WNT and TGF-Beta Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Populations
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Sinicrope, F.A. Increasing Incidence of Early-Onset Colorectal Cancer. N. Engl. J. Med. 2022, 386, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Tait, C.; Patel, A.H.; Chen, A.; Li, Y.; Minacapelli, C.D.; Rustgi, V. Early-Onset Colorectal Cancer: Prevalence, Risk Factors, and Clinical Features Among Commercially Insured Adults in the United States. Cureus 2023, 15, e49432. [Google Scholar] [CrossRef]
- Ullah, F.; Pillai, A.B.; Omar, N.; Dima, D.; Harichand, S. Early-Onset Colorectal Cancer: Current Insights. Cancers 2023, 15, 3202. [Google Scholar] [CrossRef]
- Ugai, T.; Haruki, K.; Harrison, T.A.; Cao, Y.; Qu, C.; Chan, A.T.; Campbell, P.T.; Akimoto, N.; Berndt, S.; Brenner, H.; et al. Molecular Characteristics of Early-Onset Colorectal Cancer According to Detailed Anatomical Locations: Comparison With Later-Onset Cases. Am. J. Gastroenterol. 2023, 118, 712–726. [Google Scholar] [CrossRef]
- Bhandari, A.; Woodhouse, M.; Gupta, S. Colorectal cancer is a leading cause of cancer incidence and mortality among adults younger than 50 years in the USA: A SEER-based analysis with comparison to other young-onset cancers. J. Investig. Med. 2017, 5, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Waddell, O.; Mclauchlan, J.; McCombie, A.; Glyn, T.; Frizelle, F. Quality of life in early-onset colorectal cancer patients: Systematic review. BJS Open 2023, 7, zrad030. [Google Scholar] [CrossRef]
- Mauri, G.; Sartore-Bianchi, A.; Russo, A.G.; Marsoni, S.; Bardelli, A.; Siena, S. Early-onset colorectal cancer in young individuals. Mol. Oncol. 2019, 13, 109–131. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef]
- Carethers, J.M. Racial and ethnic disparities in colorectal cancer incidence and mortality. Adv. Cancer Res. 2021, 151, 197–229. [Google Scholar] [CrossRef]
- Shah, S.C.; Camargo, M.C.; Lamm, M.; Bustamante, R.; Roumie, C.L.; Wilson, O.; Halvorson, A.E.; Greevy, R.; Liu, L.; Gupta, S.; et al. Impact of Helicobacter pylori Infection and Treatment on Colorectal Cancer in a Large, Nationwide Cohort. J. Clin. Oncol. 2024, 42, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Boland, C.R. Epigenetics of colorectal cancer. Gastroenterology 2012, 143, 1442–1460.e1. [Google Scholar] [CrossRef]
- Monge, C.; Greten, T.F. Underrepresentation of Hispanics in clinical trials for liver cancer in the United States over the past 20 years. Cancer Med. 2024, 13, e6814. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.H.; Zhang, Q.; Chen, J.; Mao, L.Q.; Sun, Q.; He, Y.; Yao, L.H. Factors influencing age at onset of colorectal polyps and benefit-finding after polypectomy. Medcine 2023, 102, e35336. [Google Scholar] [CrossRef]
- Ionescu, V.A.; Gheorghe, G.; Bacalbasa, N.; Chiotoroiu, A.L.; Diaconu, C. Colorectal Cancer: From Risk Factors to Oncogenesis. Medicina 2023, 59, 1646. [Google Scholar] [CrossRef] [PubMed]
- Monge, C.; Xie, C.; Myojin, Y.; Coffman, K.; Hrones, D.M.; Wang, S.; Hernandez, J.M.; Wood, B.J.; Levy, E.B.; Juburi, I.; et al. Phase I/II study of PexaVec in combination with immune checkpoint inhibition in refractory metastatic colorectal cancer. J. Immunother. Cancer 2023, 11, e005640. [Google Scholar] [CrossRef]
- Done, J.Z.; Fang, S.H. Young-onset colorectal cancer: A review. World J. Gastrointest. Oncol. 2021, 13, 856–866. [Google Scholar] [CrossRef]
- Ferrell, M.; Guven, D.C.; Gomez, C.G.; Nasrollahi, E.; Giza, R.; Cheng, S.; Syed, M.P.; Magge, T.; Singhi, A.; Saeed, A.; et al. Investigating the WNT and TGF-beta pathways alterations and tumor mutant burden in young-onset colorectal cancer. Sci. Rep. 2024, 14, 17884. [Google Scholar] [CrossRef]
- Bugter, J.M.; Fenderico, N.; Maurice, M.M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat. Rev. Cancer 2021, 21, 5–21. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020, 13, 165. [Google Scholar] [CrossRef]
- Gamage, C.D.B.; Kim, J.H.; Zhou, R.; Park, S.Y.; Pulat, S.; Varlı, M.; Nam, S.J.; Kim, H. Plectalibertellenone A suppresses colorectal cancer cell motility and glucose metabolism by targeting TGF-β/Smad and Wnt pathways. Biofactors 2024. [Google Scholar] [CrossRef]
- Peng, X.; Luo, Z.; Kang, Q.; Deng, D.; Wang, Q.; Peng, H.; Wang, S.; Wei, Z. FOXQ1 mediates the crosstalk between TGF-β and Wnt signaling pathways in the progression of colorectal cancer. Cancer Biol. Ther. 2015, 16, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Wickström, M.; Dyberg, C.; Milosevic, J.; Einvik, C.; Calero, R.; Sveinbjörnsson, B.; Sandén, E.; Darabi, A.; Siesjö, P.; Kool, M.; et al. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat. Commun. 2015, 6, 8904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ren, C.F.; Yang, Z.; Gong, L.B.; Wang, C.; Feng, M.; Guan, W.X. Forkhead Box S1 mediates epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway to regulate colorectal cancer progression. J. Transl. Med. 2022, 20, 327. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xing, J.; Zhou, X.; Song, X.; Gao, S. Wnt/β-catenin signalling, epithelial-mesenchymal transition and crosslink signalling in colorectal cancer cells. Biomed. Pharmacother. 2024, 175, 116685. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, J.; Di, Z.; Yuan, W.; Zhou, Z.; Liu, Z.; Han, S.; Liu, Y.; Ying, G.; Shu, X.; et al. TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J. Exp. Clin. Cancer Res. 2020, 39, 232. [Google Scholar] [CrossRef]
- Wei, J.; Zheng, X.; Li, W.; Li, X.; Fu, Z. Sestrin2 reduces cancer stemness via Wnt/β-catenin signaling in colorectal cancer. Cancer Cell Int. 2022, 22, 75. [Google Scholar] [CrossRef]
- Xu, Y.; Pasche, B. TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum. Mol. Genet. 2007, 16, R14–R20. [Google Scholar] [CrossRef]
- Bellam, N.; Pasche, B. Tgf-beta signaling alterations and colon cancer. Cancer Treat. Res. 2010, 155, 85–103. [Google Scholar] [CrossRef]
- Pastini, A. Role of the tgf-beta/smad pathway in tumor radioresistance to boron neutron capture therapy (bnct) in a human colon carcinoma cell line. Res. Square. 2024. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Y.; Cheng, Z.; Lv, Z.; Lu, R.; Gao, H. The synergistic effect of tgm2 and tgfβ2 on the prognosis of colon cancer patients. Res. Square. 2024. [Google Scholar] [CrossRef]
- Heldin, C.H.; Vanlandewijck, M.; Moustakas, A. Regulation of EMT by TGFβ in cancer. FEBS Lett. 2012, 586, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Moustakas, A.; Heldin, C.H. Induction of epithelial-mesenchymal transition by transforming growth factor β. Semin. Cancer Biol. 2012, 22, 446–454. [Google Scholar] [CrossRef]
- Ehata, S.; Miyazono, K. Bone Morphogenetic Protein Signaling in Cancer; Some Topics in the Recent 10 Years. Front. Cell Dev. Biol. 2022, 10, 883523. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yan, K.; Xi, Q. BMP signaling in cancer stemness and differentiation. Cell Regen. 2023, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ma, Y.; Liu, X.L.; Mu, L.; He, B.C.; Wu, K.; Sun, W.J. Anti proliferative effect of honokiol on SW620 cells through upregulating BMP7 expression via the TGF β1/p53 signaling pathway. Oncol. Rep. 2020, 44, 2093–2107. [Google Scholar] [CrossRef]
- Liu, R.X.; Ren, W.Y.; Ma, Y.; Liao, Y.P.; Wang, H.; Zhu, J.H.; Jiang, H.T.; Wu, K.; He, B.C.; Sun, W.J. BMP7 mediates the anticancer effect of honokiol by upregulating p53 in HCT116 cells. Int. J. Oncol. 2017, 51, 907–917. [Google Scholar] [CrossRef]
- Ren, C.M.; Li, Y.; Chen, Q.Z.; Zeng, Y.H.; Shao, Y.; Wu, Q.X.; Yuan, S.X.; Yang, J.Q.; Yu, Y.; Wu, K.; et al. Oridonin inhibits the proliferation of human colon cancer cells by upregulating BMP7 to activate p38 MAPK. Oncol. Rep. 2016, 35, 2691–2698. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.J.; Mick, R.; Wei, S.J.; Rustgi, A.K.; Markowitz, S.D.; Hampshire, M.; Metz, J.M. Clinical trial resources on the internet must be designed to reach underrepresented minorities. Cancer J. 2006, 12, 475–481. [Google Scholar] [CrossRef]
- Perez-Mayoral, J.; Gonzalez-Pons, M.; Centeno-Girona, H.; Montes-Rodríguez, I.M.; Soto-Salgado, M.; Suárez, B.; Rodríguez, N.; Colón, G.; Sevilla, J.; Jorge, D.; et al. Molecular and Sociodemographic Colorectal Cancer Disparities in Latinos Living in Puerto Rico. Genes 2023, 14, 894. [Google Scholar] [CrossRef]
- Yamada, H.Y.; Xu, C.; Jones, K.L.; O’Neill, P.H.; Venkateshwar, M.; Chiliveru, S.; Kim, H.G.; Doescher, M.; Morris, K.T.; Manne, U.; et al. Molecular disparities in colorectal cancers of White Americans, Alabama African Americans, and Oklahoma American Indians. NPJ Precis. Oncol. 2023, 7, 79. [Google Scholar] [CrossRef] [PubMed]
Clinical Feature | H/L Cohort n (%) | NHW Cohort n (%) |
---|---|---|
Age * | ||
<50 | 21 (63.6%) | 65 (19.0%) |
≥50 | 12 (36.4%) | 276 (80.7%) |
Cancer Type | ||
Colon Adenocarcinoma | 24 (72.7%) | 235 (68.7%) |
Rectal Adenocarcinoma | 7 (21.2%) | 99 (28.9%) |
Colorectal Adenocarcinoma | 2 (6.1%) | 8 (2.3%) |
Sex | ||
Male | 20 (60.6%) | 183 (53.5%) |
Female | 13 (39.4%) | 159 (46.5%) |
Sample Type | ||
Primary Tumor | 33 (100.0%) | 342 (100.0%) |
Stage at Diagnosis ** | ||
Stage 0 (CIS) | 0 (0.0%) | 2 (0.6%) |
Stage I | 0 (0.0%) | 7 (2.0%) |
Stage II | 5 (15.2%) | 6 (1.8%) |
Stage III | 10 (30.3%) | 22 (6.4%) |
Stage IV | 13 (39.4%) | 14 (4.1%) |
Ethnicity | ||
Hispanic Or Latino | 5 (15.2%) | 0 (0.0%) |
Mexican (includes Chicano) | 23 (69.7%) | 0 (0.0%) |
Spanish NOS; Hispanic NOS, Latino NOS | 2 (6.1%) | 0 (0.0%) |
Spanish surname only | 3 (9.1%) | 0 (0.0%) |
Non-Spanish; Non-Hispanic | 0 (0.0%) | 342 (100.0%) |
Clinical Feature | Early-Onset H/L n (%) | Late-Onset H/L n (%) | p-Value | Early-Onset H/L n (%) | Early-Onset NHW n (%) | p-Value |
---|---|---|---|---|---|---|
Median Age (IQR) | 41 (36–45) | 63 (58–74) | 2.56 × 106 | 41 (36–45) | 43 (38–47) | 0.2149 |
Median mutation count | 9 (6–10) | 24 (7–63) | 0.4414 | 9 (6–10) | 58 (7–79) | 0.01093 |
Median TMB (IQR) * | 4.87 (1.89–21.38) | 3.8 (3.22–4.82) | 1 | 4.87 (1.89–21.38) | 4.32 (2.53–7.56) | 0.9215 |
Median FGA ** | 0.06 (0.04–0.28) | 0.31 (0.10–0.36) | 0.184 | 0.06 (0.04–0.28) | 0.17 (0.06–0.34) | 0.2275 |
Oncotree Code | ||||||
COAD | 14 (66.7%) | 10 (83.3%) | 0.56 | 14 (66.7%) | 38 (55.1%) | 0.22336 |
COADREAD | 2 (9.5%) | 0 (0.0%) | 2 (9.5%) | 5 (7.2%) | ||
READ | 5 (23.8%) | 2 (16.7%) | 5 (23.8%) | 22 (31.9%) | ||
Sex | ||||||
Male | 12 (57.1%) | 8 (66.7%) | 0.7188 | 12 (57.1%) | 35 (50.7%) | 0.9906 |
Female | 9 (42.9%) | 4 (33.3%) | 9 (42.9%) | 30 (43.5%) | ||
APC Mutation | ||||||
Present | 14 (66.7%) | 11 (91.7%) | 0.2062 | 14 (66.7%) | 36 (52.2%) | 0.5114 |
Absent | 7 (33.3%) | 1 (8.3%) | 7 (33.3%) | 29 (42.0%) | ||
KRAS Mutation | ||||||
Present | 8 (38.1%) | 6 (50.0%) | 0.7157 | 8 (38.1%) | 26 (37.7%) | 1 |
Absent | 13 (61.9%) | 6 (50.0%) | 13 (61.9%) | 39 (56.5%) | ||
TP53 Mutation | ||||||
Present | 15 (71.4%) | 9 (75.0%) | 1 | 15 (71.4%) | 47 (68.1%) | 1 |
Absent | 6 (28.6%) | 3 (25.0%) | 6 (28.6%) | 18 (26.1%) | ||
BMP7 Mutation | ||||||
Present | 0 (0.0%) | 0 (0.0%) | 1 | 0 (1200.0%) | 12 (18.5%) | 0.03361 |
Absent | 21 (100.0%) | 12 (100.0%) | 1 (5300.0%) | 53 (81.5%) |
Early-Onset H/L n (%) | Late-Onset H/L n (%) | p-Value | |
---|---|---|---|
WNT Alterations Present | 19 (90.5%) | 11 (91.7%) | 1 |
WNT Alterations Absent | 2 (9.5%) | 1 (8.3%) | |
TGF Alterations Present | 8 (38.1%) | 4 (33.3%) | 1 |
TGF Alterations Absent | 13 (61.9%) | 8 (66.7%) |
Early-Onset H/L n (%) | Early-Onset NHW n (%) | p-Value | |
---|---|---|---|
WNT Alterations Present | 19 (90.5%) | 44 (67.7%) | 0.04876 |
WNT Alterations Absent | 2 (9.5%) | 21 (32.3%) | |
TGF Alterations Present | 8 (38.1%) | 17 (26.2%) | 0.4071 |
TGF Alterations Absent | 13 (61.9%) | 48 (73.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monge, C.; Waldrup, B.; Carranza, F.G.; Velazquez-Villarreal, E. WNT and TGF-Beta Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Populations. Cancers 2024, 16, 3903. https://doi.org/10.3390/cancers16233903
Monge C, Waldrup B, Carranza FG, Velazquez-Villarreal E. WNT and TGF-Beta Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Populations. Cancers. 2024; 16(23):3903. https://doi.org/10.3390/cancers16233903
Chicago/Turabian StyleMonge, Cecilia, Brigette Waldrup, Francisco G. Carranza, and Enrique Velazquez-Villarreal. 2024. "WNT and TGF-Beta Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Populations" Cancers 16, no. 23: 3903. https://doi.org/10.3390/cancers16233903
APA StyleMonge, C., Waldrup, B., Carranza, F. G., & Velazquez-Villarreal, E. (2024). WNT and TGF-Beta Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Populations. Cancers, 16(23), 3903. https://doi.org/10.3390/cancers16233903