Longitudinal Muscle Biopsies Reveal Inter- and Intra-Subject Variability in Cancer Cachexia: Paving the Way for Biopsy-Guided Tailored Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feasibility and Safety Assessment of Sequential Muscle Biopsies
- Exclude the induction of cachexia-like characteristics: weight loss observed in daily body weight measurements; daily observation of the subjects’ gait pattern (this parameter is of interest since it could lead to possible immobilization and muscle atrophy); observation of eating and drinking patterns (in order to perform this assessment we observed feces and urine [15]).
- Body condition and behavioral scoring as described in detail by Paster et al. [16] (11–13: healthy, 6–10: morbidity, ≤5: consider euthanasia), including the following: appearance, natural behavior, provoked behavior, body condition score.
2.2. Cell Culture and Generation of Tumor Model
2.3. Tissue Collection and Histology
2.4. Muscle Biopsy Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Aapro, M.; Arends, J.; Bozzetti, F.; Fearon, K.; Grunberg, S.M.; Herrstedt, J.; Hopkinson, J.; Jacquelin-Ravel, N.; Jatoi, A.; Kaasa, S.; et al. Early recognition of malnutrition and cachexia in the cancer patient: A position paper of a European School of Oncology Task Force. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25, 1492–1499. [Google Scholar] [CrossRef]
- Poisson, J.; Martinez-Tapia, C.; Heitz, D.; Geiss, R.; Albrand, G.; Falandry, C.; Gisselbrecht, M.; Couderc, A.L.; Boulahssass, R.; Liuu, E.; et al. Prevalence and prognostic impact of cachexia among older patients with cancer: A nationwide cross-sectional survey (NutriAgeCancer). J. Cachexia Sarcopenia Muscle 2021, 12, 1477–1488. [Google Scholar] [CrossRef]
- Fearon, K.C. Cancer cachexia: Developing multimodal therapy for a multidimensional problem. Eur. J. Cancer 2008, 44, 1124–1132. [Google Scholar] [CrossRef]
- Argilés, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F.J. Cancer cachexia: Understanding the molecular basis. Nat. Rev. Cancer 2014, 14, 754–762. [Google Scholar] [CrossRef]
- Filis, P.; Kyrochristos, I.; Korakaki, E.; Baltagiannis, E.G.; Thanos, D.; Roukos, D.H. Longitudinal ctDNA profiling in precision oncology and immunο-oncology. Drug Discov. Today 2023, 28, 103540. [Google Scholar] [CrossRef]
- Porporato, P.E. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 2016, 5, e200. [Google Scholar] [CrossRef] [PubMed]
- Morigny, P.; Zuber, J.; Haid, M.; Kaltenecker, D.; Riols, F.; Lima, J.D.C.; Simoes, E.; Otoch, J.P.; Schmidt, S.F.; Herzig, S.; et al. High levels of modified ceramides are a defining feature of murine and human cancer cachexia. J. Cachexia Sarcopenia Muscle 2020, 11, 1459–1475. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Ruan, G.; Wei, L.; Zhang, H.; Ge, Y.; Zhang, Q.; Lin, S.; Song, M.; Zhang, X.; Liu, X.; et al. Comprehensive comparison of the prognostic value of systemic inflammation biomarkers for cancer cachexia: A multicenter prospective study. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. 2022, 71, 1305–1313. [Google Scholar] [CrossRef]
- Cao, Z.; Burvenich, I.J.; Zhao, K.; Senko, C.; Glab, J.; Fogliaro, R.; Liu, Z.; Jose, I.; Puthalakath, H.; Hoogenraad, N.J.; et al. Identification of Potential Biomarkers for Cancer Cachexia and Anti-Fn14 Therapy. Cancers 2022, 14, 5533. [Google Scholar] [CrossRef] [PubMed]
- Pototschnig, I.; Feiler, U.; Diwoky, C.; Vesely, P.W.; Rauchenwald, T.; Paar, M.; Bakiri, L.; Pajed, L.; Hofer, P.; Kashofer, K.; et al. Interleukin-6 initiates muscle- and adipose tissue wasting in a novel C57BL/6 model of cancer-associated cachexia. J. Cachexia Sarcopenia Muscle 2023, 14, 93–107. [Google Scholar] [CrossRef]
- Lai, K.C.; Hong, Z.X.; Hsieh, J.G.; Lee, H.J.; Yang, M.H.; Hsieh, C.H.; Yang, C.H.; Chen, Y.R. IFIT2-depleted metastatic oral squamous cell carcinoma cells induce muscle atrophy and cancer cachexia in mice. J. Cachexia Sarcopenia Muscle 2022, 13, 1314–1328. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.M.; Dunne, R.F.; Santiago, K.; Martin, L.; Birnbaum, M.J.; Crawford, J.; Hendifar, A.E.; Kochanczyk, M.; Moravek, C.; Piccinin, D.; et al. Addressing unmet needs for people with cancer cachexia: Recommendations from a multistakeholder workshop. J. Cachexia Sarcopenia Muscle 2022, 13, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, B.; Joaquim, S.; Garren, J.; Boucher, M.; Houle, C.; LaCarubba, B.; Qiao, S.; Wu, Z.; Esquejo, R.M.; Peloquin, M.; et al. Characterization of cachexia in the human fibrosarcoma HT-1080 mouse tumour model. J. Cachexia Sarcopenia Muscle 2020, 11, 1813–1829. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.V.; Hires, S.A.; Li, N.; O’Connor, D.H.; Komiyama, T.; Ophir, E.; Huber, D.; Bonardi, C.; Morandell, K.; Gutnisky, D.; et al. Procedures for behavioral experiments in head-fixed mice. PLoS ONE 2014, 9, e88678. [Google Scholar] [CrossRef] [PubMed]
- Paster, E.V.; Villines, K.A.; Hickman, D.L. Endpoints for mouse abdominal tumor models: Refinement of current criteria. Comp. Med. 2009, 59, 234–241. [Google Scholar] [PubMed]
- Clark, M.D.; Krugner-Higby, L.; Smith, L.J.; Heath, T.D.; Clark, K.L.; Olson, D. Evaluation of liposome-encapsulated oxymorphone hydrochloride in mice after splenectomy. Comp. Med. 2004, 54, 558–563. [Google Scholar] [PubMed]
- Adamson, T.W.; Kendall, L.V.; Goss, S.; Grayson, K.; Touma, C.; Palme, R.; Chen, J.Q.; Borowsky, A.D. Assessment of carprofen and buprenorphine on recovery of mice after surgical removal of the mammary fat pad. J. Am. Assoc. Lab. Anim. Sci. 2010, 49, 610–616. [Google Scholar] [PubMed]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.; Wei, P.; Zhan, S.; Zhang, S.; et al. The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 2011, 7, 55. [Google Scholar] [CrossRef]
- Langford, D.J.; Bailey, A.L.; Chanda, M.L.; Clarke, S.E.; Drummond, T.E.; Echols, S.; Glick, S.; Ingrao, J.; Klassen-Ross, T.; Lacroix-Fralish, M.L.; et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 2010, 7, 447–449. [Google Scholar] [CrossRef]
- Roeland, E.J.; Bohlke, K.; Baracos, V.E.; Bruera, E.; Del Fabbro, E.; Dixon, S.; Fallon, M.; Herrstedt, J.; Lau, H.; Platek, M.; et al. Management of Cancer Cachexia: ASCO Guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2438–2453. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, J.S. Cachexia in cancer--zeroing in on myosin. N. Engl. J. Med. 2004, 351, 2124–2125. [Google Scholar] [CrossRef]
- Kang, E.A.; Park, J.M.; Jin, W.; Tchahc, H.; Kwon, K.A.; Hahm, K.B. Amelioration of cancer cachexia with preemptive administration of tumor necrosis factor-α blocker. J. Clin. Biochem. Nutr. 2022, 70, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Penet, M.F.; Bhujwalla, Z.M. Cancer cachexia, recent advances, and future directions. Cancer J. 2015, 21, 117–122. [Google Scholar] [CrossRef]
- Palus, S.; Springer, J. Biomarkers for cancer cachexia: Where do we stand? J. Cachexia Sarcopenia Muscle 2020, 11, 1388–1389. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, K.; Jose, I.; Hoogenraad, N.J.; Osellame, L.D. Biomarkers for Cancer Cachexia: A Mini Review. Int. J. Mol. Sci. 2021, 22, 4501. [Google Scholar] [CrossRef]
- Cui, P.; Li, X.; Huang, C.; Li, Q.; Lin, D. Metabolomics and its Applications in Cancer Cachexia. Front. Mol. Biosci. 2022, 9, 789889. [Google Scholar] [CrossRef] [PubMed]
- Shum, A.M.Y.; Poljak, A.; Bentley, N.L.; Turner, N.; Tan, T.C.; Polly, P. Proteomic profiling of skeletal and cardiac muscle in cancer cachexia: Alterations in sarcomeric and mitochondrial protein expression. Oncotarget 2018, 9, 22001–22022. [Google Scholar] [CrossRef]
- Hitachi, K.; Nakatani, M.; Tsuchida, K. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression. Int. J. Biochem. Cell Biol. 2014, 47, 93–103. [Google Scholar] [CrossRef]
- Van de Worp, W.; Schols, A.; Dingemans, A.C.; Op den Kamp, C.M.H.; Degens, J.; Kelders, M.; Coort, S.; Woodruff, H.C.; Kratassiouk, G.; Harel-Bellan, A.; et al. Identification of microRNAs in skeletal muscle associated with lung cancer cachexia. J. Cachexia Sarcopenia Muscle 2020, 11, 452–463. [Google Scholar] [CrossRef]
- Johns, N.; Stretch, C.; Tan, B.H.; Solheim, T.S.; Sørhaug, S.; Stephens, N.A.; Gioulbasanis, I.; Skipworth, R.J.; Deans, D.A.; Vigano, A.; et al. New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. J. Cachexia Sarcopenia Muscle 2017, 8, 122–130. [Google Scholar] [CrossRef]
- O’Connell, T.M.; Golzarri-Arroyo, L.; Pin, F.; Barreto, R.; Dickinson, S.L.; Couch, M.E.; Bonetto, A. Metabolic Biomarkers for the Early Detection of Cancer Cachexia. Front. Cell Dev. Biol. 2021, 9, 720096. [Google Scholar] [CrossRef]
- Comfort, N.; Gade, M.; Strait, M.; Merwin, S.J.; Antoniou, D.; Parodi, C.; Marcinczyk, L.; Jean-Francois, L.; Bloomquist, T.R.; Memou, A.; et al. Longitudinal transcriptomic analysis of mouse sciatic nerve reveals pathways associated with age-related muscle pathology. J. Cachexia Sarcopenia Muscle 2023, 14, 1322–1336. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Harrison, L.; Patzelt, L.; Wu, M.; Junker, D.; Herzig, S.; Berriel Diaz, M.; Karampinos, D.C. Imaging modalities for diagnosis and monitoring of cancer cachexia. EJNMMI Res. 2021, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, W.M.; Gatidis, S.; Sartorius, T.; Machann, J.; Peter, A.; Eigentler, T.K.; Nikolaou, K.; Pichler, B.J.; Kneilling, M. Noninvasive, longitudinal imaging-based analysis of body adipose tissue and water composition in a melanoma mouse model and in immune checkpoint inhibitor-treated metastatic melanoma patients. Cancer Immunol. Immunother. 2021, 70, 1263–1275. [Google Scholar] [CrossRef] [PubMed]
- Friesen, D.E.; Baracos, V.E.; Tuszynski, J.A. Modeling the energetic cost of cancer as a result of altered energy metabolism: Implications for cachexia. Theor. Biol. Med. Model. 2015, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Cui, J.; Lin, X.; Li, N.; Fan, Y.; Zhang, L.; Liu, J.; Chong, F.; Wang, C.; Liang, T.; et al. Identifying cancer cachexia in patients without weight loss information: Machine learning approaches to address a real-world challenge. Am. J. Clin. Nutr. 2022, 116, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
Variable | Scoring System/Type of Measurement | Notable Assessment Comments |
---|---|---|
Time of the Day | Every measurement at 12:00 p.m. | |
Body Weight | Measured in grams | No weight loss was noted for rats. Only one mouse presented weight loss above 10%. |
Is the gait normal | Score = 1: Yes, Score = 0.5: Slight limp, Score = 0: No. | Rats: two subjects following the first biopsy and in three subjects following the second biopsy (limp lasted only for one day) Mice: All had a slight limp only the day following the surgeries, only at the site of the biopsy each time |
Signs of eating/drinking | 2 points: feces and urine observed, 1 point: minimal feces and/or urine output, 0 points: no signs of feces and/or urine. | No alteration of eating habits was noted |
Body condition and behavioral scoring | ||
Appearance | Normal (Score = 2): bright eyes, shiny well-groomed hair coat, erect ears, pink mucous membranes; abnormal (Score = 1): unkempt hair coat, dull fur; abnormal (Score = 0): hunching, piloerection, soiled fur, dry eyes. | Normal throughout the protocol |
Natural Behavior | Normal (Score = 3): active, interactive in environment, looks up to the observer; normal (Score = 2): Slight decrease in activity, less interactive, disregards the observer; abnormal (Score = 1): pronounced decrease in activity, isolated in corner of cage; abnormal (Score = 0): possible self-mutilation, hyperactive, or immobile. | Normal throughout the protocol |
Provoked Behavior | Normal (Score = 3): quickly moves away; normal (Score = 2): slow to move away or exaggerated response; abnormal (Score = 1): moves away after sort period of time; abnormal (Score = 0): does not move or reacts with excessively exaggerated response. | Normal throughout the protocol |
Body Condition Score | Emaciated (Score = 1): no palpable fat over the sacroiliac region, severely reduced muscle mass, with prominent vertebrae and iliac crests; thin (Score = 2): thin with some fat deposition and muscle mass but less than that palpated in mice with a score of 3, also had visible iliac crests; normal (Score = 3): had easily palpable fat pads, reduced definition of vertebral bodies, palpable but not visible iliac crests, and thick prominent muscle mass; overweight (Score = 4): difficulty in palpating iliac crests, difficulty in assessing vertebral definition, and prominent fat pads overlying muscled areas; obese (Score = 5): fat pads that overlaid muscle and iliac crests, thereby obscuring their presence both tactilely and visually and giving the animal’s rump a rounded appearance. | Normal throughout the protocol |
Total Score | Score = 11–13: healthy, Score = 10: morbidity, Score < 5: consider euthanasia. | Score 11–13 in every subject |
Pain score index/ethogram | ||
Coat pain index score | Score 0: normal, well groomed, smooth sleek hair coat; Score 1: not well groomed; Score 2: rough hair coat, dirty incision; Score 3: very rough hair coat, hair loss, dirty incision. | Normal throughout the protocol |
Eyes pain index score | Score 0: open/alert; Score 1: squinted eyes; Score 2: closed. | Mice: Squinted eyes in every subject, only at the day following each biopsy |
Coordination/ posture pain index score | Score 0: normal; Score 1: walk awkward or slightly hunched, still runs or moves fast; Score 2: walked hunched, walking on eggshells, does not run, walks slowly; Score 3: walks slowly with effort or only by tapping on cage; Score 4: hunched, stumbles, or must be pushed to get to move; Score 5: hunched, will not walk even when pushed. | Normal throughout the protocol |
Overall condition pain index score | Score 0: normal; Score 1: rough appearance but acts fairly normal; Score 2: slightly depressed, rough appearance, or slightly agitated; Score 3: very rough or very agitated. | Normal throughout the protocol |
Rat/mouse grimace scale | ||
Orbital tightening | Mouse/rat grimace scale photos (Score 0–2) Closing of the eyelid (narrowing of orbital area), a wrinkle may be visible around the eye | Rats: moderately present disturbance only in one subject, only at the day following the second biopsy Mice: moderately present disturbance in every subject, only at the day following each biopsy |
Nose bulge | Mouse grimace scale Photos (Score 0–2) Bulging on the bridge of the nose, vertical wrinkles on the side of the nose | Mice: moderately present disturbance in every subject, only at the day following each biopsy |
Cheek bulge | Mouse grimace scale photos (Score 0–2) Bulging of the cheeks Rat grimace scale photos (Score 0–2) Flattening and elongation of the bridge of the nose, flattening of the cheeks | Rats: moderately present disturbance only in one subject, only at the day following the second biopsy Mice: moderately present disturbance in every subject, only at the day following each biopsy |
Ear position | Mouse grimace scale photos (Score 0–2) Ears rotate outwards and/or backwards, away from the face Ears may fold to form a ‘pointed’ shape, space between the ears increases Rat grimace scale photos (Score 0–2) Ears curl inwards and are angled forward to form a ‘pointed’ shape, space between the ears increases | Mice: moderately present disturbance in every subject, only at the day following each biopsy |
Whisker change | Mouse grimace scale photos (Score 0–2) Whiskers are either pulled back against the cheek, or pulled forward to ‘stand on end’, whiskers may clump together, whiskers lose their natural ‘downward’ curve Rat grimace scale photos (Score 0–2) Whiskers stiffen and angle along the face, whiskers may ‘clump’ together, whiskers lose their natural ‘downward’ curve | Mice: Moderately present disturbance in every subject, only at the day following each biopsy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filis, P.; Tzavellas, N.P.; Stagikas, D.; Zachariou, C.; Lekkas, P.; Kosmas, D.; Dounousi, E.; Sarmas, I.; Ntzani, E.; Mauri, D.; et al. Longitudinal Muscle Biopsies Reveal Inter- and Intra-Subject Variability in Cancer Cachexia: Paving the Way for Biopsy-Guided Tailored Treatment. Cancers 2024, 16, 1075. https://doi.org/10.3390/cancers16051075
Filis P, Tzavellas NP, Stagikas D, Zachariou C, Lekkas P, Kosmas D, Dounousi E, Sarmas I, Ntzani E, Mauri D, et al. Longitudinal Muscle Biopsies Reveal Inter- and Intra-Subject Variability in Cancer Cachexia: Paving the Way for Biopsy-Guided Tailored Treatment. Cancers. 2024; 16(5):1075. https://doi.org/10.3390/cancers16051075
Chicago/Turabian StyleFilis, Panagiotis, Nikolaos P. Tzavellas, Dimitrios Stagikas, Christianna Zachariou, Panagiotis Lekkas, Dimitrios Kosmas, Evangelia Dounousi, Ioannis Sarmas, Evangelia Ntzani, Davide Mauri, and et al. 2024. "Longitudinal Muscle Biopsies Reveal Inter- and Intra-Subject Variability in Cancer Cachexia: Paving the Way for Biopsy-Guided Tailored Treatment" Cancers 16, no. 5: 1075. https://doi.org/10.3390/cancers16051075
APA StyleFilis, P., Tzavellas, N. P., Stagikas, D., Zachariou, C., Lekkas, P., Kosmas, D., Dounousi, E., Sarmas, I., Ntzani, E., Mauri, D., Korompilias, A., Simos, Y. V., Tsamis, K. I., & Peschos, D. (2024). Longitudinal Muscle Biopsies Reveal Inter- and Intra-Subject Variability in Cancer Cachexia: Paving the Way for Biopsy-Guided Tailored Treatment. Cancers, 16(5), 1075. https://doi.org/10.3390/cancers16051075