Pre-Operative Malnutrition in Patients with Ovarian Cancer: What Are the Clinical Implications? Results of a Prospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assessment of Nutritional Status
- (1)
- Serum laboratory parameters: hemoglobin (g/dL), lymphocytes(/nl), albumin(g/dL), pre-albumin (mg/L), transferrin (mg/dL), and C-reactive protein (CRP) (mg/dL).
- (2)
- Body mass index (BMI) and nutritional risk index (NRI) calculations were based on the following formulas: BMI = weight (kg)/(height (m))2 and NRI = (1.489 × Serum Albumin g/L) + 41.7 × (current weight/usual weight) [12]. During the recruitment phase of the study, our research team conducted measurements of both weight and height for all study participants. We classified the BMI values into four categories, as follows: <18.5 kg/m2 underweight, 18.5–24.9 kg/m2 normal weight, ≥25.0 kg/m2 overweight, and ≥30.0 kg/m2 obesity.
- (3)
- The Nutritional Risk Screening Score (NRS-2002), a validated score, was determined in each patient, to classify the risk for malnutrition [24]. We classified the patients with a score of ≥3 as high-risk for malnutrition.
- (4)
- BIA is a relatively simple, inexpensive and non-invasive technique to measure body composition [25]. Each patient underwent BIA to measure body composition.
2.3. Intra- and Post-Operative Data Collection
2.4. Statistical Analysis
3. Results
3.1. Risk Factors for Malnutrition
3.2. Predictive Value of Malnutrition
3.2.1. Cytoreduction
3.2.2. Blood Transfusion
3.2.3. Postoperative Complications
3.2.4. Mortality and Hospital Stay
3.2.5. Platinum Response
3.3. Prognostic Value of Malnutrition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polański, J.; Chabowski, M.; Świątoniowska-Lonc, N.; Dudek, K.; Jankowska-Polańska, B.; Zabierowski, J.; Mazur, G. Relationship between Nutritional Status and Clinical Outcome in Patients Treated for Lung Cancer. Nutrients 2021, 13, 3332. [Google Scholar] [CrossRef]
- Brinksma, A.; Sanderman, R.; Roodbol, P.F.; Sulkers, E.; Burgerhof, J.G.M.; De Bont, E.S.J.M.; Tissing, W.J.E. Malnutrition is associated with worse health-related quality of life in children with cancer. Support. Care Cancer 2015, 23, 3043–3052. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, L.; Liu, T.; Ding, J.-S.; Zhang, X.; Song, M.-M.; Wang, Z.-W.; Ge, Y.-Z.; Hu, C.-L.; Li, X.-R.; et al. Prevalence and Prognostic Value of Malnutrition Among Elderly Cancer Patients Using Three Scoring Systems. Front. Nutr. 2021, 8, 738550. [Google Scholar] [CrossRef] [PubMed]
- Gonen, O.; Erbakan, A.; Cakir, I.; Mesci, B.; Keskinler, M.; Oguz, A.; Kacar, E.; Yardimci, A.; Ulker, N.; Sahinturk, S.; et al. Malnutrion and Inadequate Food Consumption in Hospitalized Patients. Ann. Med. Res. 2022, 29, 920–924. [Google Scholar] [CrossRef]
- van der Zanden, V.; van Soolingen, N.J.; Viddeleer, A.R.; Trum, J.W.; Amant, F.; Mourits, M.J.; Portielje, J.E.; Baalbergen, A.; Souwer, E.T.; van Munster, B.C. Loss of skeletal muscle density during neoadjuvant chemotherapy in older women withadvanced stage ovarian cancer is associated with postoperative complications. Eur. J. Surg. Oncol. 2022, 48, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Nitenberg, G.; Raynard, B. Nutritional support of the cancer patient: Issues and dilemmas. Crit. Rev. Oncol. Hematol. 2000, 34, 137–168. [Google Scholar] [CrossRef] [PubMed]
- Santoso, J.T.; Canada, T.; Latson, B.; Aaaadi, K.; Lucci, J.A., III; Coleman, R.L. Prognostic nutritional index in relation to hospital stay in women with gynecologic cancer. Obstet. Gynecol. 2000, 95 Pt 1, 844–846. [Google Scholar]
- Goins, E.C.; Weber, J.M.; Truong, T.; Moss, H.A.; Previs, R.A.; Davidson, B.A.; Havrilesky, L.J. Malnutrition as a risk factor for post-operative morbidity in gynecologic cancer: Analysis using a national surgical outcomes database. Gynecol. Oncol. 2022, 165, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Morton, M.; Patterson, J.; Sciuva, J.; Perni, J.; Backes, F.; Nagel, C.; O’Malley, D.M.; Chambers, L.M. Malnutrition, sarcopenia, and cancer cachexia in gynecologic cancer. Gynecol. Oncol. 2023, 175, 142–155. [Google Scholar] [CrossRef]
- Pressoir, M.; Desné, S.; Berchery, D.; Rossignol, G.; Poiree, B.; Meslier, M.; Traversier, S.; Vittot, M.; Simon, M.; Gekiere, J.P.; et al. Prevalence, risk factors and clinical implications of malnutrition in French Comprehensive Cancer Centres. Br. J. Cancer 2010, 102, 966–971. [Google Scholar] [CrossRef]
- Caccialanza, R.; Pedrazzoli, P.; Cereda, E.; Gavazzi, C.; Pinto, C.; Paccagnella, A.; Beretta, G.D.; Nardi, M.; Laviano, A.; Zagonel, V. Nutritional Support in Cancer Patients: A Position Paper from the Italian Society of Medical Oncology (AIOM) and the Italian Society of Artificial Nutrition and Metabolism (SINPE). J. Cancer 2016, 7, 131–135. [Google Scholar] [CrossRef]
- Efthymiou, A.; Hersberger, L.; Reber, E.; Schönenberger, K.A.; Kägi-Braun, N.; Tribolet, P.; Mueller, B.; Schuetz, P.; Stanga, Z.; Fehr, R.; et al. Nutritional risk is a predictor for long-term mortality: 5-Year follow-up of the EFFORT trial. Clin. Nutr. 2021, 40, 1546–1554. [Google Scholar] [CrossRef] [PubMed]
- Hertlein, L.; Kirschenhofer, A.; Fürst, S.; Beer, D.; Göß, C.; Lenhard, M.; Friese, K.; Burges, A.; Rittler, P. Malnutrition and clinical outcome in gynecologic patients. Eur. J. Obstetr. Gynecol. Reprod. Biol. 2014, 174, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Laky, B.; Janda, M.; Bauer, J.; Vavra, C.; Cleghorn, G.; Obermair, A. Malnutrition among gynaecological cancer patients. Eur. J. Clin. Nutr. 2006, 61, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Lis, C.G.; Vashi, P.G.; Lammersfeld, C.A. Impact of improved nutritional status on survival in ovarian cancer. Support. Care Cancer 2009, 18, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Kathiresan, A.S.Q.; Brookfield, K.F.; Schuman, S.I.; Lucci, J.A. Malnutrition as a predictor of poor postoperative outcomes in gynecologic cancer patients. Arch. Gynecol. Obstet. 2010, 284, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Wells, L.; Nwulu, U.; Currow, D.; Johnson, M.J.; Skipworth, R.J. Validated screening tools for the assessment of cachexia, sarcopenia, and malnutrition: A systematic review. Am. J. Clin. Nutr. 2018, 108, 1196–1208. [Google Scholar] [CrossRef]
- Li, H.; Cen, K.; Sun, W.; Feng, B. Prognostic value of geriatric nutritional risk index in elderly patients with heart failure: A meta-analysis. Aging Clin. Exp. Res. 2020, 33, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Phippen, N.T.; Lowery, W.J.; Barnett, J.C.; Hall, L.A.; Landt, C.; Leath, C.A. Evaluation of the Patient-Generated Subjective Global Assessment (PG-SGA) as a predictor of febrile neutropenia in gynecologic cancer patients receiving combination chemotherapy: A pilot study. Gynecol. Oncol. 2011, 123, 360–364. [Google Scholar] [CrossRef]
- Asher, V.; Lee, J.; Bali, A. Preoperative serum albumin is an independent prognostic predictor of survival in ovarian cancer. Med. Oncol. 2011, 29, 2005–2009. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Lammersfeld, C.A.; Vashi, P.G.; Dahlk, S.L.; Lis, C.G. Can subjective global assessment of nutritional status predict survival in ovarian cancer? J. Ovarian Res. 2008, 1, 5. [Google Scholar] [CrossRef]
- Serón-Arbeloa, C.; Labarta-Monzón, L.; Puzo-Foncillas, J.; Mallor-Bonet, T.; Lafita-López, A.; Bueno-Vidales, N.; Montoro-Huguet, M. Malnutrition Screening and Assessment. Nutrients 2022, 14, 2392. [Google Scholar] [CrossRef]
- House, M.; Gwaltney, C. Malnutrition screening and diagnosis tools: Implications for practice. Nutr. Clin. Pract. 2022, 37, 12–22. [Google Scholar] [CrossRef]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.A.; Johnson, M.; Durkin, K.; Wootton, S. Body composition assessment in nutrition research: Value of BIA technology. Eur. J. Clin. Nutr. 2013, 67, S71–S78. [Google Scholar] [CrossRef] [PubMed]
- Dörhöfer, R.P.; Pirlich, M.; Das, B.I.A. Kompendium, 3rd ed. 2007; pp. 2,4–6,8,18,44,46,48,52.
- Sehouli, J.; Könsgen, D.; Mustea, A.; Oskay-Ozcelik, G.; Katsares, I.; Weidemann, H.; Lichtenegger, W. “IMO”—intraoperative mapping of ovarian cancer. Zentralbl Gynakol. 2003, 125, 129–135. [Google Scholar]
- Sehouli, J.; Senyuva, F.; Fotopoulou, C.; Neumann, U.; Denkert, C.; Werner, L.; Gülten, O.Ö. Intra-abdominal tumor dissemination pattern and surgical outcome in 214 patients with primary ovarian cancer. J. Surg. Oncol. 2009, 99, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Benedet, J.L.; Bender, H.; Jones, H.; Ngan, H.Y.; Pecorelli, S. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Comm. Gynecol. Oncol. 2000, 70, 209–262. [Google Scholar]
- Cao, A.; Cartmel, B.; Li, F.-Y.; Gottlieb, L.T.; Harrigan, M.; Ligibel, J.A.; Gogoi, R.; Schwartz, P.E.; Irwin, M.L.; Ferrucci, L.M. Effect of exercise on body composition among women with ovarian cancer. J. Cancer Surviv. 2022, 17, 1386–1396. [Google Scholar] [CrossRef]
- Mu, J.; Wu, Y.; Jiang, C.; Cai, L.; Li, D.; Cao, J. Progress in Applicability of Scoring Systems Based on Nutritional and Inflammatory Parameters for Ovarian Cancer. Front. Nutr. 2022, 9, 809091. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, M.; Lei, L.; Lu, S. Prognostic significance of preoperative prognostic nutritional index in ovarian cancer: A systematic review and meta-analysis. Medicine 2020, 99, e21840. [Google Scholar] [CrossRef] [PubMed]
- Ligthart-Melis, G.C.; Luiking, Y.C.; Kakourou, A.; Cederholm, T.; Maier, A.B.; De Van Der Schueren, M.A.E. Frailty, sarcopenia, and malnutrition frequently (co-)occur in hospitalized older adults: A systematic review and meta-analysis. J. Am. Med. Dir. Accoc. 2020, 21, 1216–1228. [Google Scholar] [CrossRef]
- Zhang, W.; Bin Ye, B.; Liang, W.; Ren, Y. Preoperative prognostic nutritional index is a powerful predictor of prognosis in patients with stage III ovarian cancer. Sci. Rep. 2017, 7, 9548. [Google Scholar] [CrossRef] [PubMed]
- Lieffers, J.R.; Mourtzakis, M.; Hall, K.D.; McCargar, L.J.; Prado, C.M.; Baracos, V.E. A viscerally driven cachexia syndrome in patients with advanced colorectal cancer: Contributions of organ and tumor mass to whole-body energy demands. Am. J. Clin. Nutr. 2009, 89, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.-X.; Wu, G.-H.; Zhang, B.; Quan, Y.-J.; Wei, J.; Jin, H.; Jiang, Y.; Yang, Z.-A. Resting energy expenditure and body composition in patients with newly detected cancer. Clin. Nutr. 2010, 29, 72–77. [Google Scholar] [CrossRef]
- Elattar, A.; Bryant, A.; Winter-Roach, B.A.; Hatem, M.; Naik, R. Optimal primary surgical treatment for advanced epithelial ovarian cancer. Emergencias 2011, CD007565. [Google Scholar] [CrossRef]
- Fotopoulou, C.; Savvatis, K.; Steinhagen-Thiessen, E.; Bahra, M.; Lichtenegger, W.; Sehouli, J. P50 Primary radical surgery in elderly patients with epithelial ovarian cancer: Analysis of surgical outcome and long-term survival. Crit. Rev. Oncol. 2009, 72, S36. [Google Scholar] [CrossRef]
- Fotopoulou, C.; Savvatis, K.; Schumacher, G.; Lichtenegger, W.; Sehouli, J. Surgical outcome and survival analysis of young patients with primary epithelial ovarian cancer. Anticancer. Res. 2009, 29, 2809–2815. [Google Scholar] [PubMed]
- Lin, H.-S.; Watts, J.N.; Peel, N.M.; Hubbard, R.E. Frailty and post-operative outcomes in older surgical patients: A systematic review. BMC Geriatr. 2016, 16, 157. [Google Scholar] [CrossRef]
- Uccella, S.; Mele, M.C.; Quagliozzi, L.; Rinninella, E.; Nero, C.; Cappuccio, S.; Cintoni, M.; Gasbarrini, A.; Scambia, G.; Fagotti, A. Assessment of preoperative nutritional status using BIA-derived phase angle (PhA) in patients with advanced ovarian cancer: Correlation with the extent of cytoreduction and complications. Gynecol. Oncol. 2018, 149, 263–269. [Google Scholar] [CrossRef]
- Narasimhulu, D.M.; Fagotti, A.; Scambia, G.; Weaver, A.L.; McGree, M.; Quagliozzi, L.; Langstraat, C.; Kumar, A.; Cliby, W. Validation of a risk-based algorithm to reduce poor operative outcomes after complex surgery for ovarian cancer. Int. J. Gynecol. Cancer 2023, 33, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, X.; Xu, Z.; Sun, Z.; Zhu, M.; Chen, W.; Miao, C. Impact of perioperative red blood cell transfusion on postoperative recovery and long-term outcome in patients undergoing surgery for ovarian cancer: A propensity score-matched analysis. Gynecol. Oncol. 2019, 156, 439–445. [Google Scholar] [CrossRef]
- Pang, Q.-Y.; An, R.; Liu, H.-L. Perioperative transfusion and the prognosis of colorectal cancer surgery: A systematic review and meta-analysis. World J. Surg. Oncol. 2019, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Ma, X.; Yang, Z.; Zhang, N. Low L3 skeletal muscle index associated with the clinicopathological characteristics and prognosis of ovarian cancer: A meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 697–705. [Google Scholar] [CrossRef]
- Sehouli, J.; Mueller, K.; Richter, R.; Anker, M.; Woopen, H.; Rasch, J.; Grabowski, J.P.; Prinz-Theissing, E.; Inci, M.G. Effects of sarcopenia and malnutrition on morbidity and mortality in gynecologic cancer surgery: Results of a prospective study. J. Cachexia Sarcopenia Muscle 2021, 12, 393–402. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Number (%) |
---|---|
Age (years) | 56 (19–84) * |
Weight (kg) | 65 (45–141) * |
BMI (kg/m2) underweight (<18.5) normal weight (18.5–24.9) overweight (≥25.0) obesity (≥30.0) | 24.4 (17.8–48.8) * 17.97 (0.15) (n = 3, 1.97) 19.03 (0.25) (n = 82, 53.95) 25.10 (0.10) (n = 44, 28.95) 30.00 (30.4–35.2) (n = 23, 15.13) |
Primary OC | 79 (52.0) |
FIGO Staging (Primary OC only) | |
I | 8 (10.3) |
II | 8 (10.3) |
III | 39 (50) |
IV | 22 (28.2) |
Unknown | 2 (2.5) |
Recurrent OC | 73 (48.0) |
Platin Response (Recurrent OC only) | |
Platin sensitive | 48 (65.8) |
Platin resistant | 25 (34.2) |
Grading | |
I | 4 (2.6) |
II | 40 (26.3) |
III | 82 (53.9) |
Unknown | 26 (17.1) |
Histology | |
Serous | 119 (78.3) |
Endometrioid | 7 (4.6) |
Mucinous | 6 (3.9) |
Clear cell | 7 (4.6) |
Other | 3 (2.0) |
Unknown | 10 (6.6) |
Ascites | |
≥500 mL | 26 (17.1) |
<500 mL | 49 (32.2) |
No ascites | 75 (49.3) |
Unknown | 2 (1.3) |
Tumor Spread | |
Small bowel involvement | 56 (36.8) |
Large bowel involvement | 83 (54.6) |
Peritoneal carcinomatosis | 120 (78.9) |
Residual Tumor | |
None | 94 (61.8) |
≤1 cm | 30 (19.8) |
>1 cm | 28 (17.7) |
Nutritional Status Indicator * | Cut-Off Value for Malnutrition | Number (%) | Area under the ROC Curve | Sensitivity (%) | Specificity (%) | CI (95%) |
---|---|---|---|---|---|---|
NRS-2002 | ≥3 | 28 (18.4) | NA | NA | NA | NA |
Prealbumin (mg/L) | <20 | 51 (37.2) | 0.807 | 77.8 | 72.7 | 0.708–0.906 |
NRI | <100 | 47 (31.8) | 0.801 | 67.9 | 76.7 | 0.707–0.896 |
Weight Loss in last 3 months (%) | >5 | 29 (19.1) | 0.780 | 64.3 | 91.1 | 0.665–0.895 |
Transferrin (mg/dL) | <200 | 41 (28.1) | 0.785 | 65.4 | 80 | 0.680–0.890 |
ECM/BCM Ratio | >1.2 | 58 (38.4) | 0.762 | 77.8 | 70.2 | 0.653–0.871 |
Phase angle α (°) | ≤4.5 | 44 (29.1) | 0.760 | 66.7 | 79 | 0.651–0.869 |
Albumin (g/dL) | ≤4.0 | 53 (35.3) | 0.769 | 75 | 73.8 | 0.665–0.872 |
Characteristic | Label | Total (n = 152) (%) | Patients with NRS ≥ 3 (n = 28) (%) | p-Value |
---|---|---|---|---|
Age | >65 years | 42 (27.6) | 13 (46.4) | p = 0.014 |
≤65 years | 110 (72.3) | 15 (53.6) | ||
Diagnosis | Primary | 79 (51.9) | 18 (64.3) | NS |
Recurrent | 73 (48.0) | 10 (35.7) | ||
Ascites | >500 ml | 28 (18.4) | 11 (39.3) | p = 0.001 |
<500 ml | 124 (81.6) | 17 (60.7) | ||
Histology | Serous | 123 (80.9) | 22 (78.6) | NS |
Non-serous | 29 (19.1) | 6 (21.4) | ||
Grading | I + II | 50 (32.9) | 9 (32.1) | NS |
III | 87 (57.3) | 18 (64.3) | ||
Bowel involvement | Yes | 93 (61.2) | 17 (60.7) | NS |
No | 59 (38.8) | 11 (39.3) | ||
Peritoneal carcinomatosis | Yes | 120 (78.9) | 24 (85.7) | NS |
No | 30 (19.7) | 4 (14.2) | ||
FIGO Stage | I + II | 16 (10.5) | 3 (10.7) | NS |
III + IV | 63 (41.4) | 15 (53.6) | ||
Platinum sensitivity | Platinum sensitive | 49 (32.2) | 3 (10.7) | p = 0.007 |
Platinum resistant | 24 (15.8) | 7 (25.0) |
Nutritional Status Indicators | |||||||
---|---|---|---|---|---|---|---|
Prealbumin (<20 mg/L) | NRI (<100) | Weight Loss in Last 3 Months (>5%) | Transferrin (<200 mg/dL) | ECM/BCM (>1.2) | Phase-Angle α (≤4.5°) | Albumin (≤4.0 g/dL) | |
Indicator Tumor Characteristics | |||||||
Age | + | + | + | + | + | + | |
Ascites | + | + | + | + | + | ||
Platinum Sensitivity | + | + | + | + | + | + | |
Primary/Recurrent | + | + | + | ||||
Histology | + | ||||||
Grading | + | ||||||
Bowel Involvement | + | + | + | + | |||
Peritoneal carcinomatosis | + | + | + | ||||
FIGO Stage | + | + | + |
Nutritional Status Indicators | Number of Fields with Tumor Load—IMO Script (Median) | p-Value | |
---|---|---|---|
Malnourished | Non-Malnourished | ||
NRS–2002 (≥3) | 5 | 3 | 0.044 |
NRI (<100) | 6 | 3 | <0.001 |
Prealbumin (<20 mg/L) | 6 | 3 | <0.001 |
Transferrin (<200 mg/dL) | 6 | 3 | <0.001 |
Albumin (≤4.0 g/dL) | 5 | 3 | 0.001 |
ECM/BCM (>1.2) | 4 | 3 | 0.024 |
Phase angle α (≤4.5°) | 4 | 3 | 0.041 |
Weight loss in last 3 months (>5%) | 4 | 3 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasser, S.; Bilir, E.; Derin, X.; Richter, R.; Grabowski, J.P.; Ali, P.; Kulbe, H.; Chekerov, R.; Braicu, E.; Sehouli, J. Pre-Operative Malnutrition in Patients with Ovarian Cancer: What Are the Clinical Implications? Results of a Prospective Study. Cancers 2024, 16, 622. https://doi.org/10.3390/cancers16030622
Nasser S, Bilir E, Derin X, Richter R, Grabowski JP, Ali P, Kulbe H, Chekerov R, Braicu E, Sehouli J. Pre-Operative Malnutrition in Patients with Ovarian Cancer: What Are the Clinical Implications? Results of a Prospective Study. Cancers. 2024; 16(3):622. https://doi.org/10.3390/cancers16030622
Chicago/Turabian StyleNasser, Sara, Esra Bilir, Xezal Derin, Rolf Richter, Jacek P. Grabowski, Paulina Ali, Hagen Kulbe, Radoslav Chekerov, Elena Braicu, and Jalid Sehouli. 2024. "Pre-Operative Malnutrition in Patients with Ovarian Cancer: What Are the Clinical Implications? Results of a Prospective Study" Cancers 16, no. 3: 622. https://doi.org/10.3390/cancers16030622
APA StyleNasser, S., Bilir, E., Derin, X., Richter, R., Grabowski, J. P., Ali, P., Kulbe, H., Chekerov, R., Braicu, E., & Sehouli, J. (2024). Pre-Operative Malnutrition in Patients with Ovarian Cancer: What Are the Clinical Implications? Results of a Prospective Study. Cancers, 16(3), 622. https://doi.org/10.3390/cancers16030622