Interleukin-6 as a Predictive Factor of Pathological Response to FLOT Regimen Systemic Treatment in Locally Advanced Gastroesophageal Junction or Gastric Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Patient Treatment and Procedure
2.3. Biochemical Analysis
2.4. Molecular Detection of Circulating Tumour Cells (CTCs)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Gene | Name | Protein Function |
---|---|---|
TBP | TATA binding protein | Transcription initiator—binds to a specific DNA sequence—the TATA box |
HPRT | Hypoxanthine-guanine phosphoribosyltransferase | An enzyme involved in the metabolism of purines, allowing their recovery from degraded DNA for the re-synthesis of nucleotides |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase | An enzyme involved in glycolysis—converts glucose into carbon molecules and energy |
SDHA | Succinate dehydrogenase complex, subunit A | Mitochondrial respiratory chain complex—responsible for the transformation of succinate into fumarate |
YWHAZ | Monooxygenase/tryptophan 5-monooxygenase activation protein zeta | It is a regulator of cell apoptotic pathways—it takes part in metabolism and regulates the cell cycle |
HMBS | Hydroxymethylbilane synthase | An enzyme involved in the production of heme |
ZNF410 | Zinc fi nger protein 410 | Transcription factor |
Factor | Value |
---|---|
Age (years) | |
Median | 63 (30–77) |
<60 | 20 (33%) |
60–69 | 30 (49%) |
≥70 | 11 (18%) |
Sex | |
Male | 32 (52.5%) |
Female | 29 (47.5%) |
ECOG | |
0 | 11 (18%) |
1 | 50 (82%) |
Location of tumour | |
GEJ | 14 (23%) |
Stomach | 47 (77%) |
cT-stage | |
T1 | 1 (2%) |
T2 | 28 (46%) |
T3 | 27 (44%) |
T4 | 5 (8%) |
cN-stage | |
N0 | 30 (49%) |
N1 | 11 (18%) |
N2 | 11 (18%) |
N3 | 9 (15%) |
N+ | 30 (49%) |
N- | 31 (51%) |
TNM according to AJCC—the 8th edition | |
IIA | 27 (44%) |
IIB | 18 (30%) |
IIIA | 5 (8%) |
IIIB | 7 (11%) |
IIIC | 4 (7%) |
Lauren’s type | |
Diffuse | 17 (28%) |
Intestinal | 23 (38%) |
Mixed | 12 (19%) |
Not evaluable according to Lauren | 9 (15%) |
Signed ring cell/poorly cohesive | 22 (36%) |
Grading according to WHO | |
G1 | 1 (2%) |
G2 | 21 (34%) |
G3 | 28 (46%) |
Not evaluable | 11 (18%) |
BMI C1 | BMI C4 | |
---|---|---|
Median (min–max) | 25.45 (16.97–42.46) | 25.73 (16.97–40.79) |
BMI < 18.5 | 3 (5.17%) | 3 (5.17%) |
BMI ≥ 18.5 and BMI < 25.0 | 24 (41.38%) | 25 (43.10%) |
BMI ≥ 25.0 and BMI < 30.0 | 17 (29.31%) | 19 (32.76%) |
BMI ≥ 30.0 | 14 (24.14%) | 11 (18.97%) |
Factor | Value |
---|---|
Surgery | |
Tumour curative surgery R0—margin free | 52 (85%) |
Tumour surgery R1 | 1 (2%) |
Palliative surgery | 5 (8%) |
No surgery | 3 (5%) |
Histopathological tumour regression according to Becker classification | |
Complete—TRG1a | 7 (11%) |
Subtotal—TRG1b | 6 (10%) |
Complete or subtotal—TRG1a/b | 13 (21%) |
Partial—TRG2 | 14 (23%) |
Minimal or none—TRG3 | 26 (43%) |
Palliative surgery—not evaluated TGR | 5 (8%) |
Tumour stage (ypT) | |
Tx | 7 (11%) |
T1 | 11 (18%) |
T2 | 9 (15%) |
T3 | 23 (38%) |
T4 | 3 (5%) |
ypT not available | 8 (13%) |
Nodal status (ypN) | |
N0 | 34 (56%) |
N1 | 5 (8%) |
N2 | 6 (10%) |
N3 | 8 (13%) |
ypN not available | 8 (13%) |
Lymphovascular invasion—LVI | |
Yes | 20 (33%) |
No | 32 (52%) |
N/A | 9 (15%) |
Perineural invasion—PNI | |
Yes | 7 (11%) |
No | 45 (74%) |
N/A | 9 (15%) |
Biomarker | pCR A5* | Non-pCR A5* | p A5** |
---|---|---|---|
Measurement C1 | |||
LMR | 3.61 (2.48; 4.05) | 3.34 (2.67; 4.70) | 0.993 |
NLR | 2.43 A5*** ±1.00 A5*** | 2.75 A5*** ±1.18 A5*** | 0.389 A5**** |
dNLR | 0.46 (0.34; 0.62) | 0.41 (0.30; 0.51) | 0.345 |
PLR | 192.05 (132.38; 250.04) | 156.30 (122.28; 189.66) | 0.191 |
CEA | 1.81 (1.54; 3.10) | 2.45 (1.32; 3.80) | 0.605 |
CA19.9 | 10.78 (5.23; 26.44) | 8.12 (3.73; 29.17) | 0.699 |
CA125 | 14.15 (9.52; 23.33) | 11.70 (8.50; 16.60) | 0.342 |
IL-1β [pg/mL] | 0.00 (0.00; 0.00) | 0.00 (0.00; 0.00) | 0.614 |
IL-10 [pg/mL] | 4.71 (4.03; 8.03) | 3.93 (1.77; 5.19) | 0.142 |
IL-8 [pg/mL] | 19.12 (17.63; 29.51) | 20.43 (13.30; 34.01) | 0.653 |
CTC-survivin | 0.41 (0.28; 2.20) | 0.43 (0.24; 1.85) | 0.928 |
CTC-CK19 | 1.55 (0.88; 2.54) | 1.11 (0.32; 3.43) | 0.839 |
Measurement C2 | |||
LMR | 2.15 (1.70; 2.59) | 2.69 (2.12; 3.20) | 0.072 |
NLR | 4.49 A5*** ±1.63 A5*** | 4.08 A5*** ±2.05 A5*** | 0.524 A5**** |
dNLR | 0.24 (0.18; 0.26) | 0.27 (0.18; 0.37) | 0.394 |
PLR | 85.92 (60.91; 100.50) | 87.82 (69.82; 111.00) | 0.548 |
CEA | 1.88 (1.54; 3.22) | 2.67 (1.86; 4.13) | 0.177 |
CA19.9 | 9.70 (6.08; 23.95) | 7.81 (4.78; 32.36) | 0.921 |
CA125 | 13.90 (12.00; 23.90) | 13.80 (10.58; 18.17) | 0.454 |
IL-1β [pg/mL] | 0.00 (0.00; 0.00) | 0.00 (0.00; 0.00) | 0.690 |
IL-10 [pg/mL] | 7.83 A5*** ±4.51 A5*** | 6.53 A5*** ±4.53 A5*** | 0.455 A5**** |
IL-8 [pg/mL] | 19.62 (14.72; 35.14) | 11.24 (9.67; 19.24) | 0.029 |
CTC-survivin | 1.22 (0.95; 7.01) | 1.20 (0.61; 5.23) | 0.651 |
CTC-CK19 | 2.46 (0.71; 8.11) | 0.77 (0.10; 2.74) | 0.100 |
Measurement C3 | |||
LMR | 1.63 (1.42; 2.59) | 2.23 (1.68; 3.22) | 0.083 |
NLR | 3.49 A5*** ±3.03 A5*** | 4.56 A5*** ±2.12 A5*** | 0.267 A5**** |
dNLR | 0.52 (0.18; 1.22) | 0.22 (0.17; 0.30) | 0.293 |
PLR | 107.52 (82.23; 173.17) | 85.15 (71.91; 114.83) | 0.122 |
CEA | 3.30 (2.10; 4.16) | 3.62 (2.28; 5.10) | 0.431 |
CA19.9 | 9.89 (4.91; 21.10) | 8.79 (5.55; 28.30) | 0.751 |
CA125 | 12.65 (10.95; 16.80) | 14.00 (9.40; 18.90) | 0.799 |
IL-1β [pg/mL] | 0.00 (0.00; 0.00) | 0.00 (0.00; 0.00) | 0.601 |
IL-10 [pg/mL] | 6.10 (5.58; 11.12) | 5.92 (3.84; 9.76) | 0.301 |
IL-8 [pg/mL] | 19.92 A5*** ±9.04 A5*** | 23.89 A5*** ±18.73 A5*** | 0.545 A5**** |
CTC-survivin | 4.39 (0.48; 12.60) | 1.19 (0.47; 3.30) | 0.414 |
CTC-CK19 | 0.73 (0.17; 28.27) | 1.03 (0.04; 2.71) | 0.493 |
Measurement C4 | |||
LMR | 1.86 (1.57; 2.51) | 2.25 (1.79; 2.78) | 0.322 |
NLR | 4.44 A5*** ±2.35 A5*** | 4.24 A5*** ±2.43 A5*** | 0.803 A5**** |
dNLR | 0.25 (0.16; 0.31) | 0.24 (0.17;0.37) | 0.803 |
PLR | 110.90 A5*** ±79.34 A5*** | 102.86 A5*** ±43.95 A5*** | 0.648 A5**** |
CEA | 3.63 (2.67; 4.70) | 3.93 (2.60; 5.28) | 0.872 |
CA19.9 | 9.93 (4.99; 12.29) | 9.70 (5.00; 19.78) | 0.436 |
CA125 | 15.10 A5*** ±6.22 A5*** | 15.25 A5*** ±6.23 A5*** | 0.949 A5**** |
IL-1β [pg/mL] | N/A | N/A | N/A |
IL-10 [pg/mL] | N/A | N/A | N/A |
IL-8 [pg/mL] | N/A | N/A | N/A |
CTC-survivin | N/A | N/A | N/A |
CTC-CK19 | N/A | N/A | N/A |
Biomarker | pCR A6* | Non-pCR A6* | p A6** |
---|---|---|---|
Measurement C1 | |||
LMR | 3.11 (2.69; 3.68) | 3.44 (2.92; 5.03) | 0.171 |
NLR | 2.66 A6*** ±0.79 A6*** | 2.46 ±1.06 A6*** | 0.480 A6**** |
dNLR | 0.36 (0.31; 0.54) | 0.44 (0.34; 0.61) | 0.247 |
PLR | 162.89 (142.46; 183.29) | 156.18 (122.24; 197.06) | 0.474 |
CEA | 3.40 (1.32; 8.14) | 1.83 (1.32; 2.80) | 0.071 |
CA19.9 | 8.25 (4.07; 78.14) | 7.08 (2.86; 12.67) | 0.447 |
CA125 | 12.25 (11.35; 17.03) | 10.40 (7.30; 15.30) | 0.117 |
IL-1β [pg/mL] | 0.00 (0.00; 0.98) | 0.00 (0.00; 0.00) | 0.017 |
IL-10 [pg/mL] | 3.52 (1.89; 4.79) | 4.53 (3.32; 5.58) | 0.351 |
IL-8 [pg/mL] | 22.16 (13.14; 43.54) | 18.62 (14.36; 29.04) | 0.475 |
CTC-survivin | 0.60 (0.29; 1.58) | 0.46 (0.28; 4.70) | 0.641 |
CTC-CK19 | 0.91 (0.28; 2.06) | 0.96 (0.24; 1.97) | 0.931 |
Measurement C2 | |||
LMR | 2.81 A6*** ±0.93 A6*** | 2.58 A6*** ±0.90 A6*** | 0.401 A6**** |
NLR | 3.93 (2.83; 5.60) | 3.87 (3.04; 4.66) | 0.561 |
dNLR | 0.26 (0.18; 0.36) | 0.26 (0.21; 0.33) | 0.561 |
PLR | 86.15 (70.59; 114.30) | 87.70 (61.86; 109.98) | 0.753 |
CEA | 3.83 (1.62; 16.96) | 2.35 (1.71; 2.92) | 0.133 |
CA19.9 | 9.31 (4.81; 77.61) | 7.49 (5.21; 12.41) | 0.331 |
CA125 | 13.95 (11.90; 17.00) | 12.20 (9.10; 16.60) | 0.258 |
IL-1β [pg/mL] | 0.00 (0.00; 0.24) | 0.00 (0.00; 0.00) | 0.622 |
IL-10 [pg/mL] | 5.48 A6*** ±3.92 A6*** | 7.01 A6*** ±4.74 A6*** | 0.368 A6**** |
IL-8 [pg/mL] | 13.77 (8.28; 22.33) | 15.08 (10.87; 22.50) | 0.606 |
CTC-survivin | 1.41 (0.81; 2.43) | 2.32 (0.87; 12.40) | 0.395 |
CTC-CK19 | 0.77 (0.06; 5.28) | 0.73 (0.30; 2.46) | > 0.999 |
Measurement C3 | |||
LMR | 1.96 (1.66; 2.38) | 2.18 (1.55; 3.21) | 0.753 |
NLR | 5.40 A6*** ±2.26 A6*** | 3.98 A6*** ±2.29 A6*** | 0.038 A6**** |
dNLR | 0.21 (0.14; 0.24) | 0.22 (0.18; 0.42) | 0.109 |
PLR | 85.81 (78.45; 110.50) | 87.47 (73.02; 135.39) | 0.992 |
CEA | 4.03 (2.06; 10.28) | 3.30 (2.20; 4.27) | 0.327 |
CA19.9 | 9.18 (5.41; 51.33) | 8.35 (4.99; 14.96) | 0.342 |
CA125 | 14.20 (12.65; 18.30) | 12.70 (8.70; 16.60) | 0.252 |
IL-1β [pg/mL] | 0.00 (0.00; 0.58) | 0.00 (0.00; 0.00) | 0.228 |
IL-10 [pg/mL] | 6.46 (4.36; 10.20) | 5.58 (3.84; 11.07) | 0.751 |
IL-8 [pg/mL] | 17.14 (7.86; 47.26) | 15.08 (10.18; 30.13) | 0.843 |
CTC-survivin | 0.87 (0.34; 3.20) | 2.92 (0.96; 13.56) | 0.085 |
CTC-CK19 | 0.35 (0.00; 1.14) | 0.21 (0.06; 4.42) | 0.516 |
Measurement C4 | |||
LMR | 2.07 (1.75; 2.63) | 2.02 (1.73; 2.71) | 0.820 |
NLR | 4.58 ±2.69 A6*** | 3.93 ±2.09 A6*** | 0.364 A6**** |
dNLR | 0.22 A6*** (0.17; 0.38) | 0.26 A6*** (0.18; 0.39) | 0.495 |
PLR | 93.30 (72.61; 106.19) | 94.42 (72.82; 114.35) | 0.940 |
CEA | 4.28 (3.08; 5.10) | 3.53 (2.57; 4.55) | 0.334 |
CA19.9 | 7.50 (4.43; 14.33) | 9.42 (4.93; 13.65) | 0.989 |
CA125 | 15.95 A6*** ±5.37 A6*** | 13.46 A6*** ±5.39 A6*** | 0.185 A6**** |
IL-1β [pg/mL] | N/A | N/A | N/A |
IL-10 [pg/mL] | N/A | N/A | N/A |
IL-8 [pg/mL] | N/A | N/A | N/A |
CTC-survivin | N/A | N/A | N/A |
CTC-CK19 | N/A | N/A | N/A |
References
- Chau, I.; Norman, A.R.; Cunningham, D.; Waters, J.S.; Oates, J.; Ross, P.J. Multivariate prognostic factor analysis in locally advanced and metastatic esophago-gastric cancer-pooled analysis from three multicenter, randomized, controlled trials using individual patient data. J. Clin. Oncol. 2004, 22, 2395–2403. [Google Scholar] [CrossRef]
- Greenlee, R.T.; Murray, T.; Bolden, S.; Wingo, P.A. Cancer statistics. CA Cancer J. Clin. 2000, 50, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. MAGIC Trial Participants. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ychou, M.; Boige, V.; Pignon, J.P.; Conroy, T.; Bouche, O.; Lebreton, G.; Ducourtieux, M.; Bedenne, L.; Fabre, J.M.; Saint-Aubert, B.; et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: An FNCLCC and FFCD multicenter phase III trial. J. Clin. Oncol. 2011, 1715, 21444866. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Chai, E.Z.; Siveen, K.S.; Shanmugam, M.K.; Arfuso, F.; Sethi, G. Analysis of the intricate relationship between chronic inflammation and cancer. Biochem. J. 2015, 468, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Myers, J.S. Proinflammatory cytokines and sickness behavior: Implications for depression and cancer-related symptoms. Oncol. Nurs. Forum 2008, 35, 802–807. [Google Scholar] [CrossRef]
- Szaflarska, A.; Szczepanik, A.; Siedlar, M.; Czupryna, A.; Sierzega, M.; Popiela, T.; Zembala, M. Preoperative plasma level of IL-10 but not of proinflammatory cytokines is an independent prognostic factor in patients with gastric cancer. Anticancer Res. 2009, 29, 5005–5012. [Google Scholar] [PubMed]
- Kitadai, Y.; Haruma, K.; Sumii, K.; Yamamoto, S.; Ue, T.; Yokozaki, H.; Yasui, W.; Ohmoto, Y.; Kajiyama, G.; Fidler, I.J. Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am. J. Pathol. 1998, 152, 93–100. [Google Scholar]
- Huang, S.P.; Wu, M.S.; Shun, C.T.; Wang, H.P.; Lin, M.T.; Kuo, M.L.; Lin, J.T. Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma. J. Biomed. Sci. 2004, 11, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Kai, H.; Kitadai, Y.; Kodama, M.; Cho, S.; Kuroda, T.; Ito, M.; Tanaka, S.; Ohmoto, Y.; Chayama, K. Involvement of proinflammatory cytokines IL-1beta and IL-6 in progression of human gastric carcinoma. Anticancer Res. 2005, 25, 709–713. [Google Scholar] [PubMed]
- Ito, R.; Yasui, W.; Kuniyasu, H.; Yokozaki, H.; Tahara, E. Expression of interleukin-6 and its effect on the cell growth of gastric carcinoma cell lines. Jpn. J. Cancer Res. 1997, 88, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Song, K.S.; Park, Y.S.; Kang, Y.H.; Lee, Y.J.; Lee, K.R.; Kim, H.K.; Ryu, K.W.; Bae, J.M.; Kim, S. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: Possible role of a metastasis predictor. Eur. J. Cancer 2003, 39, 184–191, Erratum in Eur. J. Cancer 2003, 39, 2569. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, T.F.; Muss, H.B.; Shachar, S.S.; Tamura, K.; Takamatsu, Y. Prognostic value of lymphocyte-to-monocyte ratio in patients with solid tumors: A systematic review and meta-analysis. Cancer Treat. Rev. 2015, 41, 971–978. [Google Scholar] [CrossRef]
- Templeton, A.J.; Ace, O.; McNamara, M.G.; Al-Mubarak, M.; Vera-Badillo, F.E.; Hermanns, T.; Seruga, B.; Ocaña, A.; Tannock, I.F.; Amir, E. Prognostic role of platelet to lymphocyte ratio in solid tumors: A systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1204–1212. [Google Scholar] [CrossRef]
- Templeton, A.J.; McNamara, M.G.; Seruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocana, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef]
- Lian, L.; Xia, Y.Y.; Zhou, C.; Shen, X.M.; Li, X.L.; Han, S.G.; Zheng, Y.; Mao, Z.Q.; Gong, F.R.; Wu, M.Y.; et al. Application of platelet/lymphocyte and neutrophil/lymphocyte ratios in early diagnosis and prognostic prediction in patients with resectable gastric cancer. Cancer Biomark. 2015, 15, 899–907. [Google Scholar] [CrossRef]
- Ock, C.Y.; Nam, A.R.; Lee, J.; Bang, J.H.; Lee, K.H.; Han, S.W.; Kim, T.Y.; Im, S.A.; Kim, T.Y.; Bang, Y.J.; et al. Prognostic implication of antitumor immunity measured by the neutrophil–lymphocyte ratio and serum cytokines and angiogenic factors in gastric cancer. Gastric Cancer 2017, 20, 254–262. [Google Scholar] [CrossRef]
- Cho, I.R.; Park, J.C.; Park, C.H.; Jo, J.H.; Lee, H.J.; Kim, S.; Shim, C.N.; Lee, H.; Shin, S.K.; Lee, S.K.; et al. Pre-treatment neutrophil to lymphocyte ratio as a prognostic marker to predict chemotherapeutic response and survival outcomes in metastatic advanced gastric cancer. Gastric Cancer 2014, 17, 703–710. [Google Scholar] [CrossRef]
- Arigami, T.; Uenosono, Y.; Ishigami, S.; Okubo, K.; Kijima, T.; Yanagita, S.; Okumura, H.; Uchikado, Y.; Kijima, Y.; Nakajo, A.; et al. A Novel Scoring System Based on Fibrinogen and the Neutrophil-Lymphocyte Ratio as a Predictor of Chemotherapy Response and Prognosis in Patients with Advanced Gastric Cancer. Oncology 2016, 90, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Tsujiura, M.; Ichikawa, D.; Konishi, H.; Komatsu, S.; Shiozaki, A.; Otsuji, E. Liquid biopsy of gastric cancer patients: Circulating tumor cells and cell-free nucleic acids. World J. Gastroenterol. 2014, 20, 3265–3286. [Google Scholar] [CrossRef] [PubMed]
- Arigami, T.; Okumura, H.; Matsumoto, M.; Uchikado, Y.; Uenosono, Y.; Kita, Y.; Owaki, T.; Mori, S.; Kurahara, H.; Kijima, Y.; et al. Analysis of the Fibrinogen and Neutrophil-Lymphocyte Ratio in Esophageal Squamous Cell Carcinoma: A Promising Blood Marker of Tumor Progression and Prognosis. Medicine 2015, 94, e1702. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.F.; Huang, Y.; Chen, Q.X. The combination of platelet count and neutrophil lymphocyte ratio is a predictive factor in patients with esophageal squamous cell carcinoma. Transl. Oncol. 2014, 7, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Fassan, M.; Cunningham, D.; Allum, W.H.; Okines, A.F.; Lampis, A.; Hahne, J.C.; Rugge, M.; Peckitt, C.; Nankivell, M.; et al. Effect of Pathologic Tumor Response and Nodal Status on Survival in the Medical Research Council Adjuvant Gastric Infusional Chemotherapy Trial. J. Clin. Oncol. 2016, 34, 2721–2727. [Google Scholar] [CrossRef] [PubMed]
- Reim, D.; Novotny, A.; Friess, H.; Slotta-Huspenina, J.; Weichert, W.; Ott, K.; Dislich, B.; Lorenzen, S.; Becker, K.; Langer, R. Significance of tumour regression in lymph node metastases of gastric and gastrooesophageal junction adenocarcinomas. J. Pathol. Clin. Res. 2020, 6, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Athauda, A.; Nankivell, M.; Langer, R.; Pritchard, S.; Langley, R.E.; von Loga, K.; Starling, N.; Chau, I.; Cunningham, D.; Grabsch, H.I.; et al. Pathological regression of primary tumour and metastatic lymph nodes following chemotherapy in resectable OG cancer: Pooled analysis of two trials. Br. J. Cancer 2023, 128, 2036–2043. [Google Scholar] [CrossRef] [PubMed]
- Ikoma, N.; Blum, M.; Estrella, J.S.; Das, P.; Hofstetter, W.L.; Fournier, K.F.; Mansfield, P.; Ajani, J.A.; Badgwell, B.D. Evaluation of the American Joint Committee on Cancer 8th edition staging system for gastric cancer patients after preoperative therapy. Gastric Cancer 2018, 21, 74–83. [Google Scholar] [CrossRef]
- Tachibana, M.; Takemoto, Y.; Nakashima, Y.; Kinugasa, S.; Kotoh, T.; Dhar, D.K.; Kohno, H.; Nagasue, N. Serum carcinoembryonic antigen as a prognostic factor in resectable gastric cancer. J. Am. Coll. Surg. 1998, 187, 64–68. [Google Scholar] [CrossRef]
- Zhu, X.D.; Zhang, L.X.; Luo, P.Q.; Zhu, H.; Wei, Z.J.; Xu, A.M. Prognostic significance of post-preoperative tumor markers increments in patients with non-metastatic gastric cancer. J. Cancer Res. Clin. Oncol. 2023, 149, 12191–12201. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, H.; Liu, J.; Chen, S.; Xu, D.; Li, W.; Zhan, Y.; Li, Y.; Chen, Y.; Zhou, Z.; et al. Combined preoperative concentrations of CEA, CA 19-9, and 72-4 for predicting outcomes in patients with gastric cancer after curative resection. Oncotarget 2016, 7, 35446–35453. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Oh, S.Y.; Kim, S.H.; Lee, J.H.; Kim, M.C.; Kim, K.H.; Kim, H.J. Prognostic significance of neutrophil lymphocyte ratio and platelet lymphocyte ratio in advanced gastric cancer patients treated with FOLFOX chemotherapy. BMC Cancer 2013, 13, 350. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, L.; Huang, Z.; Zhang, L.; Zhang, H.; Zhu, W.; Liu, P. The hematologic markers as prognostic factors in patients with resectable gastric cancer. Cancer Biomark. 2016, 17, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Matsusaka, S.; Chìn, K.; Ogura, M.; Suenaga, M.; Shinozaki, E.; Mishima, Y.; Terui, Y.; Mizunuma, N.; Hatake, K. Circulating tumor cells as a surrogate marker for determining response to chemotherapy in patients with advanced gastric cancer. Cancer Sci. 2010, 101, 1067–1071. [Google Scholar] [CrossRef]
- Ikeguchi, M.; Hatada, T.; Yamamoto, M.; Miyake, T.; Matsunaga, T.; Fukumoto, Y.; Yamada, Y.; Fukuda, K.; Saito, H.; Tatebe, S. Serum interleukin-6 and -10 levels in patients with gastric cancer. Gastric Cancer 2009, 12, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Rebe, C.; Ghiringhelli, F. Interleukin-1β and Cancer. Cancers 2020, 12, 1791. [Google Scholar] [CrossRef] [PubMed]
- Fousek, K.; Horn, L.A.; Palena, C. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacol. Ther. 2021, 219, 107692. [Google Scholar] [CrossRef]
- Kowalik, A.; Kowalewska, M.; Gozdz, S. Current approaches for avoiding the limitations of circulating tumor cells detection methods-implications for diagnosis and treatment of patients with solid tumors. Transl. Res. 2017, 185, 58–84. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Chong, W.; Shang, L.; Jing, C.; Li, L. Liquid biopsy in gastric cancer: Predictive and prognostic biomarkers. Cell Death Dis. 2022, 13, 903. [Google Scholar] [CrossRef]
- Arigami, T.; Uenosono, Y.; Yanagita, S.; Okubo, K.; Kijima, T.; Matsushita, D.; Amatatsu, M.; Kurahara, H.; Maemura, K.; Natsugoe, S. Clinical significance of circulating tumor cells in blood from patients with gastric cancer. Ann. Gastroenterol. Surg. 2017, 1, 60–68. [Google Scholar] [CrossRef]
- Qiu, M.Z.; Li, Z.H.; Zhou, Z.W.; Li, Y.H.; Wang, Z.Q.; Wang, F.H.; Huang, P.; Aziz, F.; Wang, D.Y.; Xu, R.H. Detection of carcinoembryonic antigen messenger RNA in blood using quantitative real-time reverse transcriptase-polymerase chain reaction to predict recurrence of gastric adenocarcinoma. J. Transl. Med. 2010, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Lin, S.R.; Hsieh, J.S.; Chen, F.M.; Lu, C.Y.; Yu, F.J.; Cheng, T.L.; Huang, T.J.; Huang, S.Y.; Wang, J.Y. Molecular detection of disseminated tumor cells in the peripheral blood of patients with gastric cancer: Evaluation of their prognostic significance. Dis. Markers 2006, 22, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Marcisz-Grzanka, K.; Rybski, S.; Siwik, M.; Sulkowska, U.; Wyrwicz, L.S. P-341 Tumor Regression and Nodal Status to Neoadjuvant Chemotherapy as a Prognostic Marker in Patients with Locally Advanced Gastric and Gastroesophageal Cancer. Ann. Oncol. 2023, 34, 134. [Google Scholar] [CrossRef]
- Davarzani, N.; Hutchins, G.G.A.; West, N.P.; Hewitt, L.C.; Nankivell, M.; Cunningham, D.; Allum, W.H.; Smyth, E.; Valeri, N.; Langley, R.E.; et al. Prognostic value of pathological lymph node status and primary tumour regression grading following neoadjuvant chemotherapy—Results from the MRC OE02 oesophageal cancer trial. Histopathology 2018, 72, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Ashizawa, T.; Okada, R.; Suzuki, Y.; Takagi, M.; Yamazaki, T.; Sumi, T.; Aoki, T.; Ohnuma, S.; Aoki, T. Clinical significance of interleukin-6 (IL-6) in the spread of gastric cancer: Role of IL-6 as a prognostic factor. Gastric Cancer 2005, 8, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Oya, Y.; Hayakawa, Y.; Koike, K. Tumor microenvironment in gastric cancers. Cancer Sci. 2020, 111, 2696–2707. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tao, P.; Zhou, Q.; Li, J.; Yu, Z.; Wang, X.; Li, J.; Li, C.; Yan, M.; Zhu, Z.; et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 2017, 8, 20741–20750. [Google Scholar] [CrossRef]
- Kinoshita, H.; Hirata, Y.; Nakagawa, H.; Sakamoto, K.; Hayakawa, Y.; Takahashi, R.; Nakata, W.; Sakitani, K.; Serizawa, T.; Hikiba, Y.; et al. Interleukin-6 mediates epithelial-stromal interactions and promotes gastric tumorigenesis. PLoS ONE 2013, 8, e60914. [Google Scholar] [CrossRef] [PubMed]
- Karakasheva, T.A.; Lin, E.W.; Tang, Q.; Qiao, E.; Waldron, T.J.; Soni, M.; Klein-Szanto, A.J.; Sahu, V.; Basu, D.; Ohashi, S.; et al. IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment. Cancer Res. 2018, 78, 4957–4970. [Google Scholar] [CrossRef] [PubMed]
- Ham, I.H.; Oh, H.J.; Jin, H.; Bae, C.A.; Jeon, S.M.; Choi, K.S.; Son, S.Y.; Han, S.U.; Brekken, R.A.; Lee, D.; et al. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol. Cancer 2019, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Meng, Q.; Shen, L.; Wu, G. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. 2018, 17, 14. [Google Scholar] [CrossRef]
- Namikawa, T.; Marui, A.; Yokota, K.; Fujieda, Y.; Munekage, M.; Uemura, S.; Maeda, H.; Kitagawa, H.; Kobayashi, M.; Hanazaki, K. Frequency and prognostic impact of cachexia during drug treatment for unresectable advanced gastric cancer patients. Surg. Today 2022, 52, 1560–1567. [Google Scholar] [CrossRef]
- Fukahori, M.; Shibata, M.; Hamauchi, S.; Kasamatsu, E.; Machii, K. A retrospective cohort study to investigate the incidence of cancer-related weight loss during chemotherapy in gastric cancer patients. Support. Care Cancer 2021, 29, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Sahin, M.E.H.; Akbas, F.; Yardimci, A.H.; Sahin, E. The effect of sarcopenia and sarcopenic obesity on survival in gastric cancer. BMC Cancer 2023, 23, 911. [Google Scholar] [CrossRef]
- Matsunaga, T.; Saito, H.; Miyauchi, W.; Shishido, Y.; Miyatani, K.; Morimoto, M.; Murakami, Y.; Hanaki, T.; Kihara, K.; Yamamoto, M.; et al. Impact of skeletal muscle mass in patients with unresectable gastric cancer who received palliative first-line chemotherapy based on 5-fluorouracil. BMC Cancer 2021, 21, 1219. [Google Scholar] [CrossRef]
- Raskova, M.; Lacina, L.; Kejik, Z.; Venhauerova, A.; Skalickova, M.; Kolar, M.; Jakubek, M.; Rosel, D.; Smetana, K., Jr.; Brabek, J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis-Overview and Therapeutic Opportunities. Cells 2022, 11, 3698. [Google Scholar] [CrossRef]
- Jayachandran, P. A Dose Finding Phase 1 of Sarilumab Plus Capecitabine in HER2/Neu-Negative Metastatic Breast Cancer and a Single-Arm, Historically-Controlled Phase 2 Study of Sarilumab Plus Capecitabine in Stage I-III Triple Negative Breast Cancer With High-Risk Residual Disease (EMPOWER). Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04333706 (accessed on 27 November 2023).
- GeneCards. Available online: https://www.genecards.org/ (accessed on 27 November 2023).
- UniProt. Available online: https://www.uniprot.org/ (accessed on 27 November 2023).
Optimal Threshold | AUC (95% CI) | Sensitivity | Specificity | Accuracy | PPV | NPV | p | |
---|---|---|---|---|---|---|---|---|
Measurement C2 | ||||||||
IL-6 [pg/mL] | 5.00 | 0.826 (0.698–0.954) | 0.89 | 0.77 | 0.79 | 0.53 | 0.96 | 0.001 |
Optimal Threshold | AUC (95% CI) | Sensitivity | Specificity | Accuracy | PPV | NPV | p | |
---|---|---|---|---|---|---|---|---|
Measurement C2 | ||||||||
IL-6 [pg/mL] | 5.65 | 0.751 (0.568–0.934) | 0.73 | 0.76 | 0.75 | 0.62 | 0.84 | 0.017 |
Measurement: delta C3 vs. C1 | ||||||||
IL-6 [pg/mL] | 1.09 | 0.764 (0.569–0.959) | 0.82 | 0.76 | 0.78 | 0.64 | 0.89 | 0.018 |
Optimal Threshold | AUC (95% CI) | Sensitivity | Specificity | Accuracy | PPV | NPV | p | |
---|---|---|---|---|---|---|---|---|
Measurement: TRG1 vs. TRG2 | ||||||||
IL-6 [pg/mL] | 5.16 | 0.856 (0.674–1.000) | 0.80 | 0.89 | 0.84 | 0.89 | 0.80 | 0.005 |
Measurement: TRG1 vs. TRG3 | ||||||||
IL-6 [pg/mL] | 6.93 | 0.796 (0.596–0.997) | 0.90 | 0.69 | 0.78 | 0.69 | 0.90 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcisz-Grzanka, K.; Kotowicz, B.; Nowak, A.; Winiarek, M.; Fuksiewicz, M.; Kowalska, M.; Tysarowski, A.; Olesinski, T.; Palucki, J.; Sulkowska, U.; et al. Interleukin-6 as a Predictive Factor of Pathological Response to FLOT Regimen Systemic Treatment in Locally Advanced Gastroesophageal Junction or Gastric Cancer Patients. Cancers 2024, 16, 757. https://doi.org/10.3390/cancers16040757
Marcisz-Grzanka K, Kotowicz B, Nowak A, Winiarek M, Fuksiewicz M, Kowalska M, Tysarowski A, Olesinski T, Palucki J, Sulkowska U, et al. Interleukin-6 as a Predictive Factor of Pathological Response to FLOT Regimen Systemic Treatment in Locally Advanced Gastroesophageal Junction or Gastric Cancer Patients. Cancers. 2024; 16(4):757. https://doi.org/10.3390/cancers16040757
Chicago/Turabian StyleMarcisz-Grzanka, Katarzyna, Beata Kotowicz, Aleksandra Nowak, Mariola Winiarek, Malgorzata Fuksiewicz, Maria Kowalska, Andrzej Tysarowski, Tomasz Olesinski, Jakub Palucki, Urszula Sulkowska, and et al. 2024. "Interleukin-6 as a Predictive Factor of Pathological Response to FLOT Regimen Systemic Treatment in Locally Advanced Gastroesophageal Junction or Gastric Cancer Patients" Cancers 16, no. 4: 757. https://doi.org/10.3390/cancers16040757
APA StyleMarcisz-Grzanka, K., Kotowicz, B., Nowak, A., Winiarek, M., Fuksiewicz, M., Kowalska, M., Tysarowski, A., Olesinski, T., Palucki, J., Sulkowska, U., Kolasinska-Cwikla, A., & Wyrwicz, L. S. (2024). Interleukin-6 as a Predictive Factor of Pathological Response to FLOT Regimen Systemic Treatment in Locally Advanced Gastroesophageal Junction or Gastric Cancer Patients. Cancers, 16(4), 757. https://doi.org/10.3390/cancers16040757