AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Protocol and Sample Acquisition
2.2. SRH Image Acquisition
2.3. Histopathological Evaluation
2.4. Generation of the Dataset
2.5. Data Split and Class Distribution
2.6. Deep Learning-Based Evaluation of Images
2.7. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dillon, J.K.; Brown, C.B.; McDonald, T.M.; Ludwig, D.C.; Clark, P.J.; Leroux, B.G.; Futran, N.D. How Does the Close Surgical Margin Impact Recurrence and Survival When Treating Oral Squamous Cell Carcinoma? J. Oral Maxillofac. Surg. 2015, 73, 1182–1188. [Google Scholar] [CrossRef]
- Hinni, M.L.; Ferlito, A.; Brandwein-Gensler, M.S.; Takes, R.P.; Silver, C.E.; Westra, W.H.; Seethala, R.R.; Rodrigo, J.P.; Corry, J.; Bradford, C.R.; et al. Surgical Margins in Head and Neck Cancer: A Contemporary Review. Head Neck 2013, 35, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Loree, T.R.; Strong, E.W. Significance of Positive Margins in Oral Cavity Squamous Carcinoma. Am. J. Surg. 1990, 160, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Puram, S.V.; Silverman, D.A.; Old, M.O.; Rocco, J.W.; Kang, S.Y. Margin Analysis in Head and Neck Cancer: State of the Art and Future Directions. Ann. Surg. Oncol. 2019, 26, 4070–4080. [Google Scholar] [CrossRef] [PubMed]
- Gal, A.A.; Cagle, P.T. The 100-year anniversary of the description of the frozen section procedure. JAMA 2005, 294, 3135–3137. [Google Scholar] [CrossRef] [PubMed]
- Ord, R.A.; Aisner, S. Accuracy of Frozen Sections in Assessing Margins in Oral Cancer Resection. J. Oral Maxillofac. Surg. 1997, 55, 663–669; discussion 669–671. [Google Scholar] [CrossRef] [PubMed]
- Freudiger, C.W.; Min, W.; Saar, B.G.; Lu, S.; Holtom, G.R.; He, C.; Tsai, J.C.; Kang, J.X.; Xie, X.S. Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science 2008, 322, 1857–1861. [Google Scholar] [CrossRef] [PubMed]
- Orringer, D.A.; Pandian, B.; Niknafs, Y.S.; Hollon, T.C.; Boyle, J.; Lewis, S.; Garrard, M.; Hervey-Jumper, S.L.; Garton, H.J.L.; Maher, C.O.; et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 2017, 1, 0027. [Google Scholar] [CrossRef] [PubMed]
- Raman, C.V.; Krishnan, K.S. The optical analogue of the Compton effect. Nature 1928, 121, 711. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Heiliger, L.; Sekuboyina, A.; Menze, B.; Egger, J.; Kleesiek, J. Beyond Medical Imaging—A Review of Multimodal Deep Learning in Radiology. TechRxiv 2022. [Google Scholar] [CrossRef]
- Fernández, I.S.; Peters, J.M. Machine learning and deep learning in medicine and neuroimaging. Ann. Child Neurol. Soc. 2023, 1, 102–122. [Google Scholar] [CrossRef]
- Wehbe, R.M.; Katsaggelos, A.K.; Hammond, K.J.; Hong, H.; Ahmad, F.S.; Ouyang, D.; Shah, S.J.; McCarthy, P.M.; Thomas, J.D. Deep Learning for Cardiovascular Imaging. JAMA Cardiol. 2023, 8, 1089. [Google Scholar] [CrossRef] [PubMed]
- Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.-A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; et al. Predicting Survival from Colorectal Cancer Histology Slides Using Deep Learning: A Retrospective Multicenter Study. PLoS Med. 2019, 16, e1002730. [Google Scholar] [CrossRef] [PubMed]
- Rawat, R.R.; Ortega, I.; Roy, P.; Sha, F.; Shibata, D.; Ruderman, D.; Agus, D.B. Deep Learned Tissue “Fingerprints” Classify Breast Cancers by ER/PR/Her2 Status from H&E Images. Sci. Rep. 2020, 10, 7275. [Google Scholar] [CrossRef] [PubMed]
- Calderaro, J.; Kather, J.N. Artificial Intelligence-Based Pathology for Gastrointestinal and Hepatobiliary Cancers. Gut 2021, 70, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, S.; Liu, J.; Sun, X.; Cen, Y.; Ren, R.; Ying, S.; Chen, Y.; Zhao, Z.; Liao, W. Histopathology-Based Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning. J. Dent. Res. 2022, 101, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Hollon, T.C.; Pandian, B.; Adapa, A.R.; Urias, E.; Save, A.V.; Khalsa, S.S.S.; Eichberg, D.G.; D’amico, R.S.; Farooq, Z.U.; Lewis, S.; et al. Near Real-Time Intraoperative Brain Tumor Diagnosis Using Stimulated Raman Histology and Deep Neural Networks. Nat. Med. 2020, 26, 52–58. [Google Scholar] [CrossRef]
- Steybe, D.; Poxleitner, P.; Metzger, M.C.; Rothweiler, R.; Beck, J.; Straehle, J.; Vach, K.; Weber, A.; Enderle-Ammour, K.; Werner, M.; et al. Stimulated Raman Histology for Histological Evaluation of Oral Squamous Cell Carcinoma. Clin. Oral Investig. 2023, 27, 4705–4713. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef]
- Karen, S.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.; Liu, W.; et al. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Martín, A.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 2015. Available online: http://download.tensorflow.org/paper/whitepaper2015.pdf (accessed on 11 October 2023).
- Yutaka, S. The truth of the F-measure. Teach. Tutor Mater. 2007, 1, 1–5. [Google Scholar]
- Liu, M.; Hu, L.; Tang, Y.; Wang, C.; He, Y.; Zeng, C.; Lin, K.; He, Z.; Huo, W. A Deep Learning Method for Breast Cancer Classification in the Pathology Images. IEEE J. Biomed. Health Inform. 2022, 26, 5025–5032. [Google Scholar] [CrossRef] [PubMed]
- Echle, A.; Rindtorff, N.T.; Brinker, T.J.; Luedde, T.; Pearson, A.T.; Kather, J.N. Deep Learning in Cancer Pathology: A New Generation of Clinical Biomarkers. Br. J. Cancer 2021, 124, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Farahani, H.; Boschman, J.; Farnell, D.; Darbandsari, A.; Zhang, A.; Ahmadvand, P.; Jones, S.J.M.; Huntsman, D.; Köbel, M.; Gilks, C.B.; et al. Deep Learning-Based Histotype Diagnosis of Ovarian Carcinoma Whole-Slide Pathology Images. Mod. Pathol. 2022, 35, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Reder, N.P.; Koyuncu, C.F.; Leo, P.; Hawley, S.; Huang, H.; Mao, C.; Postupna, N.; Kang, S.; Serafin, R.; et al. Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning–Assisted Gland Analysis. Cancer Res. 2022, 82, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bilodeau, E.; Pollack, B.; Batmanghelich, K. Automated Detection of Premalignant Oral Lesions on Whole Slide Images Using Convolutional Neural Networks. Oral Oncol. 2022, 134, 106109. [Google Scholar] [CrossRef]
Tumor | Stroma | Adipose Tissue | Muscle | Squamous Epithelium | Glandular Tissue | |
---|---|---|---|---|---|---|
Total | 0.23 | 0.23 | 0.07 | 0.03 | 0.39 | 0.05 |
Training set | 0.25 | 0.26 | 0.06 | 0.03 | 0.37 | 0.03 |
Validation Set | 0.31 | 0.28 | 0.17 | 0.03 | 0.16 | 0.05 |
Test Set | 0.24 | 0.22 | 0.07 | 0.04 | 0.30 | 0.13 |
Precision | Recall | F1-Score | Number of Tiles | |
---|---|---|---|---|
Stroma | 0.90 (0.90) | 0.91 (0.92) | 0.91 (0.91) | 1035 |
Adipose tissue | 0.97 (0.99) | 0.98 (0.94) | 0.98 (0.96) | 351 |
Squamous epithelium | 0.89 (0.82) | 0.90 (0.94) | 0.90 (0.87) | 1393 |
Muscle | 0.95 (0.79) | 0.89 (0.73) | 0.92 (0.76) | 206 |
Glandular tissue | 0.92 (0.96) | 0.82 (0.85) | 0.87 (0.90) | 607 |
Tumor | 0.86 (0.92) | 0.90 (0.82) | 0.88 (0.87) | 1138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, A.; Enderle-Ammour, K.; Kurowski, K.; Metzger, M.C.; Poxleitner, P.; Werner, M.; Rothweiler, R.; Beck, J.; Straehle, J.; Schmelzeisen, R.; et al. AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology. Cancers 2024, 16, 689. https://doi.org/10.3390/cancers16040689
Weber A, Enderle-Ammour K, Kurowski K, Metzger MC, Poxleitner P, Werner M, Rothweiler R, Beck J, Straehle J, Schmelzeisen R, et al. AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology. Cancers. 2024; 16(4):689. https://doi.org/10.3390/cancers16040689
Chicago/Turabian StyleWeber, Andreas, Kathrin Enderle-Ammour, Konrad Kurowski, Marc C. Metzger, Philipp Poxleitner, Martin Werner, René Rothweiler, Jürgen Beck, Jakob Straehle, Rainer Schmelzeisen, and et al. 2024. "AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology" Cancers 16, no. 4: 689. https://doi.org/10.3390/cancers16040689
APA StyleWeber, A., Enderle-Ammour, K., Kurowski, K., Metzger, M. C., Poxleitner, P., Werner, M., Rothweiler, R., Beck, J., Straehle, J., Schmelzeisen, R., Steybe, D., & Bronsert, P. (2024). AI-Based Detection of Oral Squamous Cell Carcinoma with Raman Histology. Cancers, 16(4), 689. https://doi.org/10.3390/cancers16040689