Immune Assessment Today: Optimizing and Standardizing Efforts to Monitor Immune Responses in Cancer and Beyond
Abstract
:Simple Summary
Abstract
1. Introduction
2. Multi-Omics and Cross-Trial Analyses
3. Biomarkers of Effective Treatment
4. Predicting Responses to Immunotherapy
5. Assessment in (Pre)Clinical Trials
6. Soldano Ferrone Lecture
7. Refining Patient Selection
8. Measuring Hypoxia-Induced Immune Suppression
9. Technical Advances
10. Monitoring Success in Cancer Vaccine Development
11. Harmonizing Immune Monitoring
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclosures
References
- Tsuji, T.; Sabbatini, P.; Jungbluth, A.A.; Ritter, E.; Pan, L.; Ritter, G.; Ferran, L.; Spriggs, D.; Salazar, A.M.; Gnjatic, S. Effect of Montanide and poly-ICLC adjuvant on human self/tumor antigen-specific CD4+ T cells in phase I overlapping long peptide vaccine trial. Cancer Immunol. Res. 2013, 1, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.T.; Lowy, D.R.; Frazer, I.H.; Finn, O.J.; Vilar, E.; Lyerly, H.K.; Gnjatic, S.; Zaidi, N.; Ott, P.A.; Balachandran, V.P.; et al. Cancer vaccines. Cancer Cell 2022, 40, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Dhainaut, M.; Rose, S.A.; Akturk, G.; Wroblewska, A.; Nielsen, S.R.; Park, E.S.; Buckup, M.; Roudko, V.; Pia, L.; Sweeney, R.; et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 2022, 185, 1223–1239.e20. [Google Scholar] [CrossRef] [PubMed]
- Coffey, D.G.; Maura, F.; Gonzalez-Kozlova, E.; Diaz-Mejia, J.J.; Luo, P.; Zhang, Y.; Xu, Y.; Warren, E.H.; Dawson, T.; Lee, B.; et al. Immunophenotypic correlates of sustained MRD negativity in patients with multiple myeloma. Nat. Commun. 2023, 14, 5335. [Google Scholar] [CrossRef] [PubMed]
- Magen, A.; Hamon, P.; Fiaschi, N.; Soong, B.Y.; Park, M.D.; Mattiuz, R.; Humblin, E.; Troncoso, L.; D’Souza, D.; Dawson, T.; et al. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 2023, 29, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.X.; Song, M.; Maecker, H.T.; Gnjatic, S.; Patton, D.; Lee, J.J.; Adam, S.J.; Moravec, R.; Liu, X.S.; Cerami, E.; et al. Network for Biomarker Immunoprofiling for Cancer Immunotherapy: Cancer Immune Monitoring and Analysis Centers and Cancer Immunologic Data Commons (CIMAC-CIDC). Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 5038–5048. [Google Scholar] [CrossRef] [PubMed]
- Chudnovskiy, A.; Mortha, A.; Kana, V.; Kennard, A.; Ramirez, J.D.; Rahman, A.; Remark, R.; Mogno, I.; Ng, R.; Gnjatic, S.; et al. Host-Protozoan Interactions Protect from Mucosal Infections through Activation of the Inflammasome. Cell 2016, 167, 444–456.e14. [Google Scholar] [CrossRef]
- Tsuji, T.; Eng, K.H.; Matsuzaki, J.; Battaglia, S.; Szender, J.B.; Miliotto, A.; Gnjatic, S.; Bshara, W.; Morrison, C.D.; Lele, S.; et al. Clonality and antigen-specific responses shape the prognostic effects of tumor-infiltrating T cells in ovarian cancer. Oncotarget 2020, 11, 2669–2683. [Google Scholar] [CrossRef]
- Mortha, A.; Remark, R.; Del Valle, D.M.; Chuang, L.S.; Chai, Z.; Alves, I.; Azevedo, C.; Gaifem, J.; Martin, J.; Petralia, F.; et al. Neutralizing Anti-Granulocyte Macrophage-Colony Stimulating Factor Autoantibodies Recognize Post-Translational Glycosylations on Granulocyte Macrophage-Colony Stimulating Factor Years Before Diagnosis and Predict Complicated Crohn’s Disease. Gastroenterology 2022, 163, 659–670. [Google Scholar] [CrossRef]
- Galsky, M.D.; Daneshmand, S.; Izadmehr, S.; Gonzalez-Kozlova, E.; Chan, K.G.; Lewis, S.; Achkar, B.E.; Dorff, T.B.; Cetnar, J.P.; Neil, B.O.; et al. Gemcitabine and cisplatin plus nivolumab as organ-sparing treatment for muscle-invasive bladder cancer: A phase 2 trial. Nat. Med. 2023, 29, 2825–2834. [Google Scholar] [CrossRef]
- Chen, X.; Lai, J.; Song, Y.; Yang, N.; Gnjatic, S.; Gillespie, V.; Hahn, W.; Chefitz, E.; Pittman, N.; Jossen, J.; et al. Butanol Purified Food Allergy Herbal Formula-2 Has an Immunomodulating Effect ex-vivo in Pediatric Crohn’s Disease Subjects. Front. Med. 2021, 8, 782859. [Google Scholar] [CrossRef] [PubMed]
- Kharel, A.; Shen, J.; Brown, R.; Chen, Y.; Nguyen, C.; Alson, D.; Bluemn, T.; Fan, J.; Gai, K.; Zhang, B.; et al. Loss of PBAF promotes expansion and effector differentiation of CD8+ T cells during chronic viral infection and cancer. Cell Rep. 2023, 42, 112649. [Google Scholar] [CrossRef] [PubMed]
- Markwell, S.M.; Ross, J.L.; Olson, C.L.; Brat, D.J. Necrotic reshaping of the glioma microenvironment drives disease progression. Acta Neuropathol. 2022, 143, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Godsel, L.M.; Roth-Carter, Q.R.; Koetsier, J.L.; Tsoi, L.C.; Huffine, A.L.; Broussard, J.A.; Fitz, G.N.; Lloyd, S.M.; Kweon, J.; Burks, H.E.; et al. Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. J. Clin. Investig. 2022, 132, e144363. [Google Scholar] [CrossRef] [PubMed]
- Hooper, M.J.; Enriquez, G.L.; Veon, F.L.; LeWitt, T.M.; Sweeney, D.; Green, S.J.; Seed, P.C.; Choi, J.; Guitart, J.; Burns, M.B.; et al. Narrowband ultraviolet B response in cutaneous T-cell lymphoma is characterized by increased bacterial diversity and reduced Staphylococcus aureus and Staphylococcus lugdunensis. Front. Immunol. 2022, 13, 1022093. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, K.; Han, X.; Cheng, Y.; Zhao, E.; Brat, D.J.; Sun, Z.; Fang, D. ATXN3 deubiquitinates YAP1 to promote tumor growth. Am. J. Cancer Res. 2023, 13, 4222–4234. [Google Scholar]
- Mani, N.; Andrews, D.; Obeng, R.C. Modulation of T cell function and survival by the tumor microenvironment. Front. Cell Dev. Biol. 2023, 11, 1191774. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313, 1960–1964. [Google Scholar] [CrossRef]
- Dudley, J.C.; Lin, M.T.; Lee, D.T.; Eshleman, J.R. Microsatellite instability as a biomarker for PD-1 blockade. Clin. Cancer Res. 2016, 22, 813–820. [Google Scholar] [CrossRef]
- Im, S.J.; Obeng, R.C.; Nasti, T.H.; McManus, D.; Kamphorst, A.O.; Gunisetty, S.; Prokhnevska, N.; Carlisle, J.W.; Yu, K.; Sica, G.L.; et al. Characteristics and anatomic location of PD-1+TCF1+ stem-like CD8 T cells in chronic viral infection and cancer. Proc. Natl. Acad. Sci. USA 2023, 120, e2221985120. [Google Scholar] [CrossRef]
- Kim, K.H.; Cho, J.; Ku, B.M.; Koh, J.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Cheon, J.; Min, Y.J.; Park, S.H.; et al. The first-week proliferative response of peripheral blood PD-1+ CD8+ cells predicts the response to anti-PD-1 therapy in solid tumors. Clin Cancer Res. 2019, 25, 2144–2154. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Zannikou, M.; Ilut, L.; Fischietti, M.; Ji, C.; Oku, C.V.; Horvath, C.M.; Le Poole, I.C.; Bosenberg, M.; Bartom, E.T.; et al. Targeting ULK1 Decreases IFNγ-Mediated Resistance to Immune Checkpoint Inhibitors. Mol. Cancer Res. MCR 2023, 21, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Lingblom, C.M.D.; Kowli, S.; Swaminathan, N.; Maecker, H.T.; Lambert, S.L. Baseline immune profile by CyTOF can predict response to an investigational adjuvanted vaccine in elderly adults. J. Transl. Med. 2018, 16, 153. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Sumughan, S.; Dellacecca, E.R.; Shivde, R.S.; Lancki, N.; Mukhatayev, Z.; Vaca, C.C.; Han, F.; Barse, L.; Henning, S.W.; et al. Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI Insight 2021, 6, e152014. [Google Scholar] [CrossRef] [PubMed]
- Pituch, K.C.; Zannikou, M.; Ilut, L.; Xiao, T.; Chastkofsky, M.; Sukhanova, M.; Bertolino, N.; Procissi, D.; Amidei, C.; Horbinski, C.M.; et al. Neural stem cells secreting bispecific T cell engager to induce selective antiglioma activity. Proc. Natl. Acad. Sci. USA 2021, 118, e2015800118. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xie, P.; Cowan, M.; Huang, H.; Cardenas, H.; Keathley, R.; Tanner, E.J.; Fleming, G.F.; Moroney, J.W.; Pant, A.; et al. Epigenetic priming enhances antitumor immunity in platinum-resistant ovarian cancer. J. Clin. Investig. 2022, 132, e158800. [Google Scholar] [CrossRef]
- Seo, Y.D.; Lu, H.; Black, G.; Smythe, K.; Yu, Y.; Hsu, C.; Ng, J.; Hermida de Viveiros, P.; Warren, E.H.; Schroeder, B.A.; et al. Toll-Like Receptor 4 Agonist Injection with Concurrent Radiotherapy in Patients with Metastatic Soft Tissue Sarcoma: A Phase 1 Nonrandomized Controlled Trial. JAMA Oncol. 2023, 9, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Larrocha, P.S.; Zhang, B.; Wainwright, D.; Dhar, P.; Wu, J.D. Antibody targeting tumor-derived soluble NKG2D ligand sMIC provides dual co-stimulation of CD8 T cells and enables sMIC(+) tumors respond to PD1/PD-L1 blockade therapy. J. Immunother. Cancer 2019, 7, 223. [Google Scholar] [CrossRef]
- Johnson, M.; Bell, A.; Lauing, K.L.; Ladomersky, E.; Zhai, L.; Penco-Campillo, M.; Shah, Y.; Mauer, E.; Xiu, J.; Nicolaides, T.; et al. Advanced age in humans and mouse models of glioblastoma show decreased survival from extratumoral influence. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 4973–4989. [Google Scholar] [CrossRef]
- Whiteside, T.; Zarour, H.M. In memoriam: Soldano Ferrone, MD, PhD (1940–2023). J. Immunother. Cancer 2023, 11, e006761. [Google Scholar] [CrossRef]
- Wang, Y.; Drum, D.L.; Sun, R.; Zhang, Y.; Chen, F.; Sun, F.; Dal, E.; Yu, L.; Jia, J.; Arya, S.; et al. Stressed target cancer cells drive nongenetic reprogramming of CAR T cells and solid tumor microenvironment. Nat. Commun. 2023, 14, 5727. [Google Scholar] [CrossRef] [PubMed]
- Boyle, T.J.; Berend, K.R.; DiMaio, J.M.; Coles, R.E.; Via, D.F.; Lyerly, H.K. Adoptive transfer of cytotoxic T lymphocytes for the treatment of transplant-associated lymphoma. Surgery 1993, 114, 218–225, discussion 226. [Google Scholar] [PubMed]
- DiMaio, J.M.; Van Trigt, P.; Gaynor, J.W.; Davis, R.D.; Coveney, E.; Clary, B.M.; Lyerly, H.K. Generation of tumor-specific T lymphocytes for the treatment of posttransplant lymphoma. Circulation 1995, 92, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Kohrt, H.E.; Tumeh, P.C.; Benson, D.; Bhardwaj, N.; Brody, J.; Formenti, S.; Fox, B.A.; Galon, J.; June, C.H.; Kalos, M.; et al. Immunodynamics: A cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. J. Immunother. Cancer 2016, 4, 15. [Google Scholar] [CrossRef]
- Maecker, H.T.; Hassler, J.; Payne, J.K.; Summers, A.; Comatas, K.; Ghanayem, M.; Morse, M.A.; Clay, T.M.; Lyerly, H.K.; Bhatia, S.; et al. Precision and linearity targets for validation of an IFNgamma ELISPOT, cytokine flow cytometry, and tetramer assay using CMV peptides. BMC Immunol. 2008, 9, 9. [Google Scholar] [CrossRef]
- Morse, M.A.; Niedzwiecki, D.; Marshall, J.L.; Garrett, C.; Chang, D.Z.; Aklilu, M.; Crocenzi, T.S.; Cole, D.J.; Dessureault, S.; Hobeika, A.C.; et al. A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann. Surg. 2013, 258, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.A.; Hobeika, A.C.; Osada, T.; Serra, D.; Niedzwiecki, D.; Lyerly, H.K.; Clay, T.M. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 2008, 112, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Morse, M.A.; Hobeika, A.C.; Osada, T.; Berglund, P.; Hubby, B.; Negri, S.; Niedzwiecki, D.; Devi, G.R.; Burnett, B.K.; Clay, T.M.; et al. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer. J. Clin. Investig. 2010, 120, 3234–3241. [Google Scholar] [CrossRef]
- Crosby, E.J.; Hobeika, A.C.; Niedzwiecki, D.; Rushing, C.; Hsu, D.; Berglund, P.; Smith, J.; Osada, T.; Gwin Iii, W.R.; Hartman, Z.C.; et al. Long-term survival of patients with stage III colon cancer treated with VRP-CEA(6D), an alphavirus vector that increases the CD8+ effector memory T cell to Treg ratio. J. Immunother. Cancer 2020, 8, e001662. [Google Scholar] [CrossRef]
- Crosby, E.J.; Gwin, W.; Blackwell, K.; Marcom, P.K.; Chang, S.; Maecker, H.T.; Broadwater, G.; Hyslop, T.; Kim, S.; Rogatko, A.; et al. Vaccine-Induced Memory CD8+ T Cells Provide Clinical Benefit in HER2 Expressing Breast Cancer: A Mouse to Human Translational Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 2725–2736. [Google Scholar] [CrossRef]
- Crosby, E.J.; Acharya, C.R.; Haddad, A.F.; Rabiola, C.A.; Lei, G.; Wei, J.P.; Yang, X.Y.; Wang, T.; Liu, C.X.; Wagner, K.U.; et al. Stimulation of Oncogene-Specific Tumor-Infiltrating T Cells through Combined Vaccine and αPD-1 Enable Sustained Antitumor Responses against Established HER2 Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 4670–4681. [Google Scholar] [CrossRef] [PubMed]
- Boone, P.G.; Rochelle, L.K.; Ginzel, J.D.; Lubkov, V.; Roberts, W.L.; Nicholls, P.J.; Bock, C.; Flowers, M.L.; von Furstenberg, R.J.; Stripp, B.R.; et al. A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion. Nat. Commun. 2019, 10, 5490. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, V.A.; Iwamoto, F.; Lukas, R.V.; Sachdev, S.; Rabadan, R.; Sonabend, A.M. Can patient selection and neoadjuvant administration resuscitate PD-1 inhibitors for glioblastoma? J. Neurosurg. 2019, 132, 1667–1672. [Google Scholar] [CrossRef]
- Sonabend, A.M.; Stupp, R. Overcoming the Blood-Brain Barrier with an Implantable Ultrasound Device. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 3750–3752. [Google Scholar] [CrossRef]
- Dunn, G.P.; Cloughesy, T.F.; Maus, M.V.; Prins, R.M.; Reardon, D.A.; Sonabend, A.M. Emerging immunotherapies for malignant glioma: From immunogenomics to cell therapy. Neuro-Oncology 2020, 22, 1425–1438. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, A.X.; Gartrell, R.D.; Silverman, A.M.; Aparicio, L.; Chu, T.; Bordbar, D.; Shan, D.; Samanamud, J.; Mahajan, A.; et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 2019, 25, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, V.A.; Chen, A.X.; Kane, J.R.; Kang, S.J.; Kassab, C.; Dmello, C.; Zhao, J.; Burdett, K.B.; Upadhyayula, P.S.; Lee-Chang, C.; et al. ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nat. Cancer 2021, 2, 1372–1386. [Google Scholar] [CrossRef]
- Gould, A.; Zhang, D.; Arrieta, V.A.; Stupp, R.; Sonabend, A.M. Delivering albumin-bound paclitaxel across the blood-brain barrier for gliomas. Oncotarget 2021, 12, 2474–2475. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Dmello, C.; Chen, L.; Arrieta, V.A.; Gonzalez-Buendia, E.; Kane, J.R.; Magnusson, L.P.; Baran, A.; James, C.D.; Horbinski, C.; et al. Ultrasound-mediated Delivery of Paclitaxel for Glioma: A Comparative Study of Distribution, Toxicity, and Efficacy of Albumin-bound Versus Cremophor Formulations. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 477–486. [Google Scholar] [CrossRef]
- Sonabend, A.M.; Gould, A.; Amidei, C.; Ward, R.; Schmidt, K.A.; Zhang, D.Y.; Gomez, C.; Bebawy, J.F.; Liu, B.P.; Bouchoux, G.; et al. Repeated blood-brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: A phase 1 trial. Lancet Oncol. 2023, 24, 509–522. [Google Scholar] [CrossRef]
- Perez, C.; Plaza-Rojas, L.; Boucher, J.C.; Nagy, M.Z.; Kostenko, E.; Prajapati, K.; Burke, B.; Reyes, M.D.; Austin, A.L.; Zhang, S.; et al. NKG2D receptor signaling shapes T cell thymic education. J. Leukoc. Biol. 2023, 115, 306–321. [Google Scholar] [CrossRef]
- O’Sullivan, J.A.; Kohlhapp, F.J.; Zloza, A.; Plaza-Rojas, L.; Burke, B.; Dulin, N.O.; Guevara-Patiño, J.A. Memory Precursors and Short-Lived Effector T cell Subsets Have Different Sensitivities to TGFβ. Int. J. Mol. Sci. 2023, 24, 3930. [Google Scholar] [CrossRef]
- Chaudhary, R.; Slebos, R.J.C.; Noel, L.C.; Song, F.; Poole, M.I.; Hoening, D.S.; Hernandez-Prera, J.C.; Conejo-Garcia, J.R.; Guevara-Patino, J.A.; Wang, X.; et al. EGFR Inhibition by Cetuximab Modulates Hypoxia and IFN Response Genes in Head and Neck Squamous Cell Carcinoma. Cancer Res. Commun. 2023, 3, 896–907. [Google Scholar] [CrossRef]
- Jaishankar, D.; Cosgrove, C.; Ramesh, P.; Mahon, J.; Shivde, R.; Dellacecca, E.R.; Yang, S.F.; Mosenson, J.; Guevara-Patiño, J.A.; Le Poole, I.C. HSP70i(Q435A) to subdue autoimmunity and support anti-tumor responses. Cell Stress Chaperones 2021, 26, 845–857. [Google Scholar] [CrossRef]
- Conejo-Garcia, J.R.; Guevara-Patino, J.A. Barriers and Opportunities for CAR T-Cell Targeting of Solid Tumors. Immunol. Investig. 2022, 51, 2215–2225. [Google Scholar] [CrossRef]
- Kohlhapp, F.J.; Zloza, A.; O’Sullivan, J.A.; Moore, T.V.; Lacek, A.T.; Jagoda, M.C.; McCracken, J.; Cole, D.J.; Guevara-Patiño, J.A. CD8+ T cells sabotage their own memory potential through IFN-γ-dependent modification of the IL-12/IL-15 receptor α axis on dendritic cells. J. Immunol. 2012, 188, 3639–3647. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, X.; Hochrein, S.M.; Eckstein, M.; Gubert, G.F.; Knöpper, K.; Mansilla, A.M.; Öner, A.; Doucet-Ladevèze, R.; Schmitz, W.; et al. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming. Nat. Commun. 2023, 14, 6858. [Google Scholar] [CrossRef]
- Biyashev, D.; Siwicka, Z.E.; Onay, U.V.; Demczuk, M.; Xu, D.; Ernst, M.K.; Evans, S.T.; Nguyen, C.V.; Son, F.A.; Paul, N.K.; et al. Topical application of synthetic melanin promotes tissue repair. NPJ Regen. Med. 2023, 8, 61. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, D.; Dowell, R.; Yi, R. Single cell analysis of transcriptome and open chromatin reveals the dynamics of hair follicle stem cell aging. Front. Aging 2023, 4, 1192149. [Google Scholar] [CrossRef]
- Lee-Chang, C.; Lesniak, M.S. Next-generation antigen-presenting cell immune therapeutics for gliomas. J. Clin. Investig. 2023, 133, e163449. [Google Scholar] [CrossRef]
- Larkin, C.J.; Arrieta, V.A.; Najem, H.; Li, G.; Zhang, P.; Miska, J.; Chen, P.; James, C.D.; Sonabend, A.M.; Heimberger, A.B. Myeloid Cell Classification and Therapeutic Opportunities Within the Glioblastoma Tumor Microenvironment in the Single Cell-Omics Era. Front. Immunol. 2022, 13, 907605. [Google Scholar] [CrossRef]
- Butterfield, L.H.; Jilani, S.M.; Chakraborty, N.G.; Bui, L.A.; Ribas, A.; Dissette, V.B.; Lau, R.; Gamradt, S.C.; Glaspy, J.A.; McBride, W.H.; et al. Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. J. Immunol. 1998, 161, 5607–5613. [Google Scholar] [CrossRef]
- Müller, S.; Agnihotri, S.; Shoger, K.E.; Myers, M.I.; Smith, N.; Chaparala, S.; Villanueva, C.R.; Chattopadhyay, A.; Lee, A.V.; Butterfield, L.H.; et al. Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas. JCI Insight 2018, 3, e98791. [Google Scholar] [CrossRef]
- Butterfield, L.H.; Vujanovic, L.; Santos, P.M.; Maurer, D.M.; Gambotto, A.; Lohr, J.; Li, C.; Waldman, J.; Chandran, U.; Lin, Y.; et al. Multiple antigen-engineered DC vaccines with or without IFNα to promote antitumor immunity in melanoma. J. Immunother. Cancer 2019, 7, 113. [Google Scholar] [CrossRef]
- Butterfield, L.H.; Gooding, W.; Whiteside, T.L. Development of a potency assay for human dendritic cells: IL-12p70 production. J. Immunother. 2008, 31, 89–100. [Google Scholar] [CrossRef]
- Kalinski, P.; Edington, H.; Zeh, H.J.; Okada, H.; Butterfield, L.H.; Kirkwood, J.M.; Bartlett, D.L. Dendritic cells in cancer immunotherapy: Vaccines or autologous transplants? Immunol. Res. 2011, 50, 235–247. [Google Scholar] [CrossRef]
- Maurer, D.M.; Adamik, J.; Santos, P.M.; Shi, J.; Shurin, M.R.; Kirkwood, J.M.; Storkus, W.J.; Butterfield, L.H. Dysregulated NF-κB-Dependent ICOSL Expression in Human Dendritic Cell Vaccines Impairs T-cell Responses in Patients with Melanoma. Cancer Immunol. Res. 2020, 8, 1554–1567. [Google Scholar] [CrossRef]
- Munson, P.V.; Adamik, J.; Hartmann, F.J.; Favaro, P.M.B.; Ho, D.; Bendall, S.C.; Combes, A.J.; Krummel, M.F.; Zhang, K.; Kelley, R.K.; et al. Polyunsaturated Fatty Acid-Bound α-Fetoprotein Promotes Immune Suppression by Altering Human Dendritic Cell Metabolism. Cancer Res. 2023, 83, 1543–1557. [Google Scholar] [CrossRef]
- Adamik, J.; Munson, P.V.; Maurer, D.M.; Hartmann, F.J.; Bendall, S.C.; Argüello, R.J.; Butterfield, L.H. Immuno-metabolic dendritic cell vaccine signatures associate with overall survival in vaccinated melanoma patients. Nat. Commun. 2023, 14, 7211. [Google Scholar] [CrossRef]
- Santos, P.M.; Menk, A.V.; Shi, J.; Tsung, A.; Delgoffe, G.M.; Butterfield, L.H. Tumor-Derived α-Fetoprotein Suppresses Fatty Acid Metabolism and Oxidative Phosphorylation in Dendritic Cells. Cancer Immunol. Res. 2019, 7, 1001–1012. [Google Scholar] [CrossRef]
Tier 1 | Recommended for all longitudinally collected samples | Whole exome sequencing RNAseq/panel-based RNA sequencing (Nanostring), PD-L1 and multiplex immunohistology for tumor tissues, TCRseq of β-chain variable regions (Adaptive), CyTOF mass cytometry Olink proximity extension assay of soluble analytes ELISA to measure immunogenicity of tumor-associated antigens from blood. |
Tier 2 | Other approved assays | scRNAseq and CITEseq Spatial transcriptomics scTCR and -BCRseq Extracellular vesicle evaluation |
Tier 3 | May be performed | Specific analysis of functional markers, phosphorylation Measurements and cytokine detection by CyTOF ELISPOT to evaluate neoantigen expression Tetramer analysis Luminex/ELLA multiplex ELISA, seromics. |
Spectral Flow | CyTOF | |
---|---|---|
Number of parameters | 30–40 | 40–50 |
Sensitivity | Varies ~10x by channel | Varies ~4x by channel |
Spillover | Significant; requires deconvolution with single-color controls, panel design can be challenging | Minimal; generally no compensation required, relatively easy panel design |
Acquisition speed | 3000+ cells/s | 200–300 cells/s |
Other limitations | Tandem dye degeneration | No light scatter parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, S.; Cholak, M.E.; Yadali, R.; Sosman, J.A.; Tetreault, M.-P.; Fang, D.; Pollack, S.M.; Gnjatic, S.; Obeng, R.C.; Lyerly, H.K.; et al. Immune Assessment Today: Optimizing and Standardizing Efforts to Monitor Immune Responses in Cancer and Beyond. Cancers 2024, 16, 475. https://doi.org/10.3390/cancers16030475
Pandey S, Cholak ME, Yadali R, Sosman JA, Tetreault M-P, Fang D, Pollack SM, Gnjatic S, Obeng RC, Lyerly HK, et al. Immune Assessment Today: Optimizing and Standardizing Efforts to Monitor Immune Responses in Cancer and Beyond. Cancers. 2024; 16(3):475. https://doi.org/10.3390/cancers16030475
Chicago/Turabian StylePandey, Surya, Meghan E. Cholak, Rishita Yadali, Jeffrey A. Sosman, Marie-Pier Tetreault, Deyu Fang, Seth M. Pollack, Sacha Gnjatic, Rebecca C. Obeng, H. Kim Lyerly, and et al. 2024. "Immune Assessment Today: Optimizing and Standardizing Efforts to Monitor Immune Responses in Cancer and Beyond" Cancers 16, no. 3: 475. https://doi.org/10.3390/cancers16030475
APA StylePandey, S., Cholak, M. E., Yadali, R., Sosman, J. A., Tetreault, M. -P., Fang, D., Pollack, S. M., Gnjatic, S., Obeng, R. C., Lyerly, H. K., Sonabend, A. M., Guevara-Patiño, J. A., Butterfield, L. H., Zhang, B., Maecker, H. T., & Le Poole, I. C. (2024). Immune Assessment Today: Optimizing and Standardizing Efforts to Monitor Immune Responses in Cancer and Beyond. Cancers, 16(3), 475. https://doi.org/10.3390/cancers16030475