Retinoid Therapy for Neuroblastoma: Historical Overview, Regulatory Challenges, and Prospects
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Basic Science of Retinoids
2.1. Discovery of Vitamin A and Its Utility as a Cancer Treatment
2.2. Retinoid Chemistry
2.3. Retinoid Receptors and Their Signal Pathways
3. Preclinical Evaluation of Retinoids for Neuroblastoma Treatment
4. Clinical Development of Isotretinoin for Neuroblastoma
Study Group | Study Design (Phase) | N | Dosage/Schedule | Target Condition | Findings | Ref. |
---|---|---|---|---|---|---|
CCG | Dose-finding (phase 1) | 29 | 100 mg/m2/d QD | Refractory disease | Two patients had a clinical response. Median OS: 46 days | [13] |
CHLA | Dose-finding (phase 1) | 51 | 100–200 mg/m2/d BID for 14 d, 14 d rest | Patients after SCT | RD was 160 mg/m2/d. Three patients with BM met achieved CR. | [14] |
CCG | Randomized, Open (phase 3) | 258 * | 160 mg/m2/d BID for 14 d, 14 d rest | Patients after SCT | Three-year EFS was significantly better in isotretinoin arm (46 vs. 29%). | [15,16] |
EU | Randomized, Double-blind (phase 3) | 175 | 0.75 mg/kg/d QD | Patients after SCT | Three-year EFS did not differ (37% in isotretinoin vs. 42% in placebo). | [51] |
5. Pharmacokinetic Issues and Countermeasures
6. Pediatric Off-Label Use and Countermeasures
7. Prospects for Retinoid Therapy
Drug | Study Design (Phase) | N | RD/Schedule | Efficacy Findings | Ref. |
---|---|---|---|---|---|
Fenretinide | Dose-finding (phase 1) | 54 | 4000 mg/m2/d QD for 28 d, 7 d rest | Forty-one patients achieved SD for a median period of 23 months. | [31] |
Fenretinide | Dose-finding (phase 1) | 54 | 2475 mg/m2/d QD | One and thirteen of thirty patients achieved CR and SD, respectively. | [32] |
Fenretinide | Safety/efficacy (phase 2) | 62 | 2475 mg/m2/d TID (<18 y) 1800 mg/m2/d BID (≥18 y) | One and thirteen of fifty-nine patients achieved PR and SD, respectively. | [33] |
Fenretinide LXS | Dose-finding (phase 1) | 32 | 1500 mg/m2/d TID for 6 d, 15 d rest | Four and six patients with bone marrow disease achieved CR and SD, respectively. | [34] |
Tamibarotene | Dose-finding (phase 1) | 22 | 12 mg/m2/d BID for 21 d, 7 d rest | No patient achieved CR or PR. | [35] |
Isotretinoin (I) + vorinostat (V) | Dose-finding (phase 1) | 29 | (I) 160 mg/m2/d BID for 14 d, 14 d rest (V) 430 mg/m2/d QD on d 1–4 and d 8–11 | No patient showed an objective response. The RD achieved a sufficient vorinostat level to facilitate histone deacetylation in vitro. | [66] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and Adolescent Cancer Statistics, 2014. CA Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef]
- Okawa, S.; Saika, K. International Variations in Neuroblastoma Incidence in Children and Adolescents. Jpn. J. Clin. Oncol. 2022, 52, 656–658. [Google Scholar] [CrossRef]
- Park, J.R.; Hogarty, M.D.; Bagatell, R.; Schleiermacher, G.; Mosse, Y.P.; Maris, J.M. Neuroblastoma. In Pizzo and Poplack’s Pediatric Oncology; Blaney, S.M., Adamson, P.C., Helman, L.J., Eds.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2021; pp. 647–672. [Google Scholar]
- Cohn, S.L.; Pearson, A.D.J.; London, W.B.; Monclair, T.; Ambros, P.F.; Brodeur, G.M.; Faldum, A.; Hero, B.; Iehara, T.; Machin, D.; et al. The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report. J. Clin. Oncol. 2009, 27, 289–297. [Google Scholar] [CrossRef]
- Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; London, W.B.; Kreissman, S.G.; Chen, H.X.; Smith, M.; Anderson, B.; Villablanca, J.G.; Matthay, K.K.; et al. Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma. N. Engl. J. Med. 2010, 363, 1324–1334. [Google Scholar] [CrossRef]
- Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; Naranjo, A.; Diccianni, M.B.; Gan, J.; Hank, J.A.; Batova, A.; London, W.B.; Tenney, S.C.; et al. Long-Term Follow-up of a Phase III Study of Ch14.18 (Dinutuximab) + Cytokine Immunotherapy in Children with High-Risk Neuroblastoma: COG Study ANBL0032. Clin. Cancer Res. 2021, 27, 2179–2189. [Google Scholar] [CrossRef]
- Sidell, N. Retinoic Acid-Induced Growth Inhibition and Morphologic Differentiation of Human Neuroblastoma Cells in Vitro. J. Natl. Cancer Inst. 1982, 68, 589–596. [Google Scholar] [PubMed]
- Sidell, N.; Altman, A.; Haussler, M.R.; Seeger, R.C. Effects of Retinoic Acid (RA) on the Growth and Phenotypic Expression of Several Human Neuroblastoma Cell Lines. Exp. Cell Res. 1983, 148, 21–30. [Google Scholar] [CrossRef]
- Haussler, M.; Sidell, N.; Kelly, M.; Donaldson, C.; Altman, A.; Mangelsdorf, D. Specific High-Affinity Binding and Biologic Action of Retinoic Acid in Human Neuroblastoma Cell Lines. Proc. Natl. Acad. Sci. USA 1983, 80, 5525–5529. [Google Scholar] [CrossRef] [PubMed]
- Thiele, C.J.; Reynolds, C.P.; Israel, M.A. Decreased Expression of N-Myc Precedes Retinoic Acid-Induced Morphological Differentiation of Human Neuroblastoma. Nature 1985, 313, 404–406. [Google Scholar] [CrossRef]
- Reynolds, C.P.; Kane, D.J.; Einhorn, P.A.; Matthay, K.K.; Crouse, V.L.; Wilbur, J.R.; Shurin, S.B.; Seeger, R.C. Response of Neuroblastoma to Retinoic Acid in Vitro and in Vivo. Prog. Clin. Biol. Res. 1991, 366, 203–211. [Google Scholar] [PubMed]
- Reynolds, C.P.; Schindler, P.F.; Jones, D.M.; Gentile, J.L.; Proffitt, R.T.; Einhorn, P.A. Comparison of 13-Cis-Retinoic Acid to Trans-Retinoic Acid Using Human Neuroblastoma Cell Lines. Prog. Clin. Biol. Res. 1994, 385, 237–244. [Google Scholar] [PubMed]
- Finklestein, J.Z.; Krailo, M.D.; Lenarsky, C.; Ladisch, S.; Blair, G.K.; Reynolds, C.P.; Sitarz, A.L.; Hammond, G.D. 13-Cis-Retinoic Acid (NSC 122758) in the Treatment of Children with Metastatic Neuroblastoma Unresponsive to Conventional Chemotherapy: Report from the Childrens Cancer Study Group. Med. Pediatr. Oncol. 1992, 20, 307–311. [Google Scholar] [CrossRef]
- Villablanca, J.G.; Khan, A.A.; Avramis, V.I.; Seeger, R.C.; Matthay, K.K.; Ramsay, N.K.; Reynolds, C.P. Phase I Trial of 13-Cis-Retinoic Acid in Children with Neuroblastoma Following Bone Marrow Transplantation. J. Clin. Oncol. 1995, 13, 894–901. [Google Scholar] [CrossRef]
- Matthay, K.K.; Villablanca, J.G.; Seeger, R.C.; Stram, D.O.; Harris, R.E.; Ramsay, N.K.; Swift, P.; Shimada, H.; Black, C.T.; Brodeur, G.M.; et al. Treatment of High-Risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-Cis-Retinoic Acid. Children’s Cancer Group. N. Engl. J. Med. 1999, 341, 1165–1173. [Google Scholar] [CrossRef]
- Matthay, K.K.; Reynolds, C.P.; Seeger, R.C.; Shimada, H.; Adkins, E.S.; Haas-Kogan, D.; Gerbing, R.B.; London, W.B.; Villablanca, J.G. Long-Term Results for Children with High-Risk Neuroblastoma Treated on a Randomized Trial of Myeloablative Therapy Followed by 13-Cis-Retinoic Acid: A Children’s Oncology Group Study. J. Clin. Oncol. 2009, 27, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- di Masi, A.; Leboffe, L.; De Marinis, E.; Pagano, F.; Cicconi, L.; Rochette-Egly, C.; Lo-Coco, F.; Ascenzi, P.; Nervi, C. Retinoic Acid Receptors: From Molecular Mechanisms to Cancer Therapy. Mol. Asp. Med. 2015, 41, 1–115. [Google Scholar] [CrossRef] [PubMed]
- Karrer, P.; Morf, R. Pflanzenfarbstoffe XXXV. Zur Konstitution Des β-Carotins Und β-Dihydro-Carotins. Helv. Chim. Acta 1931, 14, 1033–1036. [Google Scholar] [CrossRef]
- Karrer, P.; Morf, R.; Schöpp, K. Zur Kenntnis Des Vitamins-A Aus Fischtranen. Helv. Chim. Acta 1931, 14, 1036–1040. [Google Scholar] [CrossRef]
- Goodman, G.E.; Alberts, D.S.; Meyskens, F.L. Retinol, Vitamins, and Cancer Prevention: 25 Years of Learning and Relearning. J. Clin. Oncol. 2008, 26, 5495–5496. [Google Scholar] [CrossRef]
- Breitman, T.R.; Selonick, S.E.; Collins, S.J. Induction of Differentiation of the Human Promyelocytic Leukemia Cell Line (HL-60) by Retinoic Acid. Proc. Natl. Acad. Sci. USA 1980, 77, 2936–2940. [Google Scholar] [CrossRef]
- Breitman, T.R.; Collins, S.J.; Keene, B.R. Terminal Differentiation of Human Promyelocytic Leukemic Cells in Primary Culture in Response to Retinoic Acid. Blood 1981, 57, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.E.; Ye, Y.C.; Chen, S.R.; Chai, J.R.; Lu, J.X.; Zhoa, L.; Gu, L.J.; Wang, Z.Y. Use of All-Trans Retinoic Acid in the Treatment of Acute Promyelocytic Leukemia. Blood 1988, 72, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Le Deley, M.C.; Castaigne, S.; Archimbaud, E.; Chomienne, C.; Link, H.; Guerci, A.; Duarte, M.; Daniel, M.T.; Bowen, D. Effect of All Transretinoic Acid in Newly Diagnosed Acute Promyelocytic Leukemia. Results of a Multicenter Randomized Trial. European APL 91 Group. Blood 1993, 82, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.; Kim, H.; Alonzo, T.; Gerbing, R.; Woods, W.; Weinstein, H.; Shepherd, L.; Schiffer, C.; Appelbaum, F.; Willman, C.; et al. Treatment of Children with Acute Promyelocytic Leukemia: Results of the First North American Intergroup Trial INT0129. Pediatr. Blood Cancer 2009, 53, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Testi, A.M.; Biondi, A.; Lo Coco, F.; Moleti, M.L.; Giona, F.; Vignetti, M.; Menna, G.; Locatelli, F.; Pession, A.; Barisone, E.; et al. GIMEMA-AIEOPAIDA Protocol for the Treatment of Newly Diagnosed Acute Promyelocytic Leukemia (APL) in Children. Blood 2005, 106, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Kutny, M.A.; Alonzo, T.A.; Gerbing, R.B.; Wang, Y.-C.; Raimondi, S.C.; Hirsch, B.A.; Fu, C.H.; Meshinchi, S.; Gamis, A.S.; Feusner, J.H.; et al. Arsenic Trioxide Consolidation Allows Anthracycline Dose Reduction for Pediatric Patients with Acute Promyelocytic Leukemia: Report From the Children’s Oncology Group Phase III Historically Controlled Trial AAML0631. J. Clin. Oncol. 2017, 35, 3021–3029. [Google Scholar] [CrossRef] [PubMed]
- Kutny, M.A.; Alonzo, T.A.; Abla, O.; Rajpurkar, M.; Gerbing, R.B.; Wang, Y.-C.; Hirsch, B.A.; Raimondi, S.; Kahwash, S.; Hardy, K.K.; et al. Assessment of Arsenic Trioxide and All-Trans Retinoic Acid for the Treatment of Pediatric Acute Promyelocytic Leukemia: A Report from the Children’s Oncology Group AAML1331 Trial. JAMA Oncol. 2022, 8, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.P.; Lemons, R.S. Retinoid Therapy of Childhood Cancer. Hematol. Oncol. Clin. N. Am. 2001, 15, 867–910. [Google Scholar] [CrossRef]
- Duvic, M.; Martin, A.G.; Kim, Y.; Olsen, E.; Wood, G.S.; Crowley, C.A.; Yocum, R.C.; Worldwide Bexarotene Study Group. Phase 2 and 3 Clinical Trial of Oral Bexarotene (Targretin Capsules) for the Treatment of Refractory or Persistent Early-Stage Cutaneous T-Cell Lymphoma. Arch. Dermatol. 2001, 137, 581–593. [Google Scholar]
- Garaventa, A.; Luksch, R.; Lo Piccolo, M.S.; Cavadini, E.; Montaldo, P.G.; Pizzitola, M.R.; Boni, L.; Ponzoni, M.; Decensi, A.; De Bernardi, B.; et al. Phase I Trial and Pharmacokinetics of Fenretinide in Children with Neuroblastoma. Clin. Cancer Res. 2003, 9, 2032–2039. [Google Scholar]
- Children’s Oncology Group (CCG 09709); Villablanca, J.G.; Krailo, M.D.; Ames, M.M.; Reid, J.M.; Reaman, G.H.; Reynolds, C.P. Phase I Trial of Oral Fenretinide in Children with High-Risk Solid Tumors: A Report from the Children’s Oncology Group (CCG 09709). J. Clin. Oncol. 2006, 24, 3423–3430. [Google Scholar] [CrossRef] [PubMed]
- Villablanca, J.G.; London, W.B.; Naranjo, A.; McGrady, P.; Ames, M.M.; Reid, J.M.; McGovern, R.M.; Buhrow, S.A.; Jackson, H.; Stranzinger, E.; et al. Phase II Study of Oral Capsular 4-Hydroxyphenylretinamide (4-HPR/Fenretinide) in Pediatric Patients with Refractory or Recurrent Neuroblastoma: A Report from the Children’s Oncology Group. Clin. Cancer Res. 2011, 17, 6858–6866. [Google Scholar] [CrossRef] [PubMed]
- Maurer, B.J.; Kang, M.H.; Villablanca, J.G.; Janeba, J.; Groshen, S.; Matthay, K.K.; Sondel, P.M.; Maris, J.M.; Jackson, H.A.; Goodarzian, F.; et al. Phase I Trial of Fenretinide Delivered Orally in a Novel Organized Lipid Complex in Patients with Relapsed/Refractory Neuroblastoma: A Report from the New Approaches to Neuroblastoma Therapy (NANT) Consortium. Pediatr. Blood Cancer 2013, 60, 1801–1808. [Google Scholar] [CrossRef] [PubMed]
- Nitani, C.; Hara, J.; Kawamoto, H.; Taguchi, T.; Kimura, T.; Yoshimura, K.; Hamada, A.; Kitano, S.; Hattori, N.; Ushijima, T.; et al. Phase I Study of Tamibarotene Monotherapy in Pediatric and Young Adult Patients with Recurrent/Refractory Solid Tumors. Cancer Chemother. Pharmacol. 2021, 88, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Germain, P.; Staels, B.; Dacquet, C.; Spedding, M.; Laudet, V. Overview of Nomenclature of Nuclear Receptors. Pharmacol. Rev. 2006, 58, 685–704. [Google Scholar] [CrossRef] [PubMed]
- Germain, P.; Chambon, P.; Eichele, G.; Evans, R.M.; Lazar, M.A.; Leid, M.; De Lera, A.R.; Lotan, R.; Mangelsdorf, D.J.; Gronemeyer, H. International Union of Pharmacology. LX. Retinoic Acid Receptors. Pharmacol. Rev. 2006, 58, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.P.; Matthay, K.K.; Villablanca, J.G.; Maurer, B.J. Retinoid Therapy of High-Risk Neuroblastoma. Cancer Lett. 2003, 197, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Rochette-Egly, C.; Germain, P. Dynamic and Combinatorial Control of Gene Expression by Nuclear Retinoic Acid Receptors (RARs). Nucl. Recept. Signal. 2009, 7, e005. [Google Scholar] [CrossRef]
- Al Tanoury, Z.; Piskunov, A.; Rochette-Egly, C. Vitamin A and Retinoid Signaling: Genomic and Nongenomic Effects. J. Lipid Res. 2013, 54, 1761–1775. [Google Scholar] [CrossRef]
- Dilworth, F.J.; Chambon, P. Nuclear Receptors Coordinate the Activities of Chromatin Remodeling Complexes and Coactivators to Facilitate Initiation of Transcription. Oncogene 2001, 20, 3047–3054. [Google Scholar] [CrossRef]
- Li, C.; Einhorn, P.A.; Reynolds, C.P. Expression of Retinoic Acid Receptors Alpha, Beta, and Gamma in Human Neuroblastoma Cell Lines. Prog. Clin. Biol. Res. 1994, 385, 221–227. [Google Scholar]
- Cheung, B.; Hocker, J.E.; Smith, S.A.; Norris, M.D.; Haber, M.; Marshall, G.M. Favorable Prognostic Significance of High-Level Retinoic Acid Receptor Beta Expression in Neuroblastoma Mediated by Effects on Cell Cycle Regulation. Oncogene 1998, 17, 751–759. [Google Scholar] [CrossRef]
- Girardi, C.S.; Rostirolla, D.C.; Lini, F.J.M.; Brum, P.O.; Delgado, J.; Ribeiro, C.T.; Teixeira, A.A.; Peixoto, D.O.; Heimfarth, L.; Kunzler, A.; et al. Nuclear RXRα and RXRβ Receptors Exert Distinct and Opposite Effects on RA-Mediated Neuroblastoma Differentiation. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.C.; Lin, H.Y.; Liao, P.L.; Huang, C.C.; Lin, L.L.; Hsu, W.M.; Chuang, J.H. Immunomodulator Polyinosinic-Polycytidylic Acid Enhances the Inhibitory Effect of 13-Cis-Retinoic Acid on Neuroblastoma through a TLR3-Related Immunogenic-Apoptotic Response. Lab. Investig. 2020, 100, 606–618. [Google Scholar] [CrossRef]
- Meseguer, S.; Escamilla, J.M.; Barettino, D. MiRNAs as Essential Mediators of the Actions of Retinoic Acid in Neuroblastoma Cells. In Neuroblastoma; Jones, M., Ed.; Hayle Medical: New York, NY, USA, 2015; pp. 281–297. ISBN 9789535111283. [Google Scholar]
- Otsuka, K.; Sasada, M.; Iyoda, T.; Nohara, Y.; Sakai, S.; Asayama, T.; Suenaga, Y.; Yokoi, S.; Higami, Y.; Kodama, H.; et al. Combining Peptide TNIIIA2 with All-Trans Retinoic Acid Accelerates N-Myc Protein Degradation and Neuronal Differentiation in MYCN-Amplified Neuroblastoma Cells. Am. J. Cancer Res. 2019, 9, 434–448. [Google Scholar] [PubMed]
- Ferreira, R.; Napoli, J.; Enver, T.; Bernardino, L.; Ferreira, L. Advances and Challenges in Retinoid Delivery Systems in Regenerative and Therapeutic Medicine. Nat. Commun. 2020, 11, 4265. [Google Scholar] [CrossRef] [PubMed]
- Kreissman, S.G.; Seeger, R.C.; Matthay, K.K.; London, W.B.; Sposto, R.; Grupp, S.A.; Haas-Kogan, D.A.; Laquaglia, M.P.; Yu, A.L.; Diller, L.; et al. Purged versus Non-Purged Peripheral Blood Stem-Cell Transplantation for High-Risk Neuroblastoma (COG A3973): A Randomised Phase 3 Trial. Lancet Oncol. 2013, 14, 999–1008. [Google Scholar] [CrossRef]
- Park, J.R.; Kreissman, S.G.; London, W.B.; Naranjo, A.; Cohn, S.L.; Hogarty, M.D.; Tenney, S.C.; Haas-Kogan, D.; Shaw, P.J.; Kraveka, J.M.; et al. Effect of Tandem Autologous Stem Cell Transplant vs. Single Transplant on Event-Free Survival in Patients With High-Risk Neuroblastoma: A Randomized Clinical Trial. JAMA 2019, 322, 746–755. [Google Scholar] [CrossRef]
- Kohler, J.A.; Imeson, J.; Ellershaw, C.; Lie, S.O. A Randomized Trial of 13-Cis Retinoic Acid in Children with Advanced Neuroblastoma after High-Dose Therapy. Br. J. Cancer 2000, 83, 1124–1127. [Google Scholar] [CrossRef]
- Khan, A.A.; Villablanca, J.G.; Reynolds, C.P.; Avramis, V.I. Pharmacokinetic Studies of 13-Cis-Retinoic Acid in Pediatric Patients with Neuroblastoma Following Bone Marrow Transplantation. Cancer Chemother. Pharmacol. 1996, 39, 34–41. [Google Scholar] [CrossRef]
- Veal, G.J.; Cole, M.; Errington, J.; Pearson, A.D.J.; Foot, A.B.M.; Whyman, G.; Boddy, A.V.; UKCCSG Pharmacology Working Group. Pharmacokinetics and Metabolism of 13-Cis-Retinoic Acid (Isotretinoin) in Children with High-Risk Neuroblastoma—A Study of the United Kingdom Children’s Cancer Study Group. Br. J. Cancer 2007, 96, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Veal, G.J.; Errington, J.; Rowbotham, S.E.; Illingworth, N.A.; Malik, G.; Cole, M.; Daly, A.K.; Pearson, A.D.J.; Boddy, A.V. Adaptive Dosing Approaches to the Individualization of 13-Cis-Retinoic Acid (Isotretinoin) Treatment for Children with High-Risk Neuroblastoma. Clin. Cancer Res. 2013, 19, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Veal, G.J.; Tweddle, D.A.; Visser, J.; Errington, J.; Buck, H.; Marange, J.; Moss, J.; Joseph, S.; Mulla, H. Pharmacokinetics and Safety of a Novel Oral Liquid Formulation of 13-Cis Retinoic Acid in Children with Neuroblastoma: A Randomized Crossover Clinical Trial. Cancers 2021, 13, 1868. [Google Scholar] [CrossRef] [PubMed]
- Webster, G.F.; Leyden, J.J.; Gross, J.A. Comparative Pharmacokinetic Profiles of a Novel Isotretinoin Formulation (Isotretinoin-Lidose) and the Innovator Isotretinoin Formulation: A Randomized, 4-Treatment, Crossover Study. J. Am. Acad. Dermatol. 2013, 69, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Madan, S.; Kumar, S.; Segal, J. Comparative Pharmacokinetic Profiles of a Novel Low-Dose Micronized-Isotretinoin 32 Mg Formulation and Lidose-Isotretinoin 40 Mg in Fed and Fasted Conditions: Two Open-Label, Randomized, Crossover Studies in Healthy Adult Participants. Acta Derm. Venereol. 2020, 100, adv00049. [Google Scholar]
- Sonawane, P.; Cho, H.E.; Tagde, A.; Verlekar, D.; Yu, A.L.; Reynolds, C.P.; Kang, M.H. Metabolic Characteristics of 13-Cis-Retinoic Acid (Isotretinoin) and Anti-Tumour Activity of the 13-Cis-Retinoic Acid Metabolite 4-Oxo-13-Cis-Retinoic Acid in Neuroblastoma. Br. J. Pharmacol. 2014, 171, 5330–5344. [Google Scholar] [CrossRef]
- Saitou, H.; Nakatani, D.; Myoui, A.; Kubota, T.; Ozono, K. Pediatric Drug Development in Japan: Current Issues and Perspectives. Clin. Pediatr. Endocrinol. 2020, 29, 1–7. [Google Scholar] [CrossRef]
- De Wilde, B.; Barry, E.; Fox, E.; Karres, D.; Kieran, M.; Manlay, J.; Ludwinski, D.; Reaman, G.; Kearns, P. The Critical Role of Academic Clinical Trials in Pediatric Cancer Drug Approvals: Design, Conduct, and Fit for Purpose Data for Positive Regulatory Decisions. J. Clin. Oncol. 2022, 40, 3456. [Google Scholar] [CrossRef]
- Orienti, I.; Nguyen, F.; Guan, P.; Kolla, V.; Calonghi, N.; Farruggia, G.; Chorny, M.; Brodeur, G.M. A Novel Nanomicellar Combination of Fenretinide and Lenalidomide Shows Marked Antitumor Activity in a Neuroblastoma Xenograft Model. Drug Des. Dev. Ther. 2019, 13, 4305–4319. [Google Scholar] [CrossRef]
- Gurunathan, S.; Jeyaraj, M.; Kang, M.-H.; Kim, J.-H. Anticancer Properties of Platinum Nanoparticles and Retinoic Acid: Combination Therapy for the Treatment of Human Neuroblastoma Cancer. Int. J. Mol. Sci. 2020, 21, 6792. [Google Scholar] [CrossRef] [PubMed]
- Del Bufalo, F.; De Angelis, B.; Caruana, I.; Del Baldo, G.; De Ioris, M.A.; Serra, A.; Mastronuzzi, A.; Cefalo, M.G.; Pagliara, D.; Amicucci, M.; et al. GD2-CART01 for Relapsed or Refractory High-Risk Neuroblastoma. N. Engl. J. Med. 2023, 388, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.H.; Villablanca, J.G.; Glade Bender, J.L.; Matthay, K.K.; Groshen, S.; Sposto, R.; Czarnecki, S.; Ames, M.M.; Reynolds, C.P.; Marachelian, A.; et al. Probable Fatal Drug Interaction between Intravenous Fenretinide, Ceftriaxone, and Acetaminophen: A Case Report from a New Approaches to Neuroblastoma (NANT) Phase I Study. BMC Res. Notes 2014, 7, 256. [Google Scholar] [CrossRef] [PubMed]
- Shiohira, H.; Kitaoka, A.; Shirasawa, H.; Enjoji, M.; Nakashima, M. Am80 Induces Neuronal Differentiation in a Human Neuroblastoma NH-12 Cell Line. Int. J. Mol. Med. 2010, 26, 393–399. [Google Scholar] [PubMed]
- Shiohira, H.; Kitaoka, A.; Enjoji, M.; Uno, T.; Nakashima, M. Am80 Induces Neuronal Differentiation via Increased Tropomyosin-Related Kinase B Expression in a Human Neuroblastoma SH-SY5Y Cell Line. Biomed. Res. 2012, 33, 291–297. [Google Scholar] [CrossRef]
- Coffey, D.C.; Kutko, M.C.; Glick, R.D.; Swendeman, S.L.; Butler, L.; Rifkind, R.; Marks, P.A.; Richon, V.M.; LaQuaglia, M.P. Histone Deacetylase Inhibitors and Retinoic Acids Inhibit Growth of Human Neuroblastoma in Vitro. Med. Pediatr. Oncol. 2000, 35, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Coffey, D.C.; Kutko, M.C.; Glick, R.D.; Butler, L.M.; Heller, G.; Rifkind, R.A.; Marks, P.A.; Richon, V.M.; La Quaglia, M.P. The Histone Deacetylase Inhibitor, CBHA, Inhibits Growth of Human Neuroblastoma Xenografts in Vivo, Alone and Synergistically with All-Trans Retinoic Acid. Cancer Res. 2001, 61, 3591–3594. [Google Scholar] [PubMed]
- De los Santos, M.; Zambrano, A.; Sánchez-Pacheco, A.; Aranda, A. Histone Deacetylase Inhibitors Regulate Retinoic Acid Receptor Beta Expression in Neuroblastoma Cells by Both Transcriptional and Posttranscriptional Mechanisms. Mol. Endocrinol. 2007, 21, 2416–2426. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.; DuBois, S.G.; Marachelian, A.; Diede, S.J.; Taraseviciute, A.; Glade Bender, J.L.; Tsao-Wei, D.; Groshen, S.G.; Reid, J.M.; Haas-Kogan, D.A.; et al. Phase I Study of Vorinostat in Combination with Isotretinoin in Patients with Refractory/Recurrent Neuroblastoma: A New Approaches to Neuroblastoma Therapy (NANT) Trial. Pediatr. Blood Cancer 2018, 65, e27023. [Google Scholar] [CrossRef]
- Zage, P.E.; Zeng, L.; Palla, S.; Fang, W.; Nilsson, M.B.; Heymach, J.V.; Zweidler-McKay, P.A. A Novel Therapeutic Combination for Neuroblastoma: The Vascular Endothelial Growth Factor Receptor/Epidermal Growth Factor Receptor/Rearranged during Transfection Inhibitor Vandetanib with 13-Cis-Retinoic Acid. Cancer 2010, 116, 2465–2475. [Google Scholar] [CrossRef]
- Cheung, B.B.; Tan, O.; Koach, J.; Liu, B.; Shum, M.S.Y.; Carter, D.R.; Sutton, S.; Po’uha, S.T.; Chesler, L.; Haber, M.; et al. Thymosin-Β4 Is a Determinant of Drug Sensitivity for Fenretinide and Vorinostat Combination Therapy in Neuroblastoma. Mol. Oncol. 2015, 9, 1484–1500. [Google Scholar] [CrossRef]
- Hattori, N.; Asada, K.; Miyajima, N.; Mori, A.; Nakanishi, Y.; Kimura, K.; Wakabayashi, M.; Takeshima, H.; Nitani, C.; Hara, J.; et al. Combination of a Synthetic Retinoid and a DNA Demethylating Agent Induced Differentiation of Neuroblastoma through Retinoic Acid Signal Reprogramming. Br. J. Cancer 2021, 125, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Bayeva, N.; Coll, E.; Piskareva, O. Differentiating Neuroblastoma: A Systematic Review of the Retinoic Acid, Its Derivatives, and Synergistic Interactions. J. Pers. Med. 2021, 11, 211. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makimoto, A.; Fujisaki, H.; Matsumoto, K.; Takahashi, Y.; Cho, Y.; Morikawa, Y.; Yuza, Y.; Tajiri, T.; Iehara, T. Retinoid Therapy for Neuroblastoma: Historical Overview, Regulatory Challenges, and Prospects. Cancers 2024, 16, 544. https://doi.org/10.3390/cancers16030544
Makimoto A, Fujisaki H, Matsumoto K, Takahashi Y, Cho Y, Morikawa Y, Yuza Y, Tajiri T, Iehara T. Retinoid Therapy for Neuroblastoma: Historical Overview, Regulatory Challenges, and Prospects. Cancers. 2024; 16(3):544. https://doi.org/10.3390/cancers16030544
Chicago/Turabian StyleMakimoto, Atsushi, Hiroyuki Fujisaki, Kimikazu Matsumoto, Yoshiyuki Takahashi, Yuko Cho, Yoshihiko Morikawa, Yuki Yuza, Tatsuro Tajiri, and Tomoko Iehara. 2024. "Retinoid Therapy for Neuroblastoma: Historical Overview, Regulatory Challenges, and Prospects" Cancers 16, no. 3: 544. https://doi.org/10.3390/cancers16030544
APA StyleMakimoto, A., Fujisaki, H., Matsumoto, K., Takahashi, Y., Cho, Y., Morikawa, Y., Yuza, Y., Tajiri, T., & Iehara, T. (2024). Retinoid Therapy for Neuroblastoma: Historical Overview, Regulatory Challenges, and Prospects. Cancers, 16(3), 544. https://doi.org/10.3390/cancers16030544