCL21-DC) Combined with Intravenous Pembrolizumab for Advanced NSCLC. CIRM: San Francisco, CA, USA, 2024.
- NCT04571632; A Randomized Phase II Clinical Trial of SBRT and Systemic Pembrolizumab With or Without Intertumoral Avelumab/Ipilimumab Plus CD1c (BDCA-1)+/ CD141 (BDCA-3)+ Myeloid Dendritic Cells in NSCLC Subtitle v3.0: A Randomized Phase II Clinical Trial of SBRT and Systemic Pembrolizumab with or Without Intertumoral Avelumab/Ipilimumab Plus CD1c (BDCA-1)+/CD141 (BDCA-3)+ Myeloid Dendritic Cells in Solid Tumours. Springer: Berlin/Heidelberg, Germany, 2024.
- Vounckx, M.; Tijtgat, J.; Dirven, I.; Vandenbroucke, F.; Raemaeckers, S.; Ilsen, B.; Mustapha, S.B.; Van Loon, J.; Stevens, L.; Geeraerts, X.; et al. A randomized phase II clinical trial of SBRT and pembrolizumab with or without intratumoral avelumab/ipilimumab plus CD1c(BDCA-1)+/CD141(BDCA-3)+myeloid dendritic cells in solid tumors. J. ImmunoTherapy Cancer 2023, 11, 694. [Google Scholar] [CrossRef]
- NCT03004183; Phase II Window of Opportunity Trial of Stereotactic Body Radiation Therapy and In Situ Oncolytic Virus Therapy in Metastatic Triple Negative Breast Cancer and Metastatic Non-Small Cell Lung Cancer Followed by Pembrolizumab. The Methodist Hospital Research Institute: Houston, TX, USA, 2024.
- Guan, J.; Sun, K.; Guerrero, C.A.; Zheng, J.; Xu, Y.; Mathur, S.; Teh, B.S.; Farach, A.; Zhang, J.; Butler, E.; et al. A Phase 2 Study of In Situ Oncolytic Virus Therapy and Stereotactic Body Radiation Therapy Followed by Pembrolizumab in Metastatic Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- NCT03767348; An Open-Label, Multicenter, Phase 1/2 Study of RP1 as a Single Agent and in Combination with PD1 Blockade in Patients with Solid Tumours. ASCO: Alexandria, VA, USA, 2019.
- NCT05265650; Phase Ib/II Open-label Clinical Study of Intertumoral Administration of BO-112 in Combination with Radiotherapy and Nivolumab in Patients with Metastatic PD-1/PD-L1 Refractory Non-small Cell Lung Cancer. AEMPS: Madrid, Spain, 2022.
- Alvarez, M.; Molina, C.; Garasa, S.; Ochoa, M.C.; Rodriguez-Ruiz, M.E.; Gomis, G.; Cirella, A.; Olivera, I.; Glez-Vaz, J.; Gonzalez-Gomariz, J.; et al. Intratumoral neoadjuvant immunotherapy based on the BO-112 viral RNA mimetic. Oncoimmunology 2023, 12, 2197370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Márquez-Rodas, I.; Longo, F.; Rodriguez-Ruiz, M.E.; Calles, A.; Ponce, S.; Jove, M.; Rubio-Viqueira, B.; Perez-Gracia, J.L.; Gómez-Rueda, A.; López-Tarruella, S.; et al. Intertumoral nanoplexed poly I:C BO-112 in combination with systemic anti-PD-1 for patients with anti-PD-1-refractory tumours. Sci. Transl. Med. 2020, 12, eabb0391. [Google Scholar] [CrossRef] [PubMed]
- NCT05076760; Phase I Study of MEM-288 Oncolytic Virus Alone and in Combination with Nivolumab in Solid Tumours Including Non-Small Cell Lung Cancer (NSCLC). Springer: Berlin/Heidelberg, Germany, 2023.
- Saltos, A.N.; Arrowood, C.; Beasley, G.; Ronald, J.; El-Haddad, G.; Guerra-Guevara, L.; Khan, U.; Wolf, S.; Gu, L.; Wang, X.F.; et al. A phase 1 first-in-human study of interferon beta (IFNb) and membrane-stable CD40L expressing oncolytic virus (MEM-288) in solid tumours including non-small-cell lung cancer (NSCLC). J. Clin. Oncol. 2023, 41, 2569. [Google Scholar] [CrossRef]
- NCT05602792; A Phase I/IIa Study to Assess the Safety, Tolerability, Biodistribution and Pharmacodynamic of T3011 Herpes Virus Administered Via Intertumoral Injection in Patients with Advanced Solid Tumours. Springer: Berlin/Heidelberg, Germany, 2024.
- Ji, D.M.; Yao, W.T.; Tong, X.M.; Zhang, C.P.; Wang, F.; Chen, Z.; Zhou, Y.; Li, Z.; Deng, Y.; Huang, G.; et al. A phase 1/2a study of T3011, an oncolytic HSV expressing IL-12 and PD-1 antibody, administered via intertumoral (IT) injection as monotherapy in advanced solid tumours. J. Clin. Oncol. 2023, 41 (Suppl. S16), 2520. [Google Scholar] [CrossRef]
- NCT04370587; A Phase 1/2a, Open-Label, Dose Escalation and Expansion Study of the Safety and Tolerability of T3011 Administered Via Intertumoral Injection as a Single Agent and in Combination with Intravenous Pembrolizumab in Patients with Advanced or Metastatic Solid Tumours. Dana-Farber Cancer Institute: Boston, MA, USA, 2023.
- Niu, J.; Kaufman, H.L.; Kichenadasse, G.; Haydon, A.; Barve, M.; Ganju, V.; Buchbinder, E.I.; Spira, A.I.; Pang, W.; Fu, W.; et al. Updated results from an ongoing phase 1/2a study of T3011, an oncolytic HSV expressing IL-12 and PD-1 antibody, administered via IT injection as monotherapy or combined with pembrolizumab in advanced solid tumours. J. Clin. Oncol. 2023, 41, 16. [Google Scholar] [CrossRef]
- Aprile, V.; Bacchin, D.; Korasidis, S.; Ricciardi, R.; Petrini, I.; Ambrogi, M.C.; Lucchi, M. Hypertermic Intrathoracic Chemotherapy (HITHOC) for thymoma: A narrative review on indications and results. Ann. Transl. Med. 2021, 9, 957. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Markowiak, T.; Larisch, C.; Hofmann, H.-S.; Ried, M. Hyperthermic intrathoracic chemotherapy (HITHOC): Narrative review of the current literature, recommendations and future studies. Ann. Transl. Med. 2021, 9, 955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Danuzzo, F.; Sibilia, M.C.; Vaquer, S.; Cara, A.; Cassina, E.M.; Libretti, L.; Pirondini, E.; Raveglia, F.; Tuoro, A.; Petrella, F. The Role of Hyperthermic Intrathoracic Chemotherapy (HITHOC) in Thoracic Tumors. Cancers 2024, 16, 2513. [Google Scholar] [CrossRef] [PubMed]
- Stojiljkovic, D.; Nikolic, S.; Cvetkovic, A.; Jokic, V.; Spurnic, I.; Jokic, S.; Goran, M.; Kocic, M.; Miletic, N.; Filipovic, J.; et al. Hyperthermic intrathoracic chemotherapy (HITHOC) in ovarian carcinoma—A propos of a case. J BUON 2018, 23, 153–155. [Google Scholar] [PubMed]
- Kawaguchi, Y.; Hanaoka, J. Cytoreductive Surgery and Hyperthermic Chemotherapy for Intrathoracic Pseudomyxoma Peritonei. Ann. Thorac. Surg. 2020, 110, e541–e543. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Flores, R.M. A narrative review of hyperthermic intrathoracic chemotherapy for advanced lung cancer. Ann. Transl. Med. 2021, 9, 958. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Deng, J.; Yan, F.; Liu, L.; Ma, Y.; Sun, J. Efficacy of hyperthermic intrathoracic chemotherapy for initially diagnosed lung cancer with symptomatic malignant pleural effusion. Sci. Rep. 2023, 13, 12071. [Google Scholar] [CrossRef]
- Adusumilli, P.S.; Zauderer, M.G.; Rivière, I.; Solomon, S.B.; Rusch, V.W.; O’Cearbhaill, R.E.; Zhu, A.; Cheema, W.; Chintala, N.K.; Halton, E.; et al. A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti–PD-1 Agent Pembrolizumab. Cancer Discov. 2021, 11, 2748–2763. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azarmi, S.; Tao, X.; Chen, H.; Wang, Z.; Finlay, W.H.; Löbenberg, R.; Roa, W.H. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int. J. Pharm. 2006, 319, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Otterson, G.A.; Villalona-Calero, M.A.; Sharma, S.; Kris, M.G.; Imondi, A.; Gerber, M.; White, D.A.; Ratain, M.J.; Schiller, J.H.; Sandler, A.; et al. Phase I study of inhaled doxorubicin for patients with metastatic tumors to the lungs. Clin. Cancer Res. 2007, 13, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Hitzman, C.J.; Elmquist, W.F.; Wiedmann, T.S. Development of a respirable, sustained release microcarrier for 5-fluorouracil ii: In vitro and in vivo optimization of lipid coated nanoparticles. J. Pharm. Sci. 2006, 95, 1127–1143. [Google Scholar] [CrossRef] [PubMed]
- Knight, V.; Koshkina, N.V.; Golunski, E.; Roberts, L.E.; Gilbert, B.E. Cyclosporin A aerosol improves the anticancer effect of paclitaxel aerosol in mice. Trans. Am. Clin. Climatol. Assoc. 2004, 115, 395–404; discussion 404. [Google Scholar] [PubMed] [PubMed Central]
- Gagnadoux, F.; Le Pape, A.; Urban, T.; Montharu, J.; Vecellio, L.; Dubus, J.C.; Leblond, V.; Diot, P.; Grimbert, D.; Racineux, J.L.; et al. Safety of pulmonary administration of gemcitabine in rats. J. Aerosol Med. 2005, 18, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Min, R.; Li, T.; Du, J.; Zhang, Y.; Guo, J.; Lu, W.-L. Pulmonary gemcitabine delivery for treating lung cancer: Pharmacokinetics and acute lung injury aspects in animals. Can. J. Physiol. Pharmacol. 2008, 86, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Chen, S., IV; Karnezis, T.; Davidson, T.M. Safety of intranasal Bevacizumab (Avastin) treatment in patients with hereditary hemorrhagic telangiectasia-associated epistaxis. Laryngoscope 2011, 121, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Amedee, R.G. Efficacy of intranasal bevacizumab (avastin) treatment in patients with hereditary hemorrhagic telangiectasia-associated epistaxis. Am. J. Rhinol. Allergy 2011, 25, 368. [Google Scholar] [CrossRef] [PubMed]
- Chraibi, S.; Rosière, R.; Larbanoix, L.; Gérard, P.; Hennia, I.; Laurent, S.; Vermeersch, M.; Amighi, K.; Wauthoz, N. The combination of an innovative dry powder for inhalation and a standard cisplatin-based chemotherapy in view of therapeutic intensification against lung tumours. Eur. J. Pharm. Biopharm. 2021, 164, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Levet, V.; Merlos, R.; Rosière, R.; Amighi, K.; Wauthoz, N. Platinum pharmacokinetics in mice following inhalation of cisplatin dry powders with different release and lung retention properties. Int. J. Pharm. 2017, 517, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Davenne, T.; Percier, P.; Larbanoix, L.; Moser, M.; Leo, O.; Meylan, E.; Goriely, S.; Gérard, P.; Wauthoz, N.; Laurent, S.; et al. Inhaled dry powder cisplatin increases antitumour response to anti-PD1 in a murine lung cancer model. J. Control. Release 2023, 353, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.Z.; Wang, J.; Liang, J.; Mu, K.; Hou, J.Y.; Wang, Y.T. Low-dose metronomic chemotherapy with cisplatin: Can it suppress angiogenesis in H22 hepatocarcinoma cells? Int. J. Exp. Pathol. 2010, 91, 10–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shu, Y.; Weng, S.; Zheng, S. Metronomic chemotherapy in non-small cell lung cancer. Oncol. Lett. 2020, 20, 307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chraibi, S.; Rosière, R.; De Prez, E.; Gérard, P.; Antoine, M.H.; Langer, I.; Nortier, J.; Remmelink, M.; Amighi, K.; Wauthoz, N. Preclinical tolerance evaluation of the addition of a cisplatin-based dry powder for inhalation to the conventional carboplatin-paclitaxel doublet for treatment of non-small cell lung cancer. Biomed. Pharmacother. 2021, 139, 111716. [Google Scholar] [CrossRef] [PubMed]
- Fournel, L.; Wu, Z.; Stadler, N.; Damotte, D.; Lococo, F.; Boulle, G.; Ségal-Bendirdjian, E.; Bobbio, A.; Icard, P.; Trédaniel, J.; et al. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett. 2019, 464, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Sardeli, C.; Zarogoulidis, P.; Kosmidis, C.; Amaniti, A.; Katsaounis, A.; Giannakidis, D.; Koulouris, C.; Hohenforst-Schmidt, W.; Huang, H.; Bai, C.; et al. Inhaled chemotherapy adverse effects: Mechanisms and protection methods. Lung Cancer Manag. 2020, 8, LMT19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn. Ther. 2005, 2, 1–23. [Google Scholar] [CrossRef]
- Weinberg, B.D.; Allison, R.R.; Sibata, C.; Parent, T.; Downie, G. Results of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of obstructive endobronchial non-small cell lung cancer (NSCLC). Photodiagnosis Photodyn Ther. 2010, 7, 50–58. [Google Scholar] [CrossRef]
- Wang, K.; Yu, B.; Pathak, J.L. An update in clinical utilization of photodynamic therapy for lung cancer. J. Cancer 2021, 12, 1154–1160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Irwin, R.S. Patient-focused care: The 2003 American College of Chest Physicians Convocation Speech. Chest 2004, 125, 1910–1912. [Google Scholar] [CrossRef]
- Ji, W.; Yoo, J.W.; Bae, E.K.; Lee, J.H.; Choi, C.M. The effect of Radachlorin(R) PDT in advanced NSCLC: A pilot study. Photodiagnosis Photodyn. Ther. 2013, 10, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Shafirstein, G.; Battoo, A.; Harris, K.; Baumann, H.; Gollnick, S.O.; Lindenmann, J. Nwogu CE. Photodynamic Therapy of Non-Small Cell Lung Cancer. Narrative Review and Future Directions. Ann. Am. Thorac. Soc. 2016, 13, 265–275. [Google Scholar] [CrossRef]
- Mokwena, M.G.; Kruger, C.A.; Ivan, M.T.; Heidi, A. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagnosis Photodyn. Ther. 2018, 22, 147–154. [Google Scholar] [CrossRef]
- Song, W.; Kuang, J.; Li, C.X.; Zhang, M.; Zheng, D.; Zeng, X.; Liu, C.; Zhang, X.Z. Enhanced Immunotherapy Based on Photodynamic Therapy for Both Primary and Lung Metastasis Tumor Eradication. ACS Nano 2018, 12, 1978–1989. [Google Scholar] [CrossRef] [PubMed]
- Warszyńska, M.; Repetowski, P.; Dąbrowski, J.M. Photodynamic therapy combined with immunotherapy: Recent advances and future research directions. Coord. Chem. Rev. 2023, 495, 215350. [Google Scholar] [CrossRef]
- Nagaya, T.; Nakamura, Y.; Sato, K.; Harada, T.; Choyke, P.L.; Hodge, J.W.; Schlom, J.; Kobayashi, H. Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget 2017, 8, 8807–8817. [Google Scholar] [CrossRef]
- Chen, Y.S.; Peng, Y.B.; Yao, M.; Teng, J.P.; Ni, D.; Zhu, Z.J.; Zhuang, B.F.; Yang, Z.Y. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth. Biochem. Biophys. Res. Commun. 2017, 487, 567–572. [Google Scholar] [CrossRef] [PubMed]
- De Baère, T.; Aupérin, A.; Deschamps, F.; Chevallier, P.; Gaubert, Y.; Boige, V.; Fonck, M.; Escudier, B.; Palussiére, J. Radiofrequency ablation is a valid treatment option for lung metastases: Experience in 566 patients with 1037 metastases. Ann. Oncol. 2015, 26, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S.; ESMO Guidelines Committee. Early and locally advanced non-small-cell lung cancer (nsclc): Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv1–iv21. [Google Scholar] [CrossRef]
- Palussière, J.; Chomy, F.; Savina, M.; Deschamps, F.; Gaubert, J.Y.; Renault, A.; Bonnefoy, O.; Laurent, F.; Meunier, C.; Bellera, C.; et al. Radiofrequency ablation of stage IA non–small cell lung cancer in patients ineligible for surgery: Results of a prospective multicenter phase II trial. J. Cardiothorac. Surg. 2018, 13, 91. [Google Scholar] [CrossRef]
- Uhlig, J.; Ludwig, J.M.; Goldberg, S.B.; Chiang, A.; Blasberg, J.D.; Kim, H.S. Survival rates after thermal ablation versus stereotactic radiation therapy for stage 1 non–small cell lung cancer: A national cancer database study. Radiology 2018, 289, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Venturini, M.; Cariati, M.; Marra, P.; Masala, S.; Pereira, P.L.; Carrafiello, G. CIRSE Standards of Practice on Thermal Ablation of Primary and Secondary Lung Tumours. Cardiovasc. Interv. Radiol. 2020, 43, 667–683. [Google Scholar] [CrossRef] [PubMed]
- Takaki, H.; Cornelis, F.; Kako, Y.; Kobayashi, K.; Kamikonya, N.; Yamakado, K. Thermal ablation and immunomodulation: From preclinical experiments to clinical trials. Diagn. Interv. Imaging 2017, 98, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Katzman, D.; Wu, S.; Sterman, D.H. Immunological Aspects of Cryoablation of Non–Small Cell Lung Cancer: A Comprehensive Review. J. Thorac. Oncol. 2018, 13, 624–635. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, G.; Xiao, Z.; Liu, T.; He, X.; Wang, Q.; Lin, C.; Zhang, S. Antitumor efficacy of argon–helium cryoablation-generated dendritic cell vaccine in glioma. Neuroreport 2014, 25, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Hoffmann, H.; Dienemann, H.; Herpel, E.; Heussel, C.P.; Enk, A.H.; Ring, S.; Mahnke, K. Immune Response After Radiofrequency Ablation and Surgical Resection in Nonsmall Cell Lung Cancer. Semin. Thorac. Cardiovasc. Surg. 2016, 28, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hou, X.; Cai, H.; Zhuang, X. Effects of microwave ablation on T-cell subsets and cytokines of patients with hepatocellular carcinoma. Minim. Invasive Ther. Allied Technol. 2017, 26, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dong, B.; Liang, P.; Yu, X.; Su, L.; Yu, D.; Ji, X.; Yu, G. Significance of changes in local immunity in patients with hepatocellular carcinoma after percutaneous microwave coagulation therapy. Chin. Med. J. 2002, 115, 1367–1371. [Google Scholar] [PubMed]
- Zhou, Y.; Xu, X.; Ding, J.; Jing, X.; Wang, F.; Wang, Y.; Wang, P. Dynamic changes of T-cell subsets and their relation with tumor recurrence after microwave ablation in patients with hepatocellular carcinoma. J. Cancer Res. Ther. 2018, 14, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Fietta, A.M.; Morosini, M.; Passadore, I.; Cascina, A.; Draghi, P.; Dore, R.; Rossi, S.; Pozzi, E.; Meloni, F. Systemic inflammatory response and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Hum. Immunol. 2009, 70, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Ito, F.; Ku, A.W.; Bucsek, M.J.; Muhitch, J.B.; Vardam-Kaur, T.; Kim, M.; Fisher, D.T.; Camoriano, M.; Khoury, T.; Skitzki, J.J.; et al. Immune Adjuvant Activity of Pre-Resectional Radiofrequency Ablation Protects against Local and Systemic Recurrence in Aggressive Murine Colorectal Cancer. PLoS ONE 2015, 10, e0143370. [Google Scholar] [CrossRef] [PubMed]
- Rangamuwa, K.; Leong, T.; Weeden, C.; Asselin-Labat, M.L.; Bozinovski, S.; Christie, M.; John, T.; Antippa, P.; Irving, L.; Steinfort, D. Thermal ablation in non-small cell lung cancer: A review of treatment modalities and the evidence for combination with immune checkpoint inhibitors. Transl. Lung Cancer Res. 2021, 10, 2842–2857. [Google Scholar] [CrossRef]
- Zeng, Z.; Shi, F.; Zhou, L.; Zhang, M.N.; Chen, Y.; Chang, X.J.; Lu, Y.Y.; Bai, W.L.; Qu, J.H.; Wang, C.P.; et al. Upregulation of circulating pd-l1/pd-1 is associated with poor post-cryoablation prognosis in patients with hbv-related hepatocellular carcinoma. PLoS ONE 2011, 6, e23621. [Google Scholar] [CrossRef] [PubMed]
- Mizukoshi, E.; Yamashita, T.; Arai, K.; Sunagozaka, H.; Ueda, T.; Arihara, F.; Kagaya, T.; Yamashita, T.; Fushimi, K.; Kaneko, S. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology 2013, 57, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Si, T.; Guo, Z.; Hao, X. Immunologic response to primary cryoablation of high-risk prostate cancer. Cryobiology 2008, 57, 66–71. [Google Scholar] [CrossRef]
- McArthur, H.L.; Diab, A.; Page, D.B.; Yuan, J.; Solomon, S.B.; Sacchini, V.; Comstock, C.; Durack, J.C.; Maybody, M.; Sung, J.; et al. A Pilot Study of Preoperative Single-Dose Ipilimumab and/or Cryoablation in Women with Early-Stage Breast Cancer with Comprehensive Immune Profiling. Clin. Cancer Res. 2016, 22, 5729–5737. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuan, Y.Y.; Niu, L.Z.; Mu, F.; Wang, X.H.; Zeng, J.Y.; Yao, F.; Jiang, F.; He, L.H.; Chen, J.B.; Li, J.L.; et al. Therapeutic outcomes of combining cryotherapy, chemotherapy and DC-CIK immunotherapy in the treatment of metastatic non-small cell lung cancer. Cryobiology 2013, 67, 235–240. [Google Scholar] [CrossRef] [PubMed]
- NCT04339218; Cryoablation in Combination (or Not) with Pembrolizumab and Pemetrexed-carboplatin in First-line Treatment for Patients with Metastatic Lung Adenocarcinoma: A Randomized Phase III Study. Carebox Healthcare Solutions Inc.: Sanford, NC, USA, 2021.
- NCT03769129; A Prospective, Single Center, Randomized Control, Phase III Clinical Study for Evaluating the Safety and Efficacy of Pembrolizumab Combined with MWA for Patients with Stage IIIB-IV NSCLC Who Failed with First-line Therapy. Second Affiliated Hospital of Guangzhou Medical University: Guangzhou, China, 2024.
- NCT06114108; Phase III Randomized Controlled Trial Comparing Maintenance Systemic Therapy Alone with Systemic Therapy Plus Local Ablative Treatment for Patients with Advanced Stage IV Non-small Cell Lung Cancer. Swiss Group for Clinical Cancer Research (SAKK): Bern, Switzerland, 2023.
- NCT05688280; Intertumoral Injection of IP-001 Following Thermal Ablation in Patients with Advanced Solid Tumours. A Multicenter Phase 1b/2a Trial in Colorectal Cancer, Non-small Cell Lung Cancer, and Soft Tissue Sarcoma Patients. Springer: Berlin/Heidelberg, Germany, 2024.
- NCT04755738; Almonertinib Plus Microwave Ablation Versus Almonertinib in Previously Untreated, Advanced Non-small Cell Lung Cancer, a Randomized, Controlled, Phase II Clinical Trial. Carebox Healthcare Solutions Inc.: Sanford, NC, USA, 2021.
- NCT03840408; Prospective Clinical Study of Mitochondria-targeted System Therapy Combined with Radiofrequency Ablation for Early-Stage Non-Small Cell Lung Cancer. Shanghai 10th People’s Hospital: Shanghai, China, 2019.
- NCT04201990; Cryoablation Combined with Camrelizumab and Apatinib for Multiprimary Lung Cancer (CCA-MPLC). Veeva Systems: Pleasanton, CA, USA, 2019.
- NCT04102982; Microwave Ablation in Combination with Camrelizumab Versus Camrelizumab in Metastatic Non-Small-Cell Lung Cancer (MWA in NSCLC). Veeva Systems: Pleasanton, CA, USA, 2020.
- Korbelik, M.; Hode, T.; Lam, S.S.K.; Chen, W.R. Novel Immune Stimulant Amplifies Direct Tumoricidal Effect of Cancer Ablation Therapies and Their Systemic Antitumor Immune Efficacy. Cells 2021, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Kashima, M.; Yamakado, K.; Takaki, H.; Kodama, H.; Yamada, T.; Uraki, J.; Nakatsuka, A. Complications after 1000 lung radiofrequency ablation sessions in 420 patients: A single center’s experiences. Am. J. Roentgenol. 2011, 197, W576–W580. [Google Scholar] [CrossRef]
- Hiraki, T.; Tajiri, N.; Mimura, H.; Yasui, K.; Gobara, H.; Mukai, T.; Hase, S.; Fujiwara, H.; Iguchi, T.; Sano, Y.; et al. Pneumothorax, pleural effusion, and chest tube placement after radiofrequency ablation of lung tumours: Incidence and risk factors. Radiology 2006, 241, 275–283. [Google Scholar] [CrossRef]
- Moore, W.; Talati, R.; Bhattacharji, P.; Bilfinger, T. Five-year survival after cryoablation of stage i non–small cell lung cancer in medically inoperable patients. J. Vasc. Interv. Radiol. 2015, 26, 312–319. [Google Scholar] [CrossRef]
- Lyons, G.R.; Askin, G.; Pua, B.B. Clinical Outcomes after Pulmonary Cryoablation with the Use of a Triple Freeze Protocol. J. Vasc. Interv. Radiol. 2018, 29, 714–721. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, Y.; Zhang, J.; Zheng, J.; Li, W. A Meta-Analysis of Clinical Outcomes After Radiofrequency Ablation and Microwave Ablation for Lung Cancer and Pulmonary Metastases. J. Am. Coll. Radiol. 2019, 16, 302–314. [Google Scholar] [CrossRef]
- Gompelmann, D.; Shah, P.L.; Valipour, A.; Herth, F.J. Bronchoscopic thermal vapor ablation: Best practice recommendations from an expert panel on endoscopic lung volume reduction. Respiration 2018, 95, 392–400. [Google Scholar] [CrossRef]
- Henne, E.; Ferguson, J.S.; Mest, R.; Herth, F.J. Thermal Vapor Ablation for Lung Lesions in a Porcine Model. Respiration 2015, 90, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.S.; Henne, E. Bronchoscopically Delivered Thermal Vapor Ablation of Human Lung Lesions. J. Bronc-Interv. Pulmonol. 2019, 26, 108–113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Steinfort, D.P.; Christie, M.; Antippa, P.; Rangamuwa, K.; Padera, R.; Müller, M.R.; Irving, L.B.; Valipour, A. Bronchoscopic Thermal Vapour Ablation for Localized Cancer Lesions of the Lung: A Clinical Feasibility Treat-and-Resect Study. Respiration 2021, 100, 432–442. [Google Scholar] [CrossRef] [PubMed]
- NCT03198468; Vapor Ablation for Localized Cancer Lesions of the Lung—A Clinical Feasibility Treat-and Resect Study (VAPORIZE). Macquarie University: Sydney, Australia, 2018.
- NCT03514329; Vapor Ablation for Localized Cancer Lesions of the Lung—A Clinical Feasibility Definitive Treatment Study (VAPORIZED). Veeva Systems: Pleasanton, CA, USA, 2023.
- Casal, R.F.; Walsh, G.; McArthur, M.; Hill, L.R.; Landaeta, M.F.; Armas Villalba, A.J.; Ong, P.; Debiane, L.; Vakil, E.; Grosu, H.B.; et al. Bronchoscopic Laser Interstitial Thermal Therapy: An Experimental Study in Normal Porcine Lung Parenchyma. J. Bronc- Interv. Pulmonol. 2018, 25, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Fantin, A.; Manera, M.; Patruno, V.; Sartori, G.; Castaldo, N.; Crisafulli, E. Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy. Life 2023, 13, 254. [Google Scholar] [CrossRef] [PubMed]
- NCT03707925; Bronchoscopic Laser Ablation of Solid Peripheral Lung Tumours Followed by Surgical Resection (BLAST-SR Trial). National Brain Tumor Society: Newton, MA, USA, 2023.
- Lindberg, K.; Nyman, J.; Källskog, V.R.; Hoyer, M.; Lund, J.; Lax, I.; Wersäll, P.; Karlsson, K.; Friesland, S.; Lewensohn, R. Long-term results of a prospective phase II trial of medically inoperable stage I NSCLC treated with SBRT—The Nordic experience. Acta Oncol. 2015, 54, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Guckenberger, M.; Andratschke, N.; Dieckmann, K.; Hoogeman, M.S.; Hoyer, M.; Hurkmans, C.; Tanadini-Lang, S.; Lartigau, E.; Romero, A.M.; Senan, S.; et al. ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother. Oncol. 2017, 124, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Videtic, G.M.M.; Donington, J.; Giuliani, M.; Heinzerling, J.; Karas, T.Z.; Kelsey, C.R.; Lally, B.E.; Latzka, K.; Lo, S.S.; Moghanaki, D.; et al. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: Executive Summary of an ASTRO Evidence-Based Guideline. Pract. Radiat. Oncol. 2017, 7, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Badra, E.V.; Baumgartl, M.; Fabiano, S.; Jongen, A.; Guckenberger, M. Stereotactic radiotherapy for early stage non-small cell lung cancer: Current standards and ongoing research. Transl. Lung Cancer Res. 2021, 10, 1930–1949. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Franceschini, D.; De Rose, F.; Cozzi, S.; Franzese, C.; Rossi, S.; Finocchiaro, G.; Toschi, L.; Santoro, A.; Scorsetti, M. The use of radiation therapy for oligoprogressive/oligopersistent oncogene-driven non small cell lung cancer: State of the art. Crit. Rev. Oncol./Hematol. 2020, 148, 102894. [Google Scholar] [CrossRef] [PubMed]
- Sharabi, A.B.; Nirschl, C.J.; Kochel, C.M.; Nirschl, T.R.; Francica, B.J.; Velarde, E.; Deweese, T.L.; Drake, C.G. Stereotactic Radiation Therapy Augments Antigen-Specific PD-1–Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen. Cancer Immunol. Res. 2015, 3, 345–355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Skowronek, J. Brachytherapy in the treatment of lung cancer—A valuable solution. J. Contemp. Brachytherapy 2015, 4, 297–311. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harms, W.; Schraube, P.; Becker, H.; Latz, D.; Herth, F.; Fritz, P.; Wannenmacher, M. Effect and toxicity of endoluminal high-dose-rate (HDR) brachytherapy in centrally located tumors of the upper respiratory tract. Strahlenther. Onkol. 2000, 176, 60–66. [Google Scholar] [CrossRef]
- Skowronek, J. Lung cancer brachytherapy. In Lung Cancer Treatment; West, B.S., Stanley, D.R., Eds.; Nova Science: New York, NY, USA, 2011. [Google Scholar]
- Gerbaulet, A.; Potter, R.; Mazeron, J.-J.; Meertens, H.; Van Limbergen, E. (Eds.) Bruksela: ESTRO. In The GEC ESTRO Handbook of Brachytherapy; ESTRO: Brussels, Belgium, 2002. [Google Scholar]
- Skowronek, J.; Piorunek, T.; Kanikowski, M.; Chicheł, A.; Bielęda, G. Definitive high-dose-rate endobronchial brachytherapy of bronchial stump for lung cancer after surgery. Brachytherapy 2013, 12, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, M.G.; Colonias, A.; Makishi, D.; Keenan, R.; Werts, E.D.; Landreneau, R.; Parda, D.S. Tolerance of the aorta using intraoperative iodine-125 interstitial brachytherapy in cancer of the lung. Brachytherapy 2008, 7, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.J.; Mutyala, S.; Holloway, C.L.; Colson, Y.L.; Devlin, P.M. Intraoperative seed placement for thoracic malignancy—A review of technique, indications, and published literature. Brachytherapy 2009, 8, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.A.; Fazli, Y.; Sivakumar, S.; Dennis, C.; Maraboyina, S.; Prabhu, A.V.; Kim, T. Brachytherapy vs. external beam therapy among NSCLC patients undergoing limited surgical resection. J. Cancer Res. Clin. Oncol. 2021, 147, 853–861. [Google Scholar] [CrossRef]
- Mutyala, S.; Stewart, A.; Khan, A.J.; Cormack, R.A.; O’Farrell, D.; Sugarbaker, D.; Devlin, P.M. Permanent iodine-125 interstitial planar seed brachytherapy for close or positive margins for thoracic malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Youroukou, A.; Gkiozos, I.; Kalaitzi, Z.; Tsalafoutas, I.; Papalla, K.; Charpidou, A.; Kouloulias, V. The potential role of brachytherapy in the irradiation of patients with lung cancer: A systematic review. Clin. Transl. Oncol. 2017, 19, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Macha, H.N.; Wahlers, B.; Reichle, C.; von Zwehl, D. Endobronchial radiation therapy for obstructing malignancies: Ten years’ experience with iridium-192 high-dose radiation brachytherapy afterloading technique in 365 patients. Lung 1995, 173, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Kirson, E.D.; Gurvich, Z.; Schneiderman, R.; Dekel, E.; Itzhaki, A.; Wasserman, Y.; Schatzberger, R.; Palti, Y. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004, 64, 3288–3295. [Google Scholar] [CrossRef] [PubMed]
- Kirson, E.D.; Dbalý, V.; Tovaryš, F.; Vymazal, J.; Soustiel, J.F.; Itzhaki, A.; Mordechovich, D.; Steinberg-Shapira, S.; Gurvich, Z.; Schneiderman, R.; et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 10152–10157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mun, E.J.; Babiker, H.M.; Weinberg, U.; Kirson, E.D.; Von Hoff, D.D. Tumor-treating fields: A fourth modality in cancer treatment. Clin. Cancer Res. 2018, 24, 266–275. [Google Scholar] [CrossRef]
- Kirson, E.D.; Giladi, M.; Gurvich, Z.; Itzhaki, A.; Mordechovich, D.; Schneiderman, R.S.; Wasserman, Y.; Ryffel, B.; Goldsher, D.; Palti, Y. Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clin. Exp. Metastasis 2009, 26, 633–640. [Google Scholar] [CrossRef]
- NCT00749346; An Open Label Pilot Study of NovoTTF-100L in Combination with Pemetrexed (Alimta®) for Advanced Non-small Cell Lung Cancer. Kantonspital Winterthur: Winterthur, Switzerland, 2011.
- Pless, M.; Droege, C.; von Moos, R.; Salzberg, M.; Betticher, D. A phase I/II trial of tumor treating fields (TTFields) therapy in combination with pemetrexed for advanced non-small cell lung cancer. Lung Cancer 2013, 81, 445–450. [Google Scholar] [CrossRef]
- NCT02973789; LUNAR: Pivotal, Randomized, Open-label Study of Tumor Treating Fields (TTFields) Concurrent with Standard of Care Therapies for Treatment of Stage 4 Non-small Cell Lung Cancer (NSCLC) Following Platinum Failure. University of Illinois Cancer Center: Chicago, IL, USA, 2021.
- Leal, T.; Kotecha, R.; Ramlau, R.; Zhang, L.; Milanowski, J.; Cobo, M.; Roubec, J.; Petruzelka, L.; Havel, L.; Kalmadi, S.; et al. LUNAR Study Investigators. Tumor Treating Fields therapy with standard systemic therapy versus standard systemic therapy alone in metastatic non-small-cell lung cancer following progression on or after platinum-based therapy (LUNAR): A randomised, open-label, pivotal phase 3 study. Lancet Oncol. 2023, 24, 1002–1017, Erratum in Lancet Oncol. 2024, 25, e234. [Google Scholar] [CrossRef] [PubMed]
- NCT06216301; LUNAR-2: Pivotal, Randomized, Open-Label Study of Tumor Treating Fields (TTFields, 150 kHz) Concomitant with Pembrolizumab and Platinum-based Chemotherapy for the Treatment of Metastatic Non-Small Cell Lung Cancer. ASCO: Alexandria, VA, USA, 2024.
- Taghavizadeh Yazdi, M.E.; Nourbakhsh, F.; Mashreghi, M.; Mousavi, S.H. Ultrasound-based synthesis of ZnO·Ag2O3 nanocomposite: Characterization and evaluation of its antimicrobial and anticancer properties. Res. Chem. Intermed. 2021, 47, 1285–1296. [Google Scholar] [CrossRef]
- Das, S.S.; Singh, S.K.; Verma, P.; Jha, N.K.; Gupta, P.K.; Dua, K. Mitigating inflammation using advanced drug delivery by targeting TNF-α in lung diseases. Future Med. Chem. 2022, 14, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, T.; Patra, M.; Rahaman, S.M.; Das, T.K.; Shaikh, S. Biosynthesized CdS Nanoparticle Induces ROS-dependent Apoptosis in Human Lung Cancer Cells. Anti-Cancer Agents Med. Chem. 2022, 22, 2156–2165. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Han, Q.J.; Xu, X.; Wen, C. miR-146 Relieves Acute Asthma via Decreasing Epidermal Growth Factor Receptor/Toll-Like Receptor 4 (EGFR/TLR4) and Enhancing Autophagy. J. Biomater. Tissue Eng. 2022, 12, 2030–2037. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, Q.; Ji, L.; Wang, Y.; Qi, X.; Liu, L.; Liu, Z.; Lu, L. Epigenetic regulation of active Chinese herbal components for cancer prevention and treatment: A follow-up review. Pharmacol. Res. 2016, 114, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Jing, H.; Cui, L. Highly Efficient Labeling of Human Lung Cancer Cells Using Cationic Poly-l-lysine-Assisted Magnetic Iron Oxide Nanoparticles. Nano-Micro Lett. 2015, 7, 374–384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mousavi-Kouhi, M.; Beyk-Khormizi, A.; Amiri, M.S.; Mashreghi, M.; Taghavizadeh Yazdi, M.E. Silver-zinc oxide nanocomposite: From synthesis to antimicrobial and anticancer properties. Ceram. Int. 2021, 47, 21490–21497. [Google Scholar] [CrossRef]
- Vyas, S.P.; Goswami, R. Size-dependent cellular uptake and TLR4 attenuation by gold nanoparticles in lung adenocarcinoma cells. Nanomedicine 2019, 14, 229–253. [Google Scholar] [CrossRef] [PubMed]
- Socinski, M.A.; Bondarenko, I.; Karaseva, N.A.; Makhson, A.M.; Vynnychenko, I.; Okamoto, I.; Hon, J.K.; Hirsh, V.; Bhar, P.; Zhang, H.; et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non–small-cell lung cancer: Final results of a phase III trial. J. Clin. Oncol. 2012, 30, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, V. nab-paclitaxel for the management of patients with advanced non-small-cell lung cancer. Expert Rev. Anticancer. Ther. 2014, 14, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.A.; Ashai, N.; Perez-Soler, R.; Cheng, H. Nanoparticle albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer: An evaluation of the clinical evidence. Expert Opin. Pharmacother. 2019, 20, 95–102. [Google Scholar] [CrossRef]
- NCT04033354; A Randomized, Double-blind, Placebo Controlled Phase III Study to Investigate Efficacy and Safety of First-Line Treatment with HLX10 + Chemotherapy (Carboplatin-Nanoparticle Albumin Bound (Nab) Paclitaxel) in Patients with Stage IIIB/IIIC or IV NSCLC. TrialScreen: Victoria, Australia, 2023.
- NCT04314895; Phase 2 Trial Evaluating the Safety and Tolerability of Intertumoral Injections of NanoPac® with Standard of Care Therapy in Subjects with Lung Cancer. Springer: Berlin/Heidelberg, Germany, 2023.
- Sun, M.; Shi, Y.; Dang, U.J.; Di Pasqua, A.J. Phenethyl Isothiocyanate and Cisplatin Co-Encapsulated in a Liposomal Nanoparticle for Treatment of Non-Small Cell Lung Cancer. Molecules 2019, 24, 801. [Google Scholar] [CrossRef] [PubMed]
- Nagdiya, D.; Kumar, M.; Arora, S.; Bajaj, T.; Kujur, S.; Rana, P.; Kumar, A.; Singh, A.; Singh, C. Drug delivery systems of gefitinib for improved cancer therapy: A review. OpenNano 2023, 14, 100183. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Hu, H.; Xu, S.; Xu, L.; Chen, E. Gefitinib encapsulation based on nano-liposomes for enhancing the curative effect of lung cancer. Cell Cycle 2020, 19, 3581–3594. [Google Scholar] [CrossRef]
- NCT04486833; Quaratusugene Ozeplasmid (Reqorsa) and Osimertinib in Patients with Advanced Lung Cancer Who Progressed on Osimertinib (Acclaim-1). Veeva Systems: Pleasanton, CA, USA, 2024.
- NCT05062980; A Phase 1/2 Open-Label, Dose-Escalation and Clinical Response Study of Quaratusugene Ozeplasmid in Combination with Pembrolizumab Versus Docetaxel with or Without Ramucirumab in Patients with Previously Treated Non-Small Cell Lung Cancer. Springer: Berlin/Heidelberg, Germany, 2024.
- Belhadj-Tahar, H.; Chen, J.; Song, P.; Zhao, J.; Quan, M.; Li, C.; Gu, X.; Yang, G.; Gao, Y. Novel CT-guided 188-rhenium brachytherapy device for local primary and secondary lung malignancies. J. Glob. Oncol. 2019, 5, 96. [Google Scholar] [CrossRef]
- Lee, W.H.; Loo, C.Y.; Ong, H.X.; Traini, D.; Young, P.M.; Rohanizadeh, R. Synthesis and characterization of inhalable flavonoid nanoparticle for lung cancer cell targeting. J. Biomed. Nanotechnol. 2016, 12, 371–386. [Google Scholar] [CrossRef]
- Manandhar, B.; Paudel, K.R.; Clarence, D.D.; De Rubis, G.; Madheswaran, T.; Panneerselvam, J.; Zacconi, F.C.; Williams, K.A.; Pont, L.G.; Warkiani, M.E.; et al. Zerumbone-incorporated liquid crystalline nanoparticles inhibit proliferation and migration of non-small-cell lung cancer in vitro. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 343–356. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alnuqaydan, A.M.; Almutary, A.G.; Azam, M.; Manandhar, B.; Yin, G.H.S.; Yen, L.L.; Madheswaran, T.; Paudel, K.R.; Hansbro, P.M.; Chellappan, D.K.; et al. Evaluation of the Cytotoxic Activity and Anti-Migratory Effect of Berberine–Phytantriol Liquid Crystalline Nanoparticle Formulation on Non-Small-Cell Lung Cancer In Vitro. Pharmaceutics 2022, 14, 1119. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Kao, S.C.; Pavlakis, N.; Brahmbhatt, H.; MacDiarmid, J.; Clarke, S.; Boyer, M.; van Zandwijk, N. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 2016, 8, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
Trial | Intratumoral Therapy | Principle | Strategy | Notes |
---|---|---|---|---|
NCT01574222 phase I [36] | autologous DC overexpressing CCL21 (AdCCL21-DC) | Chemokines CCL21 treatment increased CD4, CD8, and CD11c+DEC205+ DC infiltrates into the tumor, which of microenvironment acquired a lymphoid-like aspect. Also, dendritic cells (DC) have an important role of immune activity modulation, because of being potent antigen by presenting cells to stimulate naïve T cells in immune system. | Intratumoral vaccination with AdCCL21-DC | 4 patients (25%) showed stable disease at 56th day after injection, with a median survival of 3.9 months. 4 cases of AEs According to ELISPOT assays, 6 systemic responses against tumor-associated antigens (TAA). Tumor CD8+ T-cell infiltration was induced in 54% of subjects (7/13) |
NCT03546361 phase I [37] | Potential synergy between checkpoint inhibitors (pembrolizumab) and CCL21-DC. | Maximum tolerated dose (MTD)/maximum administered dose (MAD) (dose escalation) at 28 days, and overall response rate (ORR) up to 1 year. | ||
NCT04571632 [38] phase II | CD1c (BDCA-1)+/CD141 (BDCA-3)+ myeloid dendritic cells | CD1c(BDCA-1)- have a pivotal role for a favorable and “hot” tumor microenvironment | SBRT with systemic pembrolizumab with or without intratumoral avelumab/ipilimumab plus CD1c (BDCA-1)+/CD141 (BDCA-3)+ myeloid dendritic cells | In Nov. 2023 some preliminary data, in particular the intratumoral injection of myDC plus mAb and iv. pembrolizumab was feasible and tolerable, with early evidence of activity in refractory cancer [38]. |
NCT03004183 phase II [40] | An oncolytic virus which is adenovirus-mediated expression of herpes simplex virus thymidine kinase (ADV/HSV-tk) | HSV-tk may induce immune-related activities through necrosis mediated exposure of putative tumor antigens to the cytokine-stimulated lymphocytic infiltrate | SBRT with Intratumoral oncolytic virus therapy (plus valacyclovir), as therapeutic opportunity before pembrolizumab. | objective response rate (ORR). 28 NSCLC patients were enrolled, the preliminary results showed a high tolerance and promising news about benefit and response. |
NCT03767348 Phase I-II [41] | RP1 a modified virus (herpes simplex 1) | is designed to directly destroy tumors and to generate an immune response against tumors | RP1 in monotherapy and in combination with nivolumab in advanced and/or refractory cancer | Percentage of AEs and severe AEs. Percentage of dose limiting toxicities. Percentage of ORR. Maximum tolerated dose |
NCT05265650 [43] phase Ib/II | BO-112 nanoplexed form of poly I:C based viral mimetic [44] | BO-112 may revert anti-PD-1 resistance [45] | Combination with anti-PD-1 mAb (nivolumab) and SABR. | Incidence of AEs and estimation of severe AEs |
NCT05076760 [46] phase I | MEM-288 conditionally-replicative oncolytic adenovirus expressing human IFNβ and a recombinant membrane-stable form of CD40L (MEM40) | inhibiting abscopal tumor growth in monotherapy. Synergy with immune checkpoint inhibitors (ICI) | Monotherapy or combination with nivolumab | In Jan. 2023, preliminary data are encouraging about safety, antitumor and immune response (monotherapy arm) [47] |
NCT05602792 [48] phase I/IIa | T3011 herpes virus (oncolytic herpes virus) is an attenuated virus which is inserted biologically active IL-12 and anti-PD-1 antibody genes in | T3011 improves TEM and exalt the body’s specific anti-tumor immunity. while lysing tumor cells | monotherapy | In Jan. 2023, preliminary data showed excellent safety profile and encouraging anti-tumor activity (in neck tumors) [49] |
NCT04370587 [50] phase I/IIa | Monotherapy or In combination with IV pembrolizumab | (Preliminary data in melanoma) monotherapy and combination were safe and tolerable with encouraging data about efficacy in immune resistant melanoma, with the suggestion of microenvriomental change and bypassing immune resistance [51]. |
Contraindications | Common Adverse Events [136] | Risk Factors |
---|---|---|
|
|
|
Intratumoral Strategy | Description | Advantages | Disadvantages/Limitations |
---|---|---|---|
Injection of antiblastic therapy | “Traditional”chemotherapy is administered directly in the tumor mainly by bronchoscopy. It is possible to find the association with intravenous chemotherapy and/or immunotherapy, radiotherapy. The only III phase trial has analyzed the use of PTS in monotherapy [33]. | The direct administration may empower the efficacy not only locally but also in the systemic panorama, because intratumoral may have a synergic activity with concomitant systemic therapy or subsequent one, for example by reducing the risk of immunotherapy failure. Moreover, precise therapy seems to have a good safety profile. | The scientific literature returns only one phase III trial, where an intratumoral therapy is administered alone [33]. This treatment is often used in palliative setting. Finally, this treatment is strictly linked to bronchoscopy, a quite invasive exam, with its particular complications and adverse events. |
Injection of immunomodulant | immunomodulant is administered directly in the tumor mainly by bronchoscopy. Also, this strategy can be associated with systemic immunotherapy and SBRT | Immunomodulant can promote a change of tumoral microenvironment, which acquires a favorable immunological setting, becoming “hot”. At the same time some immunomodulants may directly destroy the tumor. The available trials define a good efficacy and safety profile. | There are only phase I and II trials. It requires the bronchoscopy that could be associated with possible complications and adverse events. |
Intrapleural therapy | This strategy is HITHOC. | It may be a valid alternative to pleural effusion invasive strategies (evacuation, pleurodesis) especially in frail patients. HITHOC may be useful also in the oligometastatic setting of pleura. | We have scarce data about HITHOC in NSCLC and in this setting, it cannot be recommended [57]. |
Inhalation therapy | Antiblastic therapy can be administered via inhalation. | Dry powder form may increase drug exposure at the targeted tumor site with a smaller dose. As such, safety profile may be enchanced. | The administration can be difficult for patients. Severe chronic lung patology (e.g., COPD, asthma etc) are main controindications. Unfortunately, they are quite common in NSCLC patients because they share smoking as a risk factor. |
Photodynamic therapy | PDT consists of a photosensitizer drugs, excited by appropriate wavelength laser irradiation. | It can be an extreme specific tumor site therapy without important complications. It may be used in palliative setting especially in multimodal treatment. Moreover, it may be used alone in very strict cases of early central NSCLC (unresectable). | PDT is not recommended for deeper lesions or too dense lesions (necrotic sites), because in these cases PDT would not be effective |
Thermal ablation | Extreme temperatures (heat and cold) can induce tissue damage and provoke a modification of tumoral microenvironment. | This strategy can be used in palliative setting, especially in oligometastatic disease. In addition, it finds space in selected curative setting, if patient shows contraindication to surgery or stereotactic radiotherapy. Ablative therapies and immunotherapy may improve their efficacy mutually. | These ablative therapies show only one absolute contraindication (untreatable coagulopathy) and technical ones (tumor is too close to vital structures). The typology of thermal ablation should be selected accurately, also based on the physical conditions of cancer. |
Brachytherapy | The local radiotherapy can be administrated with permanent implantation of I125 vycril mesh | Brachytherapy can be useful in palliative setting, especially if present important symptoms (dyspnoea, haemoptysis etc.). After the implant, quality of life and symptoms may improve quickly. Instead, the indications in radical setting are strictly selected and limited. | Brachytherapy depends on bronchoscopy; therefore, it is important to think about complications and contraindications. Moreover, it may have “rivals”, like ablative strategies. |
Tumor treating fields | Alternating electric fileds with low-intensity and intermediate frequency can inhibit the tumoral cell growth | This strategy has shown interesting results about efficacy and tolerability, with a good safety profile. | The device is quite expensive and “lumbering” for the patient |
Nanoparticles | Nanoparticles have a potential anti-inflammatory antioxidant and immunomodulatory effect. In addition, nanoparticles are perfect carriers, which can bring not only traditional antiblastic agents, immunotherapy and radiotherapy, but also non-conventional elements. | They have a cross role with other intratumoral and systemic strategy. So they may be a future cornerstone. | Despite their important impact, we have only I and II phase trials. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagliari, G.G.; Colonese, F.; Canova, S.; Abbate, M.I.; Sala, L.; Petrella, F.; Clementi, T.D.; Cortinovis, D.L. Intratumoral Treatment in Lung Cancer: Is It Time to Move Towards Clinical Practice? Cancers 2024, 16, 3892. https://doi.org/10.3390/cancers16233892
Pagliari GG, Colonese F, Canova S, Abbate MI, Sala L, Petrella F, Clementi TD, Cortinovis DL. Intratumoral Treatment in Lung Cancer: Is It Time to Move Towards Clinical Practice? Cancers. 2024; 16(23):3892. https://doi.org/10.3390/cancers16233892
Chicago/Turabian StylePagliari, Gabriele Giuseppe, Francesca Colonese, Stefania Canova, Maria Ida Abbate, Luca Sala, Francesco Petrella, Thoma Dario Clementi, and Diego Luigi Cortinovis. 2024. "Intratumoral Treatment in Lung Cancer: Is It Time to Move Towards Clinical Practice?" Cancers 16, no. 23: 3892. https://doi.org/10.3390/cancers16233892
APA StylePagliari, G. G., Colonese, F., Canova, S., Abbate, M. I., Sala, L., Petrella, F., Clementi, T. D., & Cortinovis, D. L. (2024). Intratumoral Treatment in Lung Cancer: Is It Time to Move Towards Clinical Practice? Cancers, 16(23), 3892. https://doi.org/10.3390/cancers16233892