The Value of Repeat 5-HIAA Measurements as a Predictor of Carcinoid Heart Disease: A Prospective 5-Year Follow-Up Study in Patients with Small Intestinal Neuroendocrine Tumors
Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients and Data
2.2. Clinical Characteristics
2.3. Survival
2.4. Echocardiography
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Echocardiographic Features Observed During the Follow-Up
3.3. Correlations Between Biomarkers and Westberg Score
3.4. Assessment of Patients Who Did Not Undergo Follow-Up TTE
3.5. Biomarker Performance of the Assessed Variables for the Detection of CHD
3.6. Survival and Predictors of Mortality in SI-NET Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niederle, B.; Pape, U.-F.; Costa, F.; Gross, D.; Kelestimur, F.; Knigge, U.; Öberg, K.; Pavel, M.; Perren, A.; Toumpanakis, C.; et al. ENETS Consensus Guidelines Update for Neuroendocrine Neoplasms of the Jejunum and Ileum. Neuroendocrinology 2016, 103, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Grozinsky-Glasberg, S.; Davar, J.; Hofland, J.; Dobson, R.; Prasad, V.; Pascher, A.; Denecke, T.; Tesselaar, M.E.T.; Panzuto, F.; Albåge, A.; et al. European Neuroendocrine Tumor Society (ENETS) 2022 Guidance Paper for Carcinoid Syndrome and Carcinoid Heart Disease. J. Neuroendocrinol. 2022, 34, e13146. [Google Scholar] [CrossRef] [PubMed]
- Mulders, M.C.F.; de Herder, W.W.; Hofland, J. What Is the Carcinoid Syndrome? A Critical Appraisal of Its Proposed Mediators. Endocr. Rev. 2023, 45, bnad035. [Google Scholar] [CrossRef] [PubMed]
- Buchanan-Hughes, A.; Pashley, A.; Feuilly, M.; Marteau, F.; Pritchard, D.M.; Singh, S. Carcinoid Heart Disease: Prognostic Value of 5-Hydroxyindoleacetic Acid Levels and Impact on Survival: A Systematic Literature Review. Neuroendocrinology 2021, 111, 1–15. [Google Scholar] [CrossRef]
- Fijalkowski, R.; Reher, D.; Rinke, A.; Gress, T.M.; Schrader, J.; Baum, R.P.; Kaemmerer, D.; Hörsch, D. Clinical Features and Prognosis of Patients with Carcinoid Syndrome and Carcinoid Heart Disease: A Retrospective Multicentric Study of 276 Patients. Neuroendocrinology 2022, 112, 547–554. [Google Scholar] [CrossRef]
- Levy, S.; Kilgallen, A.B.; Korse, C.M.; Oerlemans, M.I.F.J.; Sluijter, J.P.G.; van Laake, L.W.; Valk, G.D.; Tesselaar, M.E.T. Elevated Serotonin and NT-proBNP Levels Predict and Detect Carcinoid Heart Disease in a Large Validation Study. Cancers 2022, 14, 2361. [Google Scholar] [CrossRef]
- Blažević, A.; Hofland, J.; Hofland, L.J.; Feelders, R.A.; de Herder, W.W. Small Intestinal Neuroendocrine Tumours and Fibrosis: An Entangled Conundrum. Endocr. Relat. Cancer 2018, 25, R115–R130. [Google Scholar] [CrossRef]
- Gustafsson, B.I.; Tømmerås, K.; Nordrum, I.; Loennechen, J.P.; Brunsvik, A.; Solligård, E.; Fossmark, R.; Bakke, I.; Syversen, U.; Waldum, H. Long-Term Serotonin Administration Induces Heart Valve Disease in Rats. Circulation 2005, 111, 1517–1522. [Google Scholar] [CrossRef]
- Mekontso-Dessap, A.; Brouri, F.; Pascal, O.; Lechat, P.; Hanoun, N.; Lanfumey, L.; Seif, I.; Benhaiem-Sigaux, N.; Kirsch, M.; Hamon, M.; et al. Deficiency of the 5-Hydroxytryptamine Transporter Gene Leads to Cardiac Fibrosis and Valvulopathy in Mice. Circulation 2006, 113, 81–89. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Schapira, A.H.; Mikhailidis, D.P.; Davar, J. Drug-Induced Fibrotic Valvular Heart Disease. Lancet 2009, 374, 577–585. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Jagroop, A.; Gujral, D.M.; Hayward, C.; Toumpanakis, C.; Caplin, M.; Mikhailidis, D.P.; Davar, J. Circulating Plasma and Platelet 5-Hydroxytryptamine in Carcinoid Heart Disease: A Pilot Study. J. Heart Valve Dis. 2013, 22, 400–407. [Google Scholar] [PubMed]
- Dobson, R.; Burgess, M.I.; Banks, M.; Pritchard, D.M.; Vora, J.; Valle, J.W.; Wong, C.; Chadwick, C.; George, K.; Keevil, B.; et al. The Association of a Panel of Biomarkers with the Presence and Severity of Carcinoid Heart Disease: A Cross-Sectional Study. PLoS ONE 2013, 8, e73679. [Google Scholar] [CrossRef] [PubMed]
- Zuetenhorst, J.M.; Bonfrer, J.M.G.M.; Korse, C.M.; Bakker, R.; van Tinteren, H.; Taal, B.G. Carcinoid Heart Disease: The Role of Urinary 5-Hydroxyindoleacetic Acid Excretion and Plasma Levels of Atrial Natriuretic Peptide, Transforming Growth Factor-Beta and Fibroblast Growth Factor. Cancer 2003, 97, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Møller, J.E.; Connolly, H.M.; Rubin, J.; Seward, J.B.; Modesto, K.; Pellikka, P.A. Factors Associated with Progression of Carcinoid Heart Disease. N. Engl. J. Med. 2003, 348, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Cuthbertson, D.J.; Jones, J.; Valle, J.W.; Keevil, B.; Chadwick, C.; Poston, G.P.; Burgess, M.I. Determination of the Optimal Echocardiographic Scoring System to Quantify Carcinoid Heart Disease. Neuroendocrinology 2014, 99, 85–93. [Google Scholar] [CrossRef]
- Hofland, J.; Lamarca, A.; Steeds, R.; Toumpanakis, C.; Srirajaskanthan, R.; Riechelmann, R.; Panzuto, F.; Frilling, A.; Denecke, T.; Christ, E.; et al. Synoptic Reporting of Echocardiography in Carcinoid Heart Disease (ENETS Carcinoid Heart Disease Task Force). J. Neuroendocrinol. 2022, 34, e13060. [Google Scholar] [CrossRef]
- Johnson, K.K.N.; Stemann Lau, T.; Mark Dahl Baunwall, S.; Elisabeth Villadsen, G.; Guldbrand Rasmussen, V.; Grønbaek, H.; Oksjoki, R.K.; Dam, G. The Role of N-Terminal pro-Brain Natriuretic Peptide, Chromogranin A, and 5-Hydroxyindoleacetic Acid in Screening for Carcinoid Heart Disease. J. Neuroendocrinol. 2023, 35, e13327. [Google Scholar] [CrossRef]
- Kostiainen, I.; Karppinen, N.; Simonen, P.; Rosengård-Bärlund, M.; Lindén, R.; Tarkkanen, M.; Gordin, D.; Rapola, J.; Schalin-Jäntti, C.; Matikainen, N. Arterial Function, Biomarkers, Carcinoid Syndrome and Carcinoid Heart Disease in Patients with Small Intestinal Neuroendocrine Tumours. Endocrine 2022, 77, 177–187. [Google Scholar] [CrossRef]
- Becker, A.; Schalin-Jäntti, C.; Itkonen, O. Comparison of Serum and Urinary 5-Hydroxyindoleacetic Acid as Biomarker for Neuroendocrine Neoplasms. J. Endocr. Soc. 2021, 5, bvab106. [Google Scholar] [CrossRef]
- Westberg, G.; Wängberg, B.; Ahlman, H.; Bergh, C.H.; Beckman-Suurküla, M.; Caidahl, K. Prediction of Prognosis by Echocardiography in Patients with Midgut Carcinoid Syndrome. Br. J. Surg. 2001, 88, 865–872. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Toumpanakis, C.; Chilkunda, D.; Caplin, M.E.; Davar, J. Risk Factors for the Development and Progression of Carcinoid Heart Disease. Am. J. Cardiol. 2011, 107, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Uema, D.; Alves, C.; Mesquita, M.; Nuñez, J.E.; Siepmann, T.; Angel, M.; Rego, J.F.M.; Weschenfelder, R.; Rocha Filho, D.R.; Costa, F.P.; et al. Carcinoid Heart Disease and Decreased Overall Survival among Patients with Neuroendocrine Tumors: A Retrospective Multicenter Latin American Cohort Study. J. Clin. Med. 2019, 8, 405. [Google Scholar] [CrossRef] [PubMed]
- Mattig, I.; Franke, M.R.; Pschowski, R.; Brand, A.; Stangl, K.; Knebel, F.; Dreger, H. Prevalence, One-Year-Incidence and Predictors of Carcinoid Heart Disease. Cardiovasc. Ultrasound 2023, 21, 18. [Google Scholar] [CrossRef]
- Snorradottir, S.; Asgeirsdottir, A.; Rögnvaldsson, S.; Jonasson, J.G.; Björnsson, E.S. Incidence and Prognosis of Patients with Small Intestinal Neuroendocrine Tumors in a Population Based Nationwide Study. Cancer Epidemiol. 2022, 79, 102197. [Google Scholar] [CrossRef]
- Stensbøl, A.B.; Krogh, J.; Holmager, P.; Klose, M.; Oturai, P.; Kjaer, A.; Hansen, C.P.; Federspiel, B.; Langer, S.W.; Knigge, U.; et al. Incidence, Clinical Presentation and Trends in Indication for Diagnostic Work-Up of Small Intestinal and Pancreatic Neuroendocrine Tumors. Diagnostics 2021, 11, 2030. [Google Scholar] [CrossRef]
- Pellikka, P.A.; Tajik, A.J.; Khandheria, B.K.; Seward, J.B.; Callahan, J.A.; Pitot, H.C.; Kvols, L.K. Carcinoid Heart Disease. Clinical and Echocardiographic Spectrum in 74 Patients. Circulation 1993, 87, 1188–1196. [Google Scholar] [CrossRef]
- de Mestier, L.; Savagner, F.; Brixi, H.; Do Cao, C.; Dominguez-Tinajero, S.; Roquin, G.; Goichot, B.; Hentic, O.; Dubreuil, O.; Hautefeuille, V.; et al. Plasmatic and Urinary 5-Hydroxyindolacetic Acid Measurements in Patients with Midgut Neuroendocrine Tumors: A GTE Study. J. Clin. Endocrinol. Metab. 2021, 106, e1673–e1682. [Google Scholar] [CrossRef]
- Krenning, E.P.; Kooij, P.P.; Bakker, W.H.; Breeman, W.A.; Postema, P.T.; Kwekkeboom, D.J.; Oei, H.Y.; de Jong, M.; Visser, T.J.; Reijs, A.E. Radiotherapy with a Radiolabeled Somatostatin Analogue, [111In-DTPA-D-Phe1]-Octreotide. A Case History. Ann. N. Y. Acad. Sci. 1994, 733, 496–506. [Google Scholar] [CrossRef]
- Hofland, J.; Brabander, T.; Verburg, F.A.; Feelders, R.A.; de Herder, W.W. Peptide Receptor Radionuclide Therapy. J. Clin. Endocrinol. Metab. 2022, 107, 3199–3208. [Google Scholar] [CrossRef]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Zandee, W.T.; Brabander, T.; Blažević, A.; Minczeles, N.S.; Feelders, R.A.; de Herder, W.W.; Hofland, J. Peptide Receptor Radionuclide Therapy With 177Lu-DOTATATE for Symptomatic Control of Refractory Carcinoid Syndrome. J. Clin. Endocrinol. Metab. 2021, 106, e3665–e3672. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xing, A.; Hidru, T.H.; Li, J.; Yang, X.; Chen, S.; Xia, Y.-L.; Wu, S. The Association between Arterial Stiffness and Cancer Occurrence: Data from Kailuan Cohort Study. Front. Cardiovasc. Med. 2023, 10, 1112047. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kim, S.S.; Kim, I.J.; Kim, J.H.; Kim, B.H.; Kim, M.K.; Lee, S.H.; Lee, C.W.; Kim, M.C.; Ahn, J.H.; et al. Arterial Stiffness Is an Independent Predictor for Risk of Mortality in Patients with Type 2 Diabetes Mellitus: The REBOUND Study. Cardiovasc. Diabetol. 2020, 19, 143. [Google Scholar] [CrossRef]
Variable | All Patients (n = 65) at Baseline | Patients Who Underwent Follow-Up TTE (n = 54) at Baseline | Patients Who Underwent Follow-Up TTE (n = 54) at Follow-Up TTE | Patients Who Did Not Undergo Follow-Up TTE (n = 11) at Baseline | CHD Patients (n = 5) at CHD Diagnosis |
---|---|---|---|---|---|
Age (years) | 66 (59–72) | 64 (58–70) | 70 (61–74) | 69 (66–75) | 62 (57–67) |
Sex, female/male (n) | 33:32 (51%:49%) | 27:27 (50%:50%) | 27:27 (50%/50%) | 6:5 (55%:45%) | 1:4 (20%:80%) |
Time from the initial SI-NET diagnosis at assessment (months) | 72 (32–108) | 70 (31–107) | 130 (79–169) | 87 (38–132) | 32 (32–78) |
Primary tumor Ki-67 (%) | 2 (1–5) | 2 (1–5) | 2 (1–5) | 2 (2–7) | 2 (1–3) |
Hepatic tumor burden (n) | |||||
0% | 23 (35%) | 20 (37%) | 13 (24%) | 3 (27%) | 0 (0%) |
1–10% | 23 (35%) | 18 (33%) | 24 (44%) | 5 (45%) | 0 (0%) |
10–25% | 9 (14%) | 8 (15%) | 9 (17%) | 1 (9%) | 2 (40%) |
26–50% | 7 (11%) | 6 (11%) | 6 (11%) | 1 (9%) | 1 (20%) |
>50% | 3 (5%) | 2 (4%) | 2 (4%) | 1 (9%) | 2 40%) |
Serum 5-HIAA (nmol/L) | 138 (78–424) | 135 (78–372) | 147 (74–533) | 286 (78–525) | 3220 (1940–7470) |
Cum-5-HIAA (ULN years) | 0.8 (0.0–4.8) | 0.7 (0.0–4.3) | 1.9 (0.0–15) | 1.0 (0.1–11) | 57 (35–60) |
Plasma proBNP (ng/L) | 81 (35–194) | 73 (35–176) | 135 (65–237) | 128 (56–214) | 1283 (113–2391) |
CgA (proportion of ULN) | 1.7 (0.9–5.5) | 1.6 (0.9–5.1) | 1.1 (0.6–8.9) | 2.3 (1.0–9.0) | 83 (32–133) |
Treatment (n) | |||||
Resection of the primary tumor | 57 (87%) | 47 (87%) | 49 (91%) | 10 (91%) | 2 (40%) |
Resection of recurrence | 3 (5%) | 2 (4%) | 2 (4%) | 1 (9%) | 0 (0%) |
Non-systemic treatment for metastases 1 | 23 (35%) | 20 (37%) | 25 (46%) | 3 (27%) | 2 (40%) |
Somatostatin analog | 56 (86%) | 47 (87%) | 49 (91%) | 9 (82%) | 5 (100%) |
PRRT 2 | 18 (28%) | 15 (28%) | 30 (56%) | 3 (27%) | 3 (60%) |
PRRT, retreatment 2 | 3 (5%) | 2 (4%) | 14 (26%) | 1 (9%) | 0 (0%) |
PRRT, second retreatment 2 | 0 (0%) | 0 (0%) | 6 (11%) | 0 (0%) | 0 (0%) |
Telotristat ethyl | 0 (0%) | 0 (0%) | 3 (6%) | 0 (0%) | 0 (0%) |
Interferon alfa-2b | 12 (18%) | 9 (17%) | 10 (19%) | 3 (27%) | 0 (0%) |
Chemotherapy 3 | 3 (5%) | 2 (4%) | 11 (20%) | 1 (9%) | 0 (0%) |
Variable | Baseline TTE, All Patients (n = 63) | Baseline TTE for Patients with Follow-Up TTE (n = 54) | Follow-Up TTE (n = 54) | |||
---|---|---|---|---|---|---|
Result | Data Available | Result | Data Available | Result | Data Available | |
Tricuspid valve thickening (n) | 62/63 (98%) | 51/54 (94%) | 48/54 (89%) | |||
None | 58 (94%) | 49 (96%) | 46 (96%) | |||
Mild | 1 (2%) | 0 (0%) | 0 (0%) | |||
Moderate | 3 (5%) | 2 (4%) | 1 (2%) | |||
Severe | 0 (0%) | 0 (0%) | 1 (2%) | |||
Tricuspid valve mobility (n) | 62/63 (98%) | 51/54 (94%) | 48/54 (89%) | |||
Increased | 0 (0%) | 0 (0%) | 1 (2%) | |||
Normal | 58 (94%) | 48 (94%) | 45 (94%) | |||
Mildly reduced | 2 (3%) | 2 (4%) | 0 (0%) | |||
Moderately reduced | 1 (2%) | 1 (2%) | 1 (2%) | |||
Severely reduced | 1 (2%) | 0 (0%) | 1 (2%) | |||
Tricuspid valve regurgitation (n) | 61/63 (97%) | 50/54 (93%) | 50/54 (93%) | |||
None | 9 (15%) | 7 (14%) | 10 (20%) | |||
Trace | 23 (38%) | 16 (32%) | 17 (34%) | |||
Mild | 24 (39%) | 23 (46%) | 17 (34%) | |||
Moderate | 3 (5%) | 3 (6%) | 2 (4%) | |||
Severe | 2 (3%) | 1 (2%) | 4 (8%) | |||
Pulmonic valve thickening (n) | 60/63 (95%) | 51/54 (94%) | 47/54 (87%) | |||
None | 55 (92%) | 47 (92%) | 45 (96%) | |||
Mild | 3 (5%) | 3 (6%) | 2 (4%) | |||
Moderate | 2 (3%) | 1 (2%) | 0 (0%) | |||
Severe | 0 (0%) | 0 (0%) | 0 (0%) | |||
Pulmonic valve mobility (n) | 59/63 (94%) | 50/54 (93%) | 47/54 (87%) | |||
Increased | 0 (0%) | 0 (0%) | 0 (0%) | |||
Normal | 56 (95%) | 48 (96%) | 46 (98%) | |||
Mildly reduced | 2 (3%) | 1 (2%) | 0 (0%) | |||
Moderately reduced | 0 (0%) | 0 (0%) | 1 (2%) | |||
Severely reduced | 1 (2%) | 1 (2%) | 0 (0%) | |||
Pulmonic valve stenosis (n) | 59/63 (94%) | 51/54 (94%) | 47/54 (87%) | |||
None | 57 (97%) | 49 (96%) | 46 (98%) | |||
Mild | 1 (2%) | 1 (2%) | 1 (2%) | |||
Moderate | 1 (2%) | 1 (2%) | 0 (0%) | |||
Severe | 0 (0%) | 0 (0%) | 0 (0%) | |||
Pulmonic valve regurgitation (n) | 61/63 (97%) | 51/54 (94%) | 48/54 (89%) | |||
None | 39 (64%) | 33 (65%) | 27 (56%) | |||
Trace | 6 (10%) | 5 (10%) | 9 (19%) | |||
Mild | 13 (21%) | 11 (22%) | 11 (23%) | |||
Moderate | 1 (2%) | 1 (2%) | 0 (0%) | |||
Severe | 2 (3%) | 1 (2%) | 1 (2%) | |||
Right ventricle area, systolic (cm2) 1 | 12 (8–16) | 56/63 (89%) | 12 (9–16) | 47/54 (87%) | 11 (8–17) | 47/54 (87%) |
Right ventricle basal dimension, diastolic (mm) 1 | 34 (31–40) | 59/63 (94%) | 34 (31–40) | 49/54 (91%) | 35 (30–39) | 44/54 (81%) |
Right ventricle mid-cavity dimension, diastolic (mm) 1 | 31 (27–36) | 58/63 (92%) | 31 (28–35) | 49/54 (91%) | 32 (29–36) | 47/54 (87%) |
Right ventricle longitudinal dimension, diastolic (mm) 1 | 63 (59–67) | 58/63 (92%) | 63 (60–67) | 49/54 (91%) | 65 (60–69) | 49/54 (91%) |
Right atrium area, systolic (cm2) 1 | 13 (15–19) | 58/63 (92%) | 15 (13–18) | 48/54 (89%) | 15 (14–19) | 44/54 (81%) |
Tricuspid annular plane systolic excursion, TAPSE (mm) | 20 (20–25) | 57/63 (90%) | 22 (21–25) | 47/54 (87%) | 22 (20–24) | 50/54 (93%) |
Westberg score | 1 (0.5–1) [0–6] | 61/63 (97%) | 1 (0.5–1) [0–4] | 50/54 (93%) | 0.5 (0.5–1) [0–6] | 47/54 (87%) |
Variable | Alive (n = 42) | Deceased (n = 22) | p-Value |
---|---|---|---|
Age (years) | 65 (60–70) | 66 (59–74) | 0.31 |
Sex, female/male (n) | 24/18 (57%/43%) | 8/14 (36%/64%) | 0.19 |
Time from the initial SI-NET diagnosis at assessment (months) | 75 (47–109) | 77 (32–108) | 0.85 |
Primary tumor Ki-67 (%) | 2 (1–5) | 2 (2–5) | 0.24 |
Hepatic tumor burden (n) | 0.006 | ||
0% | 20 (47%) | 2 (9%) | |
1–10% | 14 (33%) | 9 (41%) | |
10–25% | 5 (12%) | 4 (18%) | |
26–50% | 2 (5%) | 5 (23%) | |
>50% | 1 (2%) | 2 (9%) | |
Serum 5-HIAA (nmol/L) | 95 (70–183) | 433 (174–746) | <0.001 |
Cum-5-HIAA (ULN years) | 0.3 (0.0–1.2) | 6.3 (0.7–14) | <0.001 |
Plasma proBNP (ng/L) | 55 (35–176) | 109 (57–214) | 0.10 |
CgA (proportion of ULN) | 1 (1–3) | 6 (2–14) | <0.001 |
Treatment (n) | |||
Resection of the primary tumor | 39 (93%) | 17 (77%) | 0.11 |
Resection of recurrence | 2 (5%) | 1 (5%) | 1.0 |
Non-systemic treatment for metastases 1 | 17 (40%) | 6 (27%) | 0.41 |
Somatostatin analog | 35 (83%) | 21 (95%) | 0.25 |
PRRT 2 | 10 (24%) | 8 (36%) | 0.38 |
PRRT, retreatment 2 | 1 (2%) | 2 (9%) | 0.27 |
PRRT, second retreatment 2 | 0 (0%) | 0 (0%) | n/a |
Telotristat ethyl | 0 (0%) | 0 (0%) | n/a |
Interferon alfa-2b | 4 (10%) | 8 (36%) | 0.04 |
Chemotherapy 3 | 1 (2%) | 2 (9%) | 0.27 |
Variable | Univariate Hazard Ratio (95% CI) | p-Value | Multivariate Hazard Ratio (95% CI) | p-Value |
---|---|---|---|---|
Sex | ||||
Female | 1 | 1 | ||
Male | 1.88 (0.79–4.47) | 0.16 | 1.29 (0.46–3.61) | 0.62 |
Age at TTE | 1.03 (0.97–1.09) | 0.20 | 1.05 (0.98–1.13) | 0.20 |
Serum 5-HIAA (nmol/L) | 1.00 (1.00–1.00) | 0.01 | 1.00 (1.00–1.00) | 0.60 |
Aortic pulse wave velocity (m/s) | 1.23 (1.09–1.40) | 0.001 | 1.22 (1.04–1.43) | 0.01 |
Metastases at baseline | ||||
No | 1 | 1 | ||
Yes | 7.02 (1.68–30.8) | 0.008 | 5.28 (1.09–25.6) | 0.04 |
CHD at baseline | ||||
No | 1 | 1 | ||
Yes | 24.8 (5.43–113.4) | <0.001 | 36.1 (5.36–243) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostiainen, I.; Simonen, P.; Aaltonen, K.; Lindén, R.; Karppinen, N.; Gordin, D.; Rapola, J.; Schalin-Jäntti, C.; Matikainen, N. The Value of Repeat 5-HIAA Measurements as a Predictor of Carcinoid Heart Disease: A Prospective 5-Year Follow-Up Study in Patients with Small Intestinal Neuroendocrine Tumors. Cancers 2024, 16, 3896. https://doi.org/10.3390/cancers16233896
Kostiainen I, Simonen P, Aaltonen K, Lindén R, Karppinen N, Gordin D, Rapola J, Schalin-Jäntti C, Matikainen N. The Value of Repeat 5-HIAA Measurements as a Predictor of Carcinoid Heart Disease: A Prospective 5-Year Follow-Up Study in Patients with Small Intestinal Neuroendocrine Tumors. Cancers. 2024; 16(23):3896. https://doi.org/10.3390/cancers16233896
Chicago/Turabian StyleKostiainen, Iiro, Piia Simonen, Katri Aaltonen, Riikka Lindén, Noora Karppinen, Daniel Gordin, Janne Rapola, Camilla Schalin-Jäntti, and Niina Matikainen. 2024. "The Value of Repeat 5-HIAA Measurements as a Predictor of Carcinoid Heart Disease: A Prospective 5-Year Follow-Up Study in Patients with Small Intestinal Neuroendocrine Tumors" Cancers 16, no. 23: 3896. https://doi.org/10.3390/cancers16233896
APA StyleKostiainen, I., Simonen, P., Aaltonen, K., Lindén, R., Karppinen, N., Gordin, D., Rapola, J., Schalin-Jäntti, C., & Matikainen, N. (2024). The Value of Repeat 5-HIAA Measurements as a Predictor of Carcinoid Heart Disease: A Prospective 5-Year Follow-Up Study in Patients with Small Intestinal Neuroendocrine Tumors. Cancers, 16(23), 3896. https://doi.org/10.3390/cancers16233896