CT Images in Follicular Lymphoma: Changes after Treatment Are Predictive of Cardiac Toxicity in Patients Treated with Anthracycline-Based or R-B Regimens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Radiomics Parameters
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacobsen, E. Follicular Lymphoma: 2023 Update on Diagnosis and Management. Am. J. Hematol. 2022, 97, 1638–1651. [Google Scholar] [CrossRef]
- Cerhan, J.R. Epidemiology of Follicular Lymphoma. Hematol. Oncol. Clin. N. Am. 2020, 34, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Freedman, A.; Jacobsen, E. Follicular Lymphoma: 2020 Update on Diagnosis and Management. Am. J. Hematol. 2020, 95, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Dreyling, M.; Ghielmini, M.; Rule, S.; Salles, G.; Ladetto, M.; Tonino, S.H.; Herfarth, K.; Seymour, J.F.; Jerkeman, M. Newly Diagnosed and Relapsed Follicular Lymphoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2021, 32, 298–308. [Google Scholar] [CrossRef]
- Carbone, A.; Roulland, S.; Gloghini, A.; Younes, A.; Von Keudell, G.; López-Guillermo, A.; Fitzgibbon, J. Follicular Lymphoma. Nat. Rev. Dis. Prim. 2019, 5, 83. [Google Scholar] [CrossRef]
- Kahl, B. High-risk Follicular Lymphoma: Treatment Options. Hematol. Oncol. 2021, 39, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Batlevi, C.L.; Sha, F.; Alperovich, A.; Ni, A.; Smith, K.; Ying, Z.; Soumerai, J.D.; Caron, P.C.; Falchi, L.; Hamilton, A.; et al. Follicular Lymphoma in the Modern Era: Survival, Treatment Outcomes, and Identification of High-Risk Subgroups. Blood Cancer J. 2020, 10, 74. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef]
- Hiddemann, W. Frontline Therapy with Rituximab Added to the Combination of Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone (CHOP) Significantly Improves the Outcome for Patients with Advanced-Stage Follicular Lymphoma Compared with Therapy with CHOP Alone: Results of a Prospective Randomized Study of the German Low-Grade Lymphoma Study Group. Blood 2005, 106, 3725–3732. [Google Scholar] [CrossRef]
- Rummel, M.J.; Niederle, N.; Maschmeyer, G.; Banat, G.A.; Von Grünhagen, U.; Losem, C.; Kofahl-Krause, D.; Heil, G.; Welslau, M.; Balser, C.; et al. Bendamustine plus Rituximab versus CHOP plus Rituximab as First-Line Treatment for Patients with Indolent and Mantle-Cell Lymphomas: An Open-Label, Multicentre, Randomised, Phase 3 Non-Inferiority Trial. Lancet 2013, 381, 1203–1210. [Google Scholar] [CrossRef]
- Flinn, I.W.; Van Der Jagt, R.; Kahl, B.S.; Wood, P.; Hawkins, T.E.; MacDonald, D.; Hertzberg, M.; Kwan, Y.-L.; Simpson, D.; Craig, M.; et al. Randomized Trial of Bendamustine-Rituximab or R-CHOP/R-CVP in First-Line Treatment of Indolent NHL or MCL: The BRIGHT Study. Blood 2014, 123, 2944–2952. [Google Scholar] [CrossRef]
- Broder, H.; Gottlieb, R.A.; Lepor, N.E. Chemotherapy and Cardiotoxicity. Rev. Cardiovasc. Med. 2008, 9, 75–83. [Google Scholar]
- Sala, V.; Della Sala, A.; Hirsch, E.; Ghigo, A. Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxid. Redox Signal. 2020, 32, 1098–1114. [Google Scholar] [CrossRef]
- Qiu, S.; Zhou, T.; Qiu, B.; Zhang, Y.; Zhou, Y.; Yu, H.; Zhang, J.; Liu, L.; Yuan, L.; Yang, G.; et al. Risk Factors for Anthracycline-Induced Cardiotoxicity. Front. Cardiovasc. Med. 2021, 8, 736854. [Google Scholar] [CrossRef]
- Cardinale, D.; Biasillo, G.; Salvatici, M.; Sandri, M.T.; Cipolla, C.M. Using Biomarkers to Predict and to Prevent Cardiotoxicity of Cancer Therapy. Expert Rev. Mol. Diagn. 2017, 17, 245–256. [Google Scholar] [CrossRef]
- Monti, C.B.; Schiaffino, S.; Galimberti Ortiz, M.D.M.; Capra, D.; Zanardo, M.; De Benedictis, E.; Luporini, A.G.; Spagnolo, P.; Secchi, F.; Sardanelli, F. Potential Role of Epicardial Adipose Tissue as a Biomarker of Anthracycline Cardiotoxicity. Insights Imaging 2021, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, D.B. Anthracyclines and Heart Failure. N. Engl. J. Med. 2013, 368, 1154–1156. [Google Scholar] [CrossRef] [PubMed]
- Chiocchi, M.; Cerocchi, M.; Di Tosto, F.; Rosenfeld, R.; Pasqualetto, M.; Vanni, G.; De Stasio, V.; Pugliese, L.; Di Donna, C.; Idone, G.; et al. Quantification of Extracellular Volume in CT in Neoadjuvant Chemotherapy in Breast Cancer: New Frontiers in Assessing the Cardiotoxicity of Anthracyclines and Trastuzumab. J. Pers. Med. 2023, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Gyöngyösi, M.; Lukovic, D.; Zlabinger, K.; Spannbauer, A.; Gugerell, A.; Pavo, N.; Traxler, D.; Pils, D.; Maurer, G.; Jakab, A.; et al. Liposomal Doxorubicin Attenuates Cardiotoxicity via Induction of Interferon-Related DNA Damage Resistance. Cardiovasc. Res. 2019, 116, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Haaf, P.; Garg, P.; Messroghli, D.R.; Broadbent, D.A.; Greenwood, J.P.; Plein, S. Cardiac T1 Mapping and Extracellular Volume (ECV) in Clinical Practice: A Comprehensive Review. J. Cardiovasc. Magn. Reson. 2017, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Cannaò, P.M.; Altabella, L.; Petrini, M.; Alì, M.; Secchi, F.; Sardanelli, F. Novel Cardiac Magnetic Resonance Biomarkers: Native T1 and Extracellular Volume Myocardial Mapping. Eur. Heart J. Suppl. 2016, 18, E64–E71. [Google Scholar] [CrossRef] [PubMed]
- Nacif, M.S.; Kawel, N.; Lee, J.J.; Chen, X.; Yao, J.; Zavodni, A.; Sibley, C.T.; Lima, J.A.C.; Liu, S.; Bluemke, D.A. Interstitial Myocardial Fibrosis Assessed as Extracellular Volume Fraction with Low-Radiation-Dose Cardiac CT. Radiology 2012, 264, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Egashira, K.; Sueta, D.; Tomiguchi, M.; Kidoh, M.; Oda, S.; Usuku, H.; Hidaka, K.; Goto-Yamaguchi, L.; Sueta, A.; Komorita, T.; et al. Cardiac Computed Tomography-Derived Extracellular Volume Fraction in Late Anthracycline-Induced Cardiotoxicity. IJC Heart Vasc. 2021, 34, 100797. [Google Scholar] [CrossRef]
- Schindler, T.H.; Sharma, V.; Bhandiwad, A. Cardiac Computed Tomography-Derived Extracellular Volume Fraction in the Identification of Cardiotoxicity: Another Emerging Imaging Option. IJC Heart Vasc. 2021, 34, 100806. [Google Scholar] [CrossRef]
- Bandula, S.; White, S.K.; Flett, A.S.; Lawrence, D.; Pugliese, F.; Ashworth, M.T.; Punwani, S.; Taylor, S.A.; Moon, J.C. Measurement of Myocardial Extracellular Volume Fraction by Using Equilibrium Contrast-Enhanced CT: Validation against Histologic Findings. Radiology 2013, 269, 396–403. [Google Scholar] [CrossRef]
- McLaughlin, T.; Schnittger, I.; Nagy, A.; Zanley, E.; Xu, Y.; Song, Y.; Nieman, K.; Tremmel, J.A.; Dey, D.; Boyd, J.; et al. Relationship Between Coronary Atheroma, Epicardial Adipose Tissue Inflammation, and Adipocyte Differentiation Across the Human Myocardial Bridge. J. Am. Heart Assoc. 2021, 10, e021003. [Google Scholar] [CrossRef]
- Talman, A.H.; Psaltis, P.J.; Cameron, J.D.; Meredith, I.T.; Seneviratne, S.K.; Wong, D.T.L. Epicardial Adipose Tissue: Far More than a Fat Depot. Cardiovasc. Diagn. Ther. 2014, 4, 416–429. [Google Scholar] [CrossRef]
- Goeller, M.; Achenbach, S.; Marwan, M.; Doris, M.K.; Cadet, S.; Commandeur, F.; Chen, X.; Slomka, P.J.; Gransar, H.; Cao, J.J.; et al. Epicardial Adipose Tissue Density and Volume Are Related to Subclinical Atherosclerosis, Inflammation and Major Adverse Cardiac Events in Asymptomatic Subjects. J. Cardiovasc. Comput. Tomogr. 2018, 12, 67–73. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Adhikari, B.K.; Chen, L.; Liu, W.; Wang, Y.; Zhang, H. The Role of Epicardial Adipose Tissue Dysfunction in Cardiovascular Diseases: An Overview of Pathophysiology, Evaluation, and Management. Front. Endocrinol. 2023, 14, 1167952. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Bianco, A.C. Epicardial Adipose Tissue: Emerging Physiological, Pathophysiological and Clinical Features. Trends Endocrinol. Metab. 2011, 22, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Rossi, V.A.; Gruebler, M.; Monzo, L.; Galluzzo, A.; Beltrami, M. The Different Pathways of Epicardial Adipose Tissue across the Heart Failure Phenotypes: From Pathophysiology to Therapeutic Target. Int. J. Mol. Sci. 2023, 24, 6838. [Google Scholar] [CrossRef]
- Miller, C.A.; Naish, J.H.; Bishop, P.; Coutts, G.; Clark, D.; Zhao, S.; Ray, S.G.; Yonan, N.; Williams, S.G.; Flett, A.S.; et al. Comprehensive Validation of Cardiovascular Magnetic Resonance Techniques for the Assessment of Myocardial Extracellular Volume. Circ. Cardiovasc. Imaging 2013, 6, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Gordon, M.J.; Smith, M.R.; Nastoupil, L.J. Follicular Lymphoma: The Long and Winding Road Leading to Your Cure? Blood Rev. 2023, 57, 100992. [Google Scholar] [CrossRef]
- Montoto, S.; Fitzgibbon, J. Transformation of Indolent B-Cell Lymphomas. J. Clin. Oncol. 2011, 29, 1827–1834. [Google Scholar] [CrossRef]
- Bhagat, A.; Kleinerman, E.S. Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. In Current Advances in Osteosarcoma; Kleinerman, E.S., Gorlick, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1257, pp. 181–192. ISBN 9783030430313. [Google Scholar]
- Armenian, S.; Bhatia, S. Predicting and Preventing Anthracycline-Related Cardiotoxicity. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 3–12. [Google Scholar] [CrossRef]
- Chiocchi, M.; Cavallo, A.; Pugliese, L.; Cesareni, M.; Pasquali, D.; Accardo, G.; De Stasio, V.; Spiritigliozzi, L.; Benelli, L.; D’Errico, F.; et al. Cardiac Computed Tomography Evaluation of Association of Left Ventricle Disfunction and Epicardial Adipose Tissue Density in Patients with Low to Intermediate Cardiovascular Risk. Medicina 2023, 59, 232. [Google Scholar] [CrossRef] [PubMed]
- Naaktgeboren, W.R.; Stuiver, M.M.; Van Harten, W.H.; Aaronson, N.K.; Scott, J.M.; Sonke, G.; Van Der Wall, E.; Velthuis, M.; Leiner, T.; Teske, A.J.; et al. Effects of Exercise during Chemotherapy for Breast Cancer on Long-Term Cardiovascular Toxicity. Open Heart 2023, 10, e002464. [Google Scholar] [CrossRef]
- Thavendiranathan, P.; Shalmon, T.; Fan, C.-P.S.; Houbois, C.; Amir, E.; Thevakumaran, Y.; Somerset, E.; Malowany, J.M.; Urzua-Fresno, C.; Yip, P.; et al. Comprehensive Cardiovascular Magnetic Resonance Tissue Characterization and Cardiotoxicity in Women With Breast Cancer. JAMA Cardiol. 2023, 8, 524. [Google Scholar] [CrossRef]
- Hong, Y.J.; Kim, G.M.; Han, K.; Kim, P.K.; Lee, S.A.; An, E.; Lee, J.Y.; Lee, H.-J.; Hur, J.; Kim, Y.J.; et al. Cardiotoxicity Evaluation Using Magnetic Resonance Imaging in Breast Cancer Patients (CareBest): Study Protocol for a Prospective Trial. BMC Cardiovasc. Disord. 2020, 20, 264. [Google Scholar] [CrossRef]
- Folco, G.; Monti, C.B.; Zanardo, M.; Silletta, F.; Capra, D.; Secchi, F.; Sardanelli, F. MRI-Derived Extracellular Volume as a Biomarker of Cancer Therapy Cardiotoxicity: Systematic Review and Meta-Analysis. Eur. Radiol. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P. Epicardial Adipose Tissue and Progression of Coronary Artery Calcium. JACC Cardiovasc. Imaging 2014, 7, 917–919. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G. Epicardial Adipose Tissue in Contemporary Cardiology. Nat. Rev. Cardiol. 2022, 19, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Van Woerden, G.; Van Veldhuisen, D.J.; Westenbrink, B.D.; De Boer, R.A.; Rienstra, M.; Gorter, T.M. Connecting Epicardial Adipose Tissue and Heart Failure with Preserved Ejection Fraction: Mechanisms, Management and Modern Perspectives. Eur. J. Heart Fail. 2022, 24, 2238–2250. [Google Scholar] [CrossRef]
- Monti, C.B.; Capra, D.; Zanardo, M.; Guarnieri, G.; Schiaffino, S.; Secchi, F.; Sardanelli, F. CT-Derived Epicardial Adipose Tissue Density: Systematic Review and Meta-Analysis. Eur. J. Radiol. 2021, 143, 109902. [Google Scholar] [CrossRef]
- Villasante Fricke, A.C.; Iacobellis, G. Epicardial Adipose Tissue: Clinical Biomarker of Cardio-Metabolic Risk. Int. J. Mol. Sci. 2019, 20, 5989. [Google Scholar] [CrossRef]
- Deng, G.; Long, Y.; Yu, Y.-R.; Li, M.-R. Adiponectin Directly Improves Endothelial Dysfunction in Obese Rats through the AMPK–eNOS Pathway. Int. J. Obes 2010, 34, 165–171. [Google Scholar] [CrossRef]
- Yerramasu, A.; Dey, D.; Venuraju, S.; Anand, D.V.; Atwal, S.; Corder, R.; Berman, D.S.; Lahiri, A. Increased Volume of Epicardial Fat Is an Independent Risk Factor for Accelerated Progression of Sub-Clinical Coronary Atherosclerosis. Atherosclerosis 2012, 220, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Mancio, J.; Azevedo, D.; Saraiva, F.; Azevedo, A.I.; Pires-Morais, G.; Leite-Moreira, A.; Falcao-Pires, I.; Lunet, N.; Bettencourt, N. Epicardial Adipose Tissue Volume Assessed by Computed Tomography and Coronary Artery Disease: A Systematic Review and Meta-Analysis. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 490–497. [Google Scholar] [CrossRef]
- Park, S.S.; Jung, J.; Mintz, G.S.; Jin, U.; Park, J.-S.; Park, B.; Shin, H.-B.; Seo, K.-W.; Yang, H.-M.; Lim, H.-S.; et al. Epicardial Adipose Tissue Thickness Is Related to Plaque Composition in Coronary Artery Disease. Diagnostics 2022, 12, 2836. [Google Scholar] [CrossRef]
- Pugliese, L.; Spiritigliozzi, L.; Di Tosto, F.; Ricci, F.; Cavallo, A.U.; Di Donna, C.; De Stasio, V.; Presicce, M.; Benelli, L.; D’Errico, F.; et al. Association of Plaque Calcification Pattern and Attenuation with Instability Features and Coronary Stenosis and Calcification Grade. Atherosclerosis 2020, 311, 150–157. [Google Scholar] [CrossRef]
- Thanassoulis, G.; Massaro, J.M.; O’Donnell, C.J.; Hoffmann, U.; Levy, D.; Ellinor, P.T.; Wang, T.J.; Schnabel, R.B.; Vasan, R.S.; Fox, C.S.; et al. Pericardial Fat Is Associated With Prevalent Atrial Fibrillation: The Framingham Heart Study. Circ. Arrhythmia Electrophysiol. 2010, 3, 345–350. [Google Scholar] [CrossRef]
- Iacobellis, G.; Assael, F.; Ribaudo, M.C.; Zappaterreno, A.; Alessi, G.; Di Mario, U.; Leonetti, F. Epicardial Fat from Echocardiography: A New Method for Visceral Adipose Tissue Prediction. Obes. Res. 2003, 11, 304–310. [Google Scholar] [CrossRef]
- Esposito, F.; Pascale, M.R.; Tesei, C.; Gigliotti, P.E.; Luciano, A.; Angeloni, C.; Marinoni, M.; Meconi, F.; Secchi, R.; Patanè, A.; et al. Body Composition in Patients with Follicular Lymphoma: Asso-Ciations between Changes in Radiomic Parameters in Patients Treated with R-CHOP-like and R-B Regimens: LyRa 01F. Cancers 2023, 15, 999. [Google Scholar] [CrossRef] [PubMed]
- Lucijanic, M.; Korunic, R.H.; Sedinic, M.; Kovacevic, S.; Atic, A.; Pejsa, V.; Kusec, R. Baseline and progressive adipopenia in newly diagnosed patients with diffuse large B-cell lymphoma with unfavorable features are associated with worse clinical outcomes. Leuk. Lymphoma 2022, 63, 1556–1565. [Google Scholar] [CrossRef] [PubMed]
- Scully, P.R.; Bastarrika, G.; Moon, J.C.; Treibel, T.A. Myocardial Extracellular Volume Quantification by Cardiovascular Magnetic Resonance and Computed Tomography. Curr. Cardiol. Rep. 2018, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Monti, C.B.; Zanardo, M.; Bosetti, T.; Alì, M.; De Benedictis, E.; Luporini, A.; Secchi, F.; Sardanelli, F. Assessment of Myocardial Extracellular Volume on Body Computed Tomography in Breast Cancer Patients Treated with Anthracyclines. Quant. Imaging Med. Surg. 2020, 10, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Shen, H.; Liu, R.; Wang, X.; Li, X.; Yuan, X.; Chen, Q.; Wang, Y.; Ran, Z.; Lan, X.; et al. Myocardial Extracellular Volume Derived from Contrast-Enhanced Chest Computed Tomography for Longitudinal Evaluation of Cardiotoxicity in Patients with Breast Cancer Treated with Anthracyclines. Insights Imaging 2022, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Cundari, G.; Galea, N.; Mergen, V.; Alkadhi, H.; Eberhard, M. Myocardial extracellular volume quantification with computed tomography-current status and future outlook. Insights Imaging 2023, 14, 156. [Google Scholar] [CrossRef]
Population (n = 80) | R-CHOP (n = 49) | R-Bendamustine (n = 31) | p-Value |
---|---|---|---|
Median age, years (range) | 66 (52–77) | 70 (59–81) | 0.053 |
Male/Female ratio | 1.0 (25:24) | 0.7 (13:18) | 0.428 |
Median height, cm ± SD (range) | 166.2 ± 9.1 (150.0–189.0) | 167.5 ± 7.9 (150.0–184.0) | 0.498 |
Median weight, kg ± SD (range) | 75.8 ± 21.2 (48.0–187.0) | 72.0 ± 14.2 (48.0–97.0) | 0.377 |
Median BMI ± SD (range) | 22.9 ± 6.3 (16.0–56.7) | 21.4 ± 3.8 (14.8–28.8) | 0.227 |
Grading | |||
G1 | 4.2% (2/48) | 16.1% (5/31) | 0.241 |
G1–G2 | 16.7% (8/48) | 16.1% (5/31) | |
G2 | 47.9% (23/48) | 42.0% (13/31) | |
G2–G3A | 6.2% (3/48) | 12.9% (4/31) | |
G3A | 25.0% (12/48) | 12.9% (4/31) | |
FLIPI s | |||
Low | 2.1% (1/48) | 9.7% (3/31) | 0.322 |
Intermediate | 58.3% (28/48) | 54.8% (17/31) | |
High | 39.6% (19/48) | 35.5% (11/31) |
Population (n = 80) | R-CHOP | R-Bendamustine | ||||
---|---|---|---|---|---|---|
Primary Endpoint | Pre-Therapy | Post-Therapy | p-Value | Pre-Therapy | Post-Therapy | p-Value |
Mean ± SD Apex (HU) | −79.12 ± 16.85 | −90.33 ± 19.27 | <0.001 | −78.55 ± 15.09 | −83.29 ± 14.66 | <0.001 |
Mean ± SD Anterior Sulcus (HU) | −79.12 ± 16.88 | −87.16 ± 18.15 | <0.001 | −76.64 ± 18.24 | −81.48 ± 19.05 | 0.139 |
Mean ± SD Posterior Sulcus (HU) | −79.84 ± 18.54 | −94.53 ± 20.23 | <0.001 | −72.39 ± 15.04 | −80.77 ± 20.28 | 0.018 |
Mean ± SD Epicardial Fat (HU) | −238.08 ± 43.97 | −272.02 ± 49.93 | <0.001 | −227.58 ± 41.17 | −245.55 ± 38.52 | 0.020 |
Mean ± SD ECV (%) | 0.304 ± 0.060 | 0.432 ± 0.097 | <0.001 | 0.315 ± 0.063 | 0.361 ± 0.117 | 0.022 |
Mean ± SD EF (%) | 64.2 ± 3.6 | 56.4 ± 16.4 | 0.001 | 63.4 ± 3.3 | 61.7 ± 3.8 | 0.013 |
Population (n = 80) | Mean ± SD | 95% CI | Mean ± SD | 95% CI | p-Value |
---|---|---|---|---|---|
Apex Delta (HU) | −11.20 ± 8.72 | (−13.70–−8.70) | −4.74 ± 9.07 | (−8.07–−1.41) | <0.001 |
Apex Delta (%) | −14.67 ± 13.66 | (−18.59–−10.75) | −7.10 ± 14.12 | (−12.29–−1.92) | <0.001 |
Anterior Sulcus Delta (HU) | −10.83 ± 11.77 | (−14.21–−7.44) | −9.67 ± 28.31 | (−20.26–0.51) | 0.016 |
Anterior Sulcus Delta (%) | −8.04 ± 8.34 | (−10.44–−5.64) | −4.84 ± 17.86 | (−11.39–1.71) | 0.016 |
Posterior Sulcus Delta (HU) | −14.69 ± 10.90 | (−17.83–−11.56) | −8.39 ± 18.72 | (−15.25–−1.52) | <0.001 |
Posterior Sulcus Delta (%) | −20.96 ± 22.53 | (−27.43–−14.49) | −13.64 ± 30.55 | (−24.85–−2.44) | <0.001 |
EAT Delta (HU) | −33.94 ± 20.09 | (−39.71–−28.17) | −17.97 ± 40.44 | (−32.80–−3.13) | <0.001 |
EAT Delta (%) | −14.61 ± 9.98 | (−17.47–−11.74) | −10.17 ± 22.62 | (−18.47–−1.88) | <0.001 |
ECV (%) Delta | 12.9 ± 8.8 | (10.3–15.4) | 4.7 ± 10.8 | (0.8–8.7) | <0.001 |
ECV Delta (%) | −45.42 ± 37.41 | (−56.28–−34.55) | −16.18 ± 35.96 | (−29.37–−2.99) | <0.001 |
EF (%) Delta | −7.82 ± 16.01 | (−12.41–−3.22) | −3.71 ± 11.87 | (−8.06–0.64) | <0.001 |
EF Delta (%) | 12.21 ± 26.61 | (4.57–19.85) | 5.67 ± 18.23 | (−1.01–12.36) | <0.001 |
Variable | Rho | p-Value |
---|---|---|
Apex pre-therapy (HU) | −0.538 | <0.001 |
Apex post-therapy (HU) | −0.463 | <0.001 |
Ant. sulcus pre-therapy (HU) | −0.367 | <0.001 |
Ant. sulcus post-therapy (HU) | −0.294 | 0.009 |
Post. sulcus pre-therapy (HU) | −0.429 | <0.001 |
Post. sulcus post-therapy (HU) | −0.482 | <0.001 |
Epicardial fat post-therapy (HU) | −0.500 | <0.001 |
Epicardial fat post-therapy (HU) | −0.507 | <0.001 |
Patient No. | Gender | CTCAE | Therapy | BMI | Apex Delta (HU) | Ant. Sulcus Delta (HU) | Post. Sulcus Delta (HU) | EF Delta (%) | ECV Delta | EF Delta (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | F | Atrial fibrillation (AF) | R-CHOP | 22.8 | −12 | −23 | −21 | −56 | 0.21 | −13 |
2 | F | Heart failure | R-CHOP | 21.8 | −9 | −10 | −14 | −33 | 0.15 | −6 |
3 | M | Heart failure | R-CHOP | 22.5 | −10 | −12 | −10 | −32 | 0.22 | −12 |
4 | F | Arterial thromboembolism | R-bendamustine | 20.9 | 0 | −2 | −2 | −4 | 0.10 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, F.; Mezzanotte, V.; Tesei, C.; Luciano, A.; Gigliotti, P.E.; Nunzi, A.; Secchi, R.; Angeloni, C.; Pitaro, M.; Meconi, F.; et al. CT Images in Follicular Lymphoma: Changes after Treatment Are Predictive of Cardiac Toxicity in Patients Treated with Anthracycline-Based or R-B Regimens. Cancers 2024, 16, 563. https://doi.org/10.3390/cancers16030563
Esposito F, Mezzanotte V, Tesei C, Luciano A, Gigliotti PE, Nunzi A, Secchi R, Angeloni C, Pitaro M, Meconi F, et al. CT Images in Follicular Lymphoma: Changes after Treatment Are Predictive of Cardiac Toxicity in Patients Treated with Anthracycline-Based or R-B Regimens. Cancers. 2024; 16(3):563. https://doi.org/10.3390/cancers16030563
Chicago/Turabian StyleEsposito, Fabiana, Valeria Mezzanotte, Cristiano Tesei, Alessandra Luciano, Paola Elda Gigliotti, Andrea Nunzi, Roberto Secchi, Cecilia Angeloni, Maria Pitaro, Federico Meconi, and et al. 2024. "CT Images in Follicular Lymphoma: Changes after Treatment Are Predictive of Cardiac Toxicity in Patients Treated with Anthracycline-Based or R-B Regimens" Cancers 16, no. 3: 563. https://doi.org/10.3390/cancers16030563
APA StyleEsposito, F., Mezzanotte, V., Tesei, C., Luciano, A., Gigliotti, P. E., Nunzi, A., Secchi, R., Angeloni, C., Pitaro, M., Meconi, F., Cerocchi, M., Garaci, F., Venditti, A., Postorino, M., & Chiocchi, M. (2024). CT Images in Follicular Lymphoma: Changes after Treatment Are Predictive of Cardiac Toxicity in Patients Treated with Anthracycline-Based or R-B Regimens. Cancers, 16(3), 563. https://doi.org/10.3390/cancers16030563